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Three-dimensional graphics with PGF/TikZ

Keith Wolcott

Abstract

PGF and TikZ are languages for creating graphics.
These packages are predominantly two-dimensional
graphics packages, so three-dimensional graphing is
more challenging, but still possible. A demonstration
of how to draw surfaces of revolution, satellite orbits,
and intersections of spheres is given. As is typical
with three-dimensional graphics, the technique is to
rotate in three-space and then project to the drawing
surface. The mathematics involved is discussed and
sample code is provided.

1 Introduction

PGF (Portable Graphics Format) is a lower-level
language and TikZ is a set of higher-level macros
that use PGF. TikZ is a recursive acronym for “TikZ
ist kein Zeichenprogramm” or “TikZ is not a drawing
program”. These languages were created by Till
Tantau [1]. PGF and TikZ commands are invoked as
(LA)TEX macros.

TikZ is packed with features for two-dimensional
drawings of lines, circles, ellipses, paths, graphs, etc.
The PGF/TikZ manual [1] has many examples to
facilitate learning these languages. Andrew Mertz
and William Slough [2] have written a very nice
sequence of examples which is an excellent way to
get started using TikZ.

The graph in figure 1 is an example of a function
graphed using PGF and TikZ.

x

y

Figure 1: f(x) = 3x5 − 5x3.

The following code for this figure, and all of the exam-
ples in this paper, can be run by cutting-and-pasting
into a LATEX document of this form (be sure to use
at least a 2011 version since there are compatibility
issues with earlier versions of PGF/TikZ):

\documentclass[12pt]{article}

\usepackage{tikz}

\usepackage{ifthen}\newboolean{color}

\begin{document}

% insert code here

\end{document}

Here is the code to generate figure 1:

\begin{figure}[H]

\centering

% Set the x = a and x = b values of the domain here

% where a <= x <= b.

\def\aDomain{-1.4}

\def\bDomain{1.4}

% Set min and max values of the function

% (c <= f(x) <= d). Used for the y-axis.

\def\cRange{-2.5}

\def\dRange{2.5}

\pgfmathsetmacro\scaleAttempt{2/(\bDomain-\aDomain)}

\begin{tikzpicture}[scale= \scaleAttempt,

domain= \aDomain : \bDomain]

\draw[very thin,color=gray]

(1.1*\aDomain,1.1*\cRange)

grid (1.1*\bDomain, 1.1*\dRange);

\draw[very thick, ->] (1.2*\aDomain, 0) --

(1.2*\bDomain, 0) node[right] {$x$};

\draw[very thick, ->] (0, 1.2*\cRange) --

(0, 1.2*\dRange) node[above] {$y$};

\draw[smooth, very thick]

plot (\x, 3*\x^5 - 5*\x^3);

\end{tikzpicture}

\caption{$f(x) = 3x^5 - 5x^3$.}

\end{figure}

2 Three-dimensional graphing

The graph in figure 2 is rotated about the y-axis.
The code for the figure is given in appendix A.

First we give additional examples, and then an
explanation of the methods used. To create addi-
tional examples, use the eleven parameters that are

y
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Figure 2: f(x) = x2 rotated about the y-axis.
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set at the beginning of the code. They are the do-
main (min and max), function, range (min and max),
back color, front color, shading steps, xGridSteps,
rotationGridSteps, and the viewing angle.

Changing the following four parameters and the
figure title results in figure 3.

\def\bDomain{6.3}

\def\fcn{cos(\x r)} % The r means to use radians.

\def\cRange{-1}

\def\dRange{1}

y

x
6.3

1

Figure 3: f(x) = cosx rotated about the y-axis.

We may not like the back and front colors so
we change them both to lightgray. We also change
the viewing angle from 10 to 15 degrees. To give
some idea of how other changes can be made, we
enlarge it and also comment out the x-axis and the
axis number labels. The altered lines of code for
figure 4 are:

\def\backColor{lightgray}

\def\frontColor{lightgray}

\def\phi{15} % Viewing angle of 15 degrees.

\pgfmathsetmacro\scaleAttempt{6/\bDomain}% 6 was 4.

%\draw[<->] (-\bDomain -.5, 0) -- (\bDomain + .5, 0)

% node[right] {$x$};

%\draw (\bDomain, .1) -- (\bDomain, -.1)

% node[below] {\bDomain};

%\pgfmathsetmacro\yLabel {cos(\phi)* \dRange}

%\draw (-.1, \yLabel) -- (.1, \yLabel)

% node[right] {\dRange};

y

Figure 4: f(x) = cosx rotated about the y-axis.

Figure 5 is another example.

y

Figure 5: f(x) = 2
√
x, from 1 to 4, rotated about the

y-axis.

Figure 6 is figure 5 rotated toward the viewer
by changing the view angle from 7 to 30 degrees.

y

Figure 6: f(x) = 2
√
x, from 1 to 4, rotated about the

y-axis, with a view angle of 30 degrees.

With similar code we rotate about the x-axis.

y

x

3.14159

1

Figure 7: f(x) = sinx rotated about the x-axis.

The code for figure 7 is included in appendix B.

Three-dimensional graphics with PGF/TikZ
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3 The mathematics behind the scenes

This project began with the goal of drawing two
spheres and their circle of intersection. A Google
search turned up Tomasz M. Trzeciak’s [3] beautiful
spheres (see figure 8). He very effectively draws
spheres, drawing the latitude and longitude curves
by creating a circle, rotating it in three-space, and
then projecting to the xy-plane.

Figure 8: Beautiful sphere created by Tomasz M.
Trzeciak.

We will show how to use these methods to draw the
surface of revolution in figure 2.

