
TEX as you like it: The Interpreter package

Paul Isambert

Introduction

This article presents the Interpreter package for Lua-
TEX, designed to preprocess input files on the fly so
that the user can map any syntax to proper TEX and
type documents with the language s/he finds more
convenient.

This is not a comprehensive description of In-
terpreter, but only highlights of its functionality; the
documentation accompanying the package on CTAN

remains the ultimate reference, and contains a com-
plete explanation of an interpretation file.

Motivations

Despite loving TEX, I’ve always hated typing back-
slashes and braces for some reason (for one, they’re
rather badly placed on a French keyboard). At least,
the latter can often be avoided thanks to delimited
arguments, but unless one is willing to define a new
character with catcode 0 (something I find almost
counterintuitive) or to venture into the dangerous
world of active characters, backslashes cannot be
avoided.

Also, I’ve always found TEX source files (mine
and others’s) quite unreadable. The likes of \macro
and \com{mand} disturb the normal flow of reading.
This became more striking still when I started using
the Vim editor. Unlike most text editors, Vim’s doc-
umentation is made of plain text files meant to be
read in the editor itself (this is also true of Emacs);
thus one can remain in the same working environ-
ment and above all browse the help files as one usu-
ally browses some code. If only one could read TEX
source files so easily!

All in all, what I wanted was to type TEX source
in a syntax unrelated to TEX — a lightweight markup
language like Markdown or the syntax used for wikis.
Without LuaTEX, the only solution (as far as I know)
is to use some script to convert a file into proper TEX
(thus creating another file), something I’ve never
tried. With LuaTEX, things change: if you want to
preprocess a file on the fly before feeding it to TEX,
you can do it, just hook into the open_read_file

callback!*

* This is the reason why Interpreter doesn’t work
with ConTEXt, in which the callback is frozen. ConTEXt
does have modules to process some non-TEX languages,
but I’m not aware of a general solution for any language
the user might want to define.

TUGboat, Volume 32 (2011), No. 3 345

Working principles

The basic mechanism behind Interpreter is quite
simple; you have a master file in which you input
the file(s) to be preprocessed with:

\interpretfile{〈lang〉}{〈file〉}
where 〈lang〉 points to an external file containing
the interpretation (explained in the following sec-
tion). Then Interpreter uses the open_read_file

callback to