The drawing surface is the xy-plane with the x-
axis pointing to the right and the y-axis pointing up.
The z-axis points toward the viewer. The rotation
matrices about the x, y, and z-axes at an angle θ in
the counterclockwise direction are:

Rx(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,

and

Rz(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

See [4] to learn about rotation matrices.
First we draw the latitude lines, which are circles

with radius x drawn at height f(x). To do this, draw
a circle centered at the origin with radius x, but give
TikZ the transformation of the plane that rotates it to
give the correct viewing angle and shifts it to height
f(x). To find the affine transformation of the plane
that does this, the following matrix rotates three-
space counter-clockwise around the x-axis. Since we
start with a circle in the xy-plane we need to rotate
it 90 + φ degrees.

Rx(φ) =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ


Next, project to the xy-plane by removing the

third row and third column. This gives the two-by-
two matrix (

1 0
0 cosφ

)
that is the transformation of the xy-plane that we
tell TikZ to apply to our circle.

Remark: On page 253 of the PGF manual [1]
version 2.10, it says that

\tikzset{xyplane/.estyle={cm={

a,b,c,d,(e,f)}}}

uses the transformation(
a b
c d

)(
x
y

)
+

(
e
f

)
.

For example:

\begin{tikzpicture}

\draw[help lines] (0,0) grid (2,2);

\draw (0,0) -- (1,1);

\draw[cm={1,1,0,1,(0,0)}] (0,0) -- (1,1);

\end{tikzpicture}

The transformation should map the point
(1, 1) to (2, 1) rather than (1, 2) as shown in
the figure. Thus, TikZ (or the underlying PGF)
is in fact using

(x y)
(
a b
c d

)
+

(
e
f

)
.

Since our rotation matrices operate on vec-
tors on the left, this is the same as operating on
the right with the transpose of the matrix. For
a rotation matrix, the transpose of the matrix is
the inverse of the matrix, which means that the
direction of rotation is reversed. Thus, earlier
we said that the rotation matrix Rx(ψ) rotates
counterclockwise, but for this application, it ro-
tates clockwise.

In conclusion, the rotations are clockwise,
and if we wish to do a sequence of rotations, the
first rotation matrix is on the left.

Each circle with radius x needs to be shifted
up to the correct height f(x), but because of the
viewing angle rotation φ, this gets foreshortened to
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f(x) cosφ. The following code does this for 9 circles
where x is each quarter unit from 0 to 2. (The ninth
is an invisible point at 0.)

\def\fcn{\x^2}

\def\phi{-10}

\foreach \x in {0, .25, ..., 2} {

\pgfmathsetmacro\yshift{(cos(\phi))*(\fcn)}

\tikzset{xyplane/.estyle={cm={

1, 0, 0, cos(90 + \phi),(0, \yshift)}}}

\draw[xyplane, color=black] (0, 0) circle (\x);

}

Figure 9: f(x) = x2 rotated about the y-axis.

To draw the longitude lines we draw the given
function f(x) from 0 to 2, rotate every 30 degrees,
and then change the viewing angle by φ degrees.
Thus we use Ry(θ)Rx(φ) = cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 =

 cos θ sin θ sinφ sin θ cosφ
0 cosφ − sinφ

− sin θ cos θ sinφ cos θ cosφ

 .

Next, project to the xy-plane by removing the third
row and third column, resulting in the 2× 2 matrix(

cos θ sin θ sinφ
0 cosφ

)
.

If θ and φ are both negated in the above ma-
trix, it does not change. Thus, we will think of the
rotations as being in the counterclockwise direction
for positive values of θ and φ.

This is the transformation of the xy-plane that
we tell TikZ to apply to the graph of f(x).

\def\fcn{\x^2}

\def\phi{10}

\foreach \theta in {0, 30, ..., 360} {

\tikzset{xyplane/.estyle={cm={

cos(\theta),sin(\theta)*sin(\phi),

0,cos(\phi),(0, 0)}}}

\draw[xyplane, color=black, thin, smooth]

plot (\x, \fcn) ;

}

Figure 10: f(x) = x2 rotated about the y-axis.

Figure 10 gives the wire frame of the surface of
revolution. The remaining code for creating the final
version in figure 2 is more of the same. The coloring
of the front consists of the front half of many latitude
curves (this slows the code down) that typically look
good with opacity set to be less than 1 so that the
wire frame on the back shows through a little.

4 Global Positioning System (GPS) orbits

As another example, let us draw the orbit of a GPS

satellite around the earth. The orbit is inclined 55
degrees from the equator, which is the same as tilted
35 degrees from the north pole. Thus, we can start
with a circle in the xy-plane and tilt it 35 degrees
toward the viewer. Thus, the 35 degree tilt is a
−35 degree clockwise rotation about the x-axis. The
rotation matrix about the x-axis at an angle ψ in
the clockwise direction is

Rx(ψ) =

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 .

Projecting to the xy-plane (removing the third

row and third column), we have

(
1 0
0 cosψ

)
. This

is the transformation of the xy-plane that we tell
TikZ to apply to our circle as follows. The angle ψ
should be −35 degrees since we are tilting the top of
the circle toward the viewer.

Three-dimensional graphics with PGF/TikZ
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\begin{tikzpicture}

\tikzset{xyplane/.estyle={cm={

1,0,0,cos(-35), (0, 0)}}}

\draw[xyplane, color=black, thin]

(0, 0) circle (2);

\end{tikzpicture}

Now we wish to rotate our tilted orbit θ degrees
around the y-axis. To rotate first ψ degrees about
the x-axis and then θ degrees about the y-axis, we
compute

Rx(ψ)Ry(θ) = cos θ 0 sin θ
sinψ sin θ cosψ − sinψ cos θ
− cosψ sin θ sinψ cosψ cos θ

 .

Next, project to the xy-plane, which is the transfor-
mation (

cos θ 0
sinψ sin θ cosψ

)
.

If θ, ψ, and φ are all negated in the above ma-
trix, it does not change. Thus, we will think of the
rotations as being in the counterclockwise direction
for positive values of θ, ψ, and φ.

\begin{tikzpicture}

\tikzset{xyplane/.estyle={cm={

cos(90),0,sin(35)*sin(90),cos(35),(0, 0)}}}

\draw[xyplane] (0, 0) circle (2);

\end{tikzpicture}

Now suppose that we wish to view this from above
and thus rotate some angle φ around the x-axis to tilt
the top of the orbit toward the viewer. This is the
product Rx(ψ)Ry(θ)Rx(φ) that has the projected
matrix(

cos θ sin θ sinφ
sinψ sin θ cosψ cosφ− sinψ cos θ sinφ

)
.

Again, if θ, ψ, and φ are all negated in the above
matrix, it does not change. Thus, we will think of the
rotations as being in the counterclockwise direction
for positive values of θ, ψ, and φ.

With ψ = 35, θ = 90, and φ = 20, we rotate the
top of the above circle (that looks like a line) toward
the viewer 20 degrees so it looks like an ellipse again.

\begin{tikzpicture}

\tikzset{xyplane/.estyle={cm={

cos(90),sin(90)*sin(20),sin(35)*sin(90),

cos(35)*cos(20)-sin(35)*cos(90)*sin(20),(0,0)}}}

\draw[xyplane] (0, 0) circle (2);

\end{tikzpicture}

As an example of the above rotation and pro-
jection matrix, we draw the U.S. GPS (Global Posi-
tioning System) satellite orbits. There are six orbits,
each tilted ψ = 35 degrees from the north pole and
then rotated to be positioned every 60 degrees (θ)
around the earth. These orbits can then be viewed
from different angles φ. Figure 11 shows a view from
the equator. The code is included in appendix C.

Figure 11: The U.S. GPS system. This view, looking
directly at the equator, shows that the orbits never
pass over the north or south poles. Each orbit has four
satellites spaced 30 degrees, 105 degrees, 120 degrees,
and 105 degrees apart.

By changing the viewing angle \angEl = ψ, we
can get additional views. See figures 12 and 13 for
two such views.
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Figure 12: Looking down on the earth, 30 degrees
above the equator. Dotted lines are on the back side of
the orbit.

Figure 13: Looking directly down on the north pole.
Pairs of orbits overlap in this view, but the front and
back parts of these orbits are on opposite sides of the
earth.

For comparison, figure 14 is the configuration of
satellites that the European Union is using for the
GPS system that they are currently implementing
that has just three orbits with nine satellites in each.

5 Intersections of spheres

Rotations around an axis other than the coordinate
axes can also be useful. Consider figure 15.

Figure 14: The European Union’s planned GPS has
three orbital planes, 120 degrees apart, inclined at
56 degrees, that divide the earth’s surface into eight
congruent spherical triangles. Each of the three orbits
has nine satellites, equally spaced, 40 degrees apart.

Figure 15: These two spheres intersect in the bold
circle.

The goal was to draw the intersection of the two
spheres. The plane of the circle of intersection is
perpendicular to the vector between the two sphere
centers. Thus to find the circle of intersection we
rotate three-space so that the z-axis (which is perpen-
dicular to the xy-plane) rotates to be parallel to the
vector between the sphere centers. Thus the rotation
axis is perpendicular to both of these vectors and
we compute it by taking the cross product of them.
Then we use the rotation matrix about this vector

Three-dimensional graphics with PGF/TikZ
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(see [4]), project to the xy-plane, and then shift to
the correct position. This figure needs more work,
since it does not show the overlapping parts of the
spheres correctly, but it is still an example of how to
find and draw the intersection using these techniques.
The code for figure 15 is included in appendix E.

6 Conclusion

The PGF and TikZ languages are predominantly for
two-dimensional graphics, but with an understanding
of a few rotation matrices, some three-dimensional
graphics can be drawn fairly easily.

Appendix A Rotation about the y-axis

Code for figure 2. The function f(x) = x2 is rotated
about the y-axis.

\begin{figure}[h]

\begin{center}

%%%%%%%% Set function values %%%%%%%

% Set the x = a and x = b values of the

% domain here where a <= x <= b.

\def\aDomain{0}

\def\bDomain{2}

% Set the function.

% The variable must be \x, e.g. \x^2.

\def\fcn{\x^2}

% Set min and max values of the function

% (c <= f(x) <= d). Used for the y-axis.

\def\cRange{0}

\def\dRange{4}

% Set the color of the back half.

% This can look good as a different color

% if it looks like the inside.

\def\backColor{brown}

% Set the color of the front half. lightgray looks

% good for both back and front.

\def\frontColor{red}

% Set the number of shading circles to draw.

% More gives a more even color.

% Enter 1 for no shading.

\def\xShadingSteps{300}

% Set the number of x radius grid circles.

\def\xGridSteps{8}

% Set the number of radial grid lines.

\def\rotationGridSteps{12}

% Set the viewing elevation angle,

% which is the angle up from horizontal.

\def\phi{10}

%%%%%%%%%%%%%%%%%%%%%%%%%

\pgfmathsetmacro\scaleAttempt{4/\bDomain}

\begin{tikzpicture}[scale= \scaleAttempt,

domain= \aDomain: \bDomain]

\pgfmathsetmacro\intervalLength{\bDomain - \aDomain}

\pgfmathsetmacro\xGridStepsize{

\intervalLength/\xGridSteps}

\pgfmathsetmacro\xShadingStepsize{

\intervalLength/\xShadingSteps}

\pgfmathsetmacro\rotationGridStepsize{

360/\rotationGridSteps}

% Draw the shading of the back half.

% Top half of a circle, rotated back (around x-axis)

% 90 - \phi degrees and shifted up or down

% to the correct height.

\pgfmathsetmacro\nextShadingStep{

\aDomain + \xShadingStepsize}

\foreach \x in

{\aDomain, \nextShadingStep, ..., \bDomain} {

\pgfmathsetmacro\ysh {(cos(\phi))*(\fcn)}

\tikzset{xyplane/.estyle={cm={

1,0,0,cos(90-\phi), (0, \ysh)}}}

\draw[xyplane,\backColor,ultra thick,opacity=1]

(\x, 0) arc (0:180:\x);

}

% Back longitude lines.

% Rotates graph around y-axis, then

% projects to xy-plane.

\foreach \theta in

{0, \rotationGridStepsize, ..., 180} {

\tikzset{xyplane/.estyle={cm={

cos(-\theta), sin(-\theta)*sin(-\phi),

0, cos(-\phi), (0, 0)}}}

\draw[xyplane, smooth] plot (\x, \fcn);

}

% Back latitude lines.

% Top half of a circle, rotated back

% (around x-axis) 90 - \phi degrees and

% shifted up or down to the correct height.

\pgfmathsetmacro\nextStep{\aDomain + \xGridStepsize}

\foreach \x in {\aDomain,\nextStep, ...,\bDomain} {

\pgfmathsetmacro\ysh {(cos(\phi))*(\fcn)}

\tikzset{xyplane/.estyle={cm={

1,0,0,cos(90-\phi), (0, \ysh)}}}

\draw[xyplane] (\x, 0) arc (0: 180:\x);

}

% Draw the axis.

\pgfmathsetmacro\yHeight{

\dRange + \bDomain*sin(\phi) + .5}

\draw[->] (0, \cRange - .5) -- (0, \yHeight)

node[above] {$y$};

% Comment out the next four commands

% if you don’t want an x-axis, and labels.

\draw[<->] (-\bDomain -.5, 0) -- (\bDomain + .5, 0)

node[right] {$x$};

\draw (\bDomain, .1) -- (\bDomain, -.1)

node[below] {\bDomain};

\pgfmathsetmacro\yLabel {cos(\phi)* \dRange}

\draw (-.1, \yLabel) -- (.1, \yLabel)

node[right] {\dRange};

% Draw the shading of the front half.

% Top half of a circle, rotated back (around x-axis)

% 90 - \phi degrees and shifted up or down

% to the correct height.

\foreach \x in

{\aDomain, \nextShadingStep, ..., \bDomain} {

\pgfmathsetmacro\ysh {(cos(\phi))*(\fcn)}

\tikzset{xyplane/.estyle={cm={

1,0,0,cos(90-\phi), (0, \ysh)}}}

\draw[xyplane,\frontColor,ultra thick,

opacity=.6]

(-\x, 0) arc (-180:0:\x);

}

% Front longitude lines.

\foreach \theta in

{0, \rotationGridStepsize, ..., 180} {

\tikzset{xyplane/.estyle={cm={

cos(\theta), sin(\theta)*sin(-\phi),

0, cos(-\phi), (0, 0)}}}

\draw[xyplane,smooth] plot (\x, \fcn);

}

% Front latitude lines.

% Bottom half of a circle, rotated back
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% (around x-axis) 90 - \phi degrees and

% shifted up or down to the correct height.

\foreach \x in {\aDomain, \nextStep, ..., \bDomain}{

\pgfmathsetmacro\ysh {(cos(\phi))*(\fcn)}

\tikzset{xyplane/.estyle={cm={

1,0,0,cos(90-\phi),(0, \ysh)}}}

\draw[xyplane] (-\x, 0) arc (-180: 0:\x);

}

\end{tikzpicture}

\caption{Rotate $f(x) = x^2$ about the $y$-axis.}

\end{center}

\end{figure}

Remark: Since the back and front shading is drawn
by drawing circles that are rotated in three-space,
and the above code uses 300 such circles, it is slow
(about 3 seconds). Thus, when working with the
document, it is useful to set \xShadingSteps to 1
and then change it to 300 for the final version.

Appendix B Rotation about the x-axis

Code for figure 7. The function sinx is rotated about
the x-axis.
\begin{figure}[h]

\begin{center}

%%%%%%%% Set function values %%%%%%%

% Set the x = a and x = b values of the

% domain here where a <= x <= b.

\def\aDomain{0}

\def\bDomain{3.14159}

% Set the function.

% The variable must be \x, e.g. \x^2.

\def\fcn{sin(\x r)}

%\def\fcn{sqrt(\x)}

% Set min and max values of the function

% (c <= f(x) <= d). Used for the y-axis.

\def\cRange{0}

\def\dRange{1}

% Set the color of the back half.

% This can look good as a different color

% if it looks like the inside.

\def\backColor{red!70!black}

% Set the color of the front half. lightgray looks

% good for both back and front.

\def\frontColor{red!70!black}

% Set the number of shading circles to draw.

% More gives a more even color. Enter 1 for

% no shading; a large number makes it slow.

% Use the following two lines while editing and then

% change the speed to 100 for the final version.

%\def\speed{1}

%\pgfmathsetmacro\xShadingSteps{3* \speed}

\pgfmathsetmacro\xShadingSteps{300}

% Set the number of x radius grid circles.

\def\xGridSteps{8}

% Set the number of radial grid lines.

\def\rotationGridSteps{18}

% Set the viewing elevation angle,

% which is the angle up from horizontal.

\def\phi{15}

%%%%%%%%%%%%%%%%%%%%%%%%%

\pgfmathsetmacro\scaleAttempt{3.4/\dRange}

\begin{tikzpicture}[scale= \scaleAttempt,

domain= \aDomain: \bDomain]

\pgfmathsetmacro\intervalLength{\bDomain - \aDomain}

\pgfmathsetmacro\xGridStepsize{

\intervalLength/\xGridSteps}

\pgfmathsetmacro\xShadingStepsize{

\intervalLength/\xShadingSteps}

\pgfmathsetmacro\rotationGridStepsize{

360/\rotationGridSteps}

% Draw the shading of the back half.

% Left half of a circle, rotated right

% (around y-axis) 90 - \phi degrees and

% shifted right or left to the correct height.

\pgfmathsetmacro\nextShadingStep{

\aDomain + \xShadingStepsize}

\foreach \x in

{\aDomain, \nextShadingStep, ..., \bDomain} {

\pgfmathsetmacro\xsh{(cos(\phi))*({\x})}

\pgfmathsetmacro\rad{(\fcn)}

\tikzset{xyplane/.estyle={cm={

cos(\phi - 90), 0,0,1, (\xsh, 0)}}}

\draw[xyplane,\backColor,ultra thick,opacity=.6]

(0, \rad) arc (90 : 270 : \rad);

}

% Back longitude lines.

% Rotates graph around y-axis,

% then projects to xy-plane.

\foreach \theta in

{0, \rotationGridStepsize, ..., 180} {

\tikzset{xyplane/.estyle={cm={

cos(\phi), 0, sin(\theta)*sin(\phi),

cos(\theta), (0, 0)}}}

\draw[xyplane,smooth] plot (\x, \fcn) ;

}

% Back latitude lines.

% Left half of a circle, rotated right

% (around y-axis) 90 - \phi degrees and

% shifted right or left to the correct height.

\pgfmathsetmacro\nextStep{\aDomain + \xGridStepsize}

\foreach \x in {\aDomain,\nextStep, ...,\bDomain} {

\pgfmathsetmacro\xsh{(cos(\phi))*({\x})}

\pgfmathsetmacro\rad{(\fcn)}

\tikzset{xyplane/.estyle={cm={

cos(\phi - 90), 0,0,1,(\xsh, 0)}}}

\draw[xyplane,black,thin,opacity=1]

(0, \rad) arc (90 : 270 : \rad);

}

% Draw the axis.

\pgfmathsetmacro\xdim{

\bDomain + \dRange*sin(\phi) + .5}

\draw[->] (0, -\dRange - .5) -- (0, \dRange + .5)

node[above] {$y$};

% Comment out the next four commands

% if you don’t want an x-axis, and labels.

\draw[<->] (\aDomain -.5, 0) -- (\xdim, 0)

node[right] {$x$};

\pgfmathsetmacro\xLabel{cos(\phi)*\bDomain}

\draw (\xLabel, .1) -- (\xLabel, -.1)

node[below right] {\bDomain};

\draw (-.1, \dRange) -- (.1, \dRange)

node[right] {\dRange};

% Draw the shading of the front half.

% Right half of a circle, rotated right

% (around y-axis) 90 - \phi degrees and

% shifted right or left to the correct height.

\foreach \x in

{\aDomain, \nextShadingStep, ..., \bDomain} {

\pgfmathsetmacro\xsh{(cos(\phi))*({\x})}

\pgfmathsetmacro\rad{(\fcn)}

\tikzset{xyplane/.estyle={cm={

cos(\phi - 90),0,0,1,(\xsh, 0)}}}
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\draw[xyplane,\frontColor,ultra thick,opacity=.6]

(0, -\rad) arc (-90 : 90 : \rad);

}

% Front longitude lines.

\foreach \theta in

{0, \rotationGridStepsize, ..., 180} {

\tikzset{xyplane/.estyle={cm={

cos(\phi), 0,

sin(\theta)*sin(\phi),cos(\theta),(0, 0)}}}

\draw[xyplane,smooth] plot (\x, \fcn) ;

}

% Front latitude lines.

% Right half of a circle, rotated right

% (around y-axis) 90 - \phi degrees and

% shifted right or left to the correct height.

\foreach \x in {\aDomain, \nextStep, ..., \bDomain}{

\pgfmathsetmacro\xsh{(cos(\phi))*({\x})}

\pgfmathsetmacro\rad{(\fcn)}

\tikzset{xyplane/.estyle={cm={

cos(\phi-90),0,0,1, (\xsh, 0)}}}

\draw[xyplane] (0, -\rad) arc (-90 : 90 : \rad);

}

\end{tikzpicture}

\caption{$f(x)=\sin{x}$ rotated about the $x$-axis.}

\label{rot1x}

\end{center}

\end{figure}

Appendix C GPS satellites

Code for figure 11, the U.S. GPS satellite orbits.

% GPS satellite orbits.

\begin{tikzpicture}[scale=.77]

\def\R{1.4} % sphere radius

\def\orbitRadius{3.172*\R}

\def\angEl{1} % elevation angle

\def\x{0} % x coordinate of center

\def\y{0} % y coordinate of center

\def\z{0} % z coordinate of center

% First tilt the orbit from the north

% pole (rotate about the x-axis).

\pgfmathsetmacro\psi{35}

% Second, rotate around the y-axis.

\pgfmathsetmacro\firstTheta{-135}

% Third, rotate about the x-axis.

\pgfmathsetmacro\phi{\angEl}

\draw[color=red, fill=blue, opacity=.15]

(0, 0) circle (\orbitRadius);

% Set the variables, theta, c = color, angVis,

% and \thetaSatShift for each of 6 orbits.

\foreach \theta/\c in{\firstTheta/red,

\firstTheta+60/blue,

\firstTheta+2*60/green,

\firstTheta+3*60/black,

\firstTheta+4*60/cyan,

\firstTheta+5*60/brown}{

% Set the drawing plane affine transformation.

\tikzset{xyplane/.estyle={cm={

cos(\theta),sin(\theta)*sin(\phi),

sin(\theta)*sin(\psi),cos(\psi)*cos(\phi)-

sin(\psi)*cos(\theta)*sin(\phi),(0, 0)}}}

% Draw the back half of the orbit.

\getFrontArcStartPosition\angle\anglex{

\psi}{\theta}{\phi}

\pgfmathtruncatemacro\angleInt{\angle}

\ifthenelse{\angleInt < -180}

{\pgfmathsetmacro\angleInt{\angleInt + 360}}

{}

\draw[xyplane, dashed, color=\c]

(\angleInt -180: \orbitRadius)

arc (\angleInt -180: \angle: \orbitRadius);

}

% Draw the earth.

\tikzset{current plane/.estyle={cm={1,0,0,1,(0,0)}}}

\filldraw[current plane][shift={(\x, \y)}]

[ball color=blue,opacity=.7] (0,0,0) circle (\R);

\foreach \t in {-80,-60,...,80} {

\DrawLatitudeCircle[\R]{\t}{\x}{\y}}

\foreach \t in {-5,-35,...,-175} {

\DrawLongitudeCircle[\R]{\t}{\x}{\y}}

\pgfmathsetmacro\orbitBaseAngle{30}

% Draw the front half of the orbit.

\foreach \theta/\c in {\firstTheta/red,

\firstTheta+60/blue,

\firstTheta+2*60/green,

\firstTheta+3*60/black,

\firstTheta+4*60/cyan,

\firstTheta+5*60/brown}{

% Set the drawing plane affine transformation again.

\tikzset{xyplane/.estyle={cm={cos(\theta),

sin(\theta)*sin(\phi),sin(\theta)*sin(\psi),

cos(\psi)*cos(\phi)-sin(\psi)*cos(\theta)*

sin(\phi),(0,0)}}}

% Draw the front half of the orbit.

\getFrontArcStartPosition\angle\anglex{

\psi}{\theta}{\phi}

\pgfmathtruncatemacro\angleInt{\angle}

\ifthenelse{\angleInt > 180}

{\pgfmathsetmacro\angleInt{\angleInt - 360}}

{}

\draw[xyplane,very thick,color=\c]

(\angleInt:\orbitRadius) arc

(\angleInt:\angleInt+180:\orbitRadius);

% Draw the satellites.

\foreach \thetaSat in {\orbitBaseAngle,

\orbitBaseAngle + 30, \orbitBaseAngle + 135,

\orbitBaseAngle + 255} {

\pgfmathsetmacro\xsh{

(7/1)*\orbitRadius*cos(\thetaSat)}

\pgfmathsetmacro\ysh{

(7/1)*\orbitRadius*sin(\thetaSat)}

\draw[xyplane,color=\c,scale=1/7][shift=

{(\xsh,\ysh)}](-2,-1) grid (2,1);

}

}

\end{tikzpicture}

This code requires some helper functions written by
Tomasz M. Trzeciak [3] for drawing spheres. For
completeness, these functions are listed below. Place
them just before \begin{document}.

\newcommand\pgfmathsinandcos[3]{%

\pgfmathsetmacro#1{sin(#3)}%

\pgfmathsetmacro#2{cos(#3)}%

}

\newcommand\LongitudePlane[3][current plane]{%

\pgfmathsinandcos\sinEl\cosEl{#2} % elevation

\pgfmathsinandcos\sint\cost{#3} % azimuth

\tikzset{#1/.estyle={cm={

\cost,\sint*\sinEl,0,\cosEl,(0,0)}}}

}

\newcommand\LatitudePlane[3][current plane]{%

\pgfmathsinandcos\sinEl\cosEl{#2} % elevation

\pgfmathsinandcos\sint\cost{#3} % latitude

\pgfmathsetmacro\yshift{\cosEl*\sint}

Keith Wolcott



TUGboat, Volume 33 (2012), No. 1 111

\tikzset{#1/.estyle={cm={

\cost,0,0,\cost*\sinEl,(0,\yshift)}}} %

}

\newcommand\DrawLongitudeCircle[4][1]{

\LongitudePlane{\angEl}{#2}

\tikzset{current plane/.prefix style={scale=#1}}

% angle of "visibility"

\pgfmathsetmacro\angVis{

atan(sin(#2)*cos(\angEl)/sin(\angEl))} %

\draw[shift={(#3, #4)}][current plane]

(\angVis:1) arc (\angVis:\angVis+180:1);

\draw[shift={(#3, #4)}][current plane,dashed]

(\angVis-180:1)arc(\angVis-180:\angVis:1);

}

\newcommand\DrawLatitudeCircle[4][1]{

\LatitudePlane{\angEl}{#2}

\tikzset{current plane/.prefix style={scale=#1}}

\pgfmathsetmacro\sinVis{

sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)}

% angle of "visibility"

\pgfmathsetmacro\angVis{

asin(min(1,max(\sinVis,-1)))}

\draw[shift={(#3, #4)}][current plane]

(\angVis:1) arc (\angVis:-\angVis-180:1);

\draw[shift={(#3, #4)}][current plane,dashed]

(180-\angVis:1)arc(180-\angVis:\angVis:1);

}

This uses a macro \getFrontArcStartPosition to
compute which parts of the orbit arcs are on the
front side of the orbit so they can be drawn last and
the back side can be drawn first with dotted lines.
There is likely an easier way to do this, but this
solution involves using the spherical law of sines on
various triangles on the sphere. For completeness,
an explanation of the formulas follows the code.

\newcommand\getFrontArcStartPosition[5]{

% Theta must be between -180 and 180.

\pgfmathtruncatemacro\psiInt{#3}

\pgfmathtruncatemacro\thetaInt{#4}

\pgfmathtruncatemacro\phiInt{#5}

\pgfmathtruncatemacro\psiTemp{\psiInt}

\ifthenelse{\thetaInt < 0}

% Negate theta and negate the results at the end.

{\pgfmathtruncatemacro\thetaTemp{-\thetaInt}}

{\pgfmathtruncatemacro\thetaTemp{\thetaInt}}

\pgfmathtruncatemacro\phiTemp{\phiInt}

\pgfmathsetmacro\anglexTemp{atan(sin(\thetaTemp)/

(cos(\thetaTemp)*sin(\psiTemp)))}

\ifthenelse{\thetaTemp > 90}

{\pgfmathsetmacro\anglexTemp{\anglexTemp + 180}}

{}

\pgfmathsetmacro\result{atan(sin(\thetaTemp)*

cos(\phiTemp)*sin(\anglexTemp)/

(sin(\anglexTemp)*cos(\psiTemp)*sin(\phiTemp)

+cos(\anglexTemp)*cos(\phiTemp)*sin(\thetaTemp)))}

\pgfmathsetmacro\specialAngle{(cos(\phiTemp)*

cos(\phiTemp)-cos(\psiTemp)*cos(\psiTemp))/

(cos(\phiTemp)*cos(\phiTemp)*

sin(\psiTemp)*sin(\psiTemp))}

\ifthenelse{\phiInt < \psiInt}{

\pgfmathparse{sqrt(\specialAngle)}

\pgfmathsetmacro\specialAngle{

asin(-\pgfmathresult)+180}

\ifthenelse{\thetaTemp > \specialAngle}{

\pgfmathsetmacro\result{\result + 180}

\pgfmathsetmacro#1{\result}}

{

\pgfmathsetmacro#1{\result}}}

{}

% Negate the results if theta is negative.

\ifthenelse{\thetaInt < 0}{

\pgfmathsetmacro#1{-\result}

\pgfmathsetmacro#2{-\anglexTemp}}

{

\pgfmathsetmacro#1{\result}

\pgfmathsetmacro#2{\anglexTemp}}

}% End of \getFrontArcStartPosition function.

Appendix D Explanation of formulas
in \getFrontArcStartPosition

The function \getFrontArcStartPosition in ap-
pendix C is used to find which parts of an orbit are
on the front and which on the back, so that we can
draw the back as a dotted line.

Figure 16 shows a red orbit that is tilted ψ de-
grees from the north pole and then rotated θ degrees
with the viewing angle tilted φ degrees as the orbits
are for figure 11. Our goal is to find the length of arc
DC = x′ since that is where the orbit comes around
to the front of the sphere.

The spherical law of sines says that for a triangle
on a sphere

sinA

sin a
=

sinB

sin b
=

sinC

sin c
where a, b, and c are the three angles of the triangle
andA, B, and C are the three corresponding opposite
side lengths (which are measured as an angle from
the center of the sphere).

A

B

C

D

Figure 16: Given the orbit containing points B, C,
and D, find the angular distance from D to C. If this
distance is found, then the orbit is drawn with a solid
arc from that point at C for 180 degrees and then for
another 180 degrees as a dashed line.
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AB

C

D

φ
90− φ

β
180− β

90− ψ

θ

y

x′x

x− x′

Figure 17: Triangles of figure 16 drawn in the plane.

Using the law of sines on the large triangle ABD,
we have that

sin y

sin (90− ψ)
=

sinx

sin 90
. (1)

Using the law of sines on the lower small triangle
ABC, we have that

sinβ

sin y
=

sinφ

sin (x− x′)
. (2)

Simplifying and solving (1) for sin y and substi-
tuting into (2) and solving for sinβ, results in

sinβ =
cosψ sinx sinφ

sin (x− x′)
. (3)

Using the law of sines on the upper small triangle
ACD, we have that

sin (180− β)

sin θ
=

sin (90− φ)

sinx′
. (4)

Solving (4) for sinβ and setting equal to the right
side of (3) results in

sin θ cosφ

sinx′
=

cosψ sinx sinφ

sin (x− x′)
or

sin θ cosφ

sinx′
=

cosψ sinx sinφ

sinx cosx′ − cosx sinx′
.

Cross multiplying, dividing by cosx′ and solving for
tanx′ gives

tanx′ =
sin θ cosφ sinx

sin θ cosφ cosx+ cosψ sinφ sinx
.

Thus we can compute x′ in terms of x. In order to
compute x, see figure 18 where we have added points
N and E.

Point E is chosen such that angle NEB is a
right angle. Triangle NED is drawn in figure 19.

A

B

C

D

N

E

Figure 18: This is the same as figure 16 with added
points N and E where segment NE is perpendicular
to both red orbits. Triangle NED is used to find the
value of x which is the arc BD.

DE

N

B

ψα180− α

θ

90− θ

90

ψ
90

x90− x

Figure 19: Triangle NED of figure 18 drawn in the
plane.

The law of sines applied to triangle NBD on
the right gives

sinα =
sin θ

sinx
. (5)

The law of sines applied to triangle NEB on the left
gives sin (180− α) =

sinα =
sinψ sin (90− θ)

sin (90− x)
=

sinψ cos θ

cosx
. (6)

Setting the values of sinα equal from (5) and (6) and
solving for tanx gives

tanx =
tan θ

sinψ
.

Thus we now have x in terms of θ and ψ. This
explains the formulas used for 0 ≤ θ ≤ 90 in the
macro \getFrontArcStartPosition. In the case
that ψ ≤ φ, the same formulas work for when 90 ≤
θ ≤ 180. There are some complications when ψ > φ
and 90 ≤ θ ≤ 180. In this case, when x′ exceeds 90
degrees there is a sign change in the computation.
Some more spherical trigonometry reveals that this
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happens when

sin2 θ =
cos2 φ− cos2 ψ

cos2 φ sin2 ψ

which we use in \getFrontArcStartPosition to
compute the value of θ where this change occurs.
This allows us to compute x′ for all 0 ≤ θ ≤ 180.
For −180 ≤ θ ≤ 0, we use symmetry and return the
negative of the x′ computed for |θ|.

Appendix E Intersection of two spheres

Code for figure 15.

% The intersection of two spheres.

\begin{tikzpicture}[scale=.8]

% Draw the first sphere.

\def\Rb{3.1} % sphere radius

\def\angEl{30} % elevation angle

\def\xb{3} % x coordinate of center

\def\yb{3} % y coordinate of center

\def\zb{-1} % z coordinate of center

\filldraw[shift={(\xb, \yb)}][ball color= blue]

(0, 0, 0) circle (\Rb);

\foreach \t in {-60,-20,...,80} {

\DrawLatitudeCircle[\Rb]{\t}{\xb}{\yb}}

\foreach \t in {-5,-45,...,-175} {

\DrawLongitudeCircle[\Rb]{\t}{\xb}{\yb}}

% Draw the second sphere.

\def\Rc{2.4} % sphere radius

\def\angEl{30} % elevation angle

\def\xc{0} % x coordinate of center

\def\yc{0} % y coordinate of center

\def\zc{0} % z coordinate of center

\filldraw[shift={(\xc, \yc)}][ball color= red]

(0,0,0) circle (\Rc);

\foreach \t in {-60,-20,...,80} {

\DrawLatitudeCircle[\Rc]{\t}{\xc}{\yc}}

\foreach \t in {-5,-45,...,-175} {

\DrawLongitudeCircle[\Rc]{\t}{\xc}{\yc}}

\drawIntersectionOfSpheres{\xc}{\yc}{\zc}{\xb}

{\yb}{\zb}{\Rc}{\Rb}{yellow}

\end{tikzpicture}

This code also requires the helper functions for draw-
ing spheres, given in appendix C. Place them just
before \begin{document}.

The following are additional helper functions to the
main function that draws the intersection of the two
spheres, \drawIntersectionOfSpheres.

\newcommand\calculateCenterSpan[4]{

\pgfmathsetmacro#1{((#2)^2+(#3)^2+(#4)^2)^(1/2)}}

\newcommand\calculateAngtheta[3]{

\pgfmathsetmacro#1{acos(#2/#3)}}

\newcommand\calculateShiftDistance[4]{

\pgfmathsetmacro#1{((((#2)^2-(#3)^2)/(2*#4)+#4/2))}}

\newcommand\calculateShiftDistancePercent[3]{

\pgfmathsetmacro#1{#2/#3}}

\newcommand\calculateCircleRadius[3]{

\pgfmathsetmacro#1{((#2)^2 - (#3)^2)^(1/2)}

}

% The function below does not use the

% rotation matrices about coordinate axes,

% but instead computes the vector that we

% want to rotate around, then the

% corresponding rotation matrix, and then

% (as before) projects to the xy-plane.

% It also shifts to the correct location.

\newcommand\drawIntersectionOfSpheres[9]{

% Parameters are: CenterSphere1x, CenterSphere1y,

% CenterSphere1z, CenterSphere2x,

% CenterSphere2y, CenterSphere2z,

% RadiusSphere1, RadiusSphere2, DrawColor.

\pgfmathsetmacro\xchange{#4 - #1}

\pgfmathsetmacro\ychange{#5 - #2}

\pgfmathsetmacro\zchange{#6 - #3}

\pgfmathsetmacro\firstSphereCenterx{#1}

\pgfmathsetmacro\firstSphereCentery{#2}

\calculateCenterSpan\centerSpan{

\xchange}{\ychange}{\zchange}

\calculateAngtheta\angtheta{\zchange}{\centerSpan}

\calculateShiftDistance\shiftDistance{

#7}{#8}{\centerSpan}

\calculateShiftDistancePercent\shiftDistancePercent{

\shiftDistance}{\centerSpan}

\calculateCircleRadius\circleRadius{

#7}{\shiftDistance}

\pgfmathsetmacro\ux{\ychange}

\pgfmathsetmacro\uy{-\xchange}

\pgfmathsetmacro\C{1-cos(\angtheta)}

\pgfmathsetmacro\L{((\ux)^2 + (\uy)^2)^(1/2)}

\pgfmathsetmacro\first{

cos(\angtheta) + (\ux)^2*\C/(\L^2)}

\pgfmathsetmacro\second{\ux*\uy*\C/(\L^2)}

\pgfmathsetmacro\third{\ux*\uy*\C/(\L^2)}

\pgfmathsetmacro\fourth{

cos(\angtheta)+(\uy)^2*\C/(\L^2)}

\tikzset{xyplane/.estyle={cm={\first,\second,\third,

\fourth,(\firstSphereCenterx+\shiftDistancePercent

*\xchange,\firstSphereCentery

+\shiftDistancePercent*\ychange)}}}

\pgfmathsetmacro\dAng{atan(\xchange/\ychange)}

\draw[xyplane, color=#9, ultra thick]

(-\dAng: \circleRadius) arc

(-\dAng:-\dAng-180:\circleRadius);

\draw[xyplane, color=#9, ultra thick, dashed]

(-\dAng+180: \circleRadius) arc

(-\dAng+180:-\dAng:\circleRadius);

}
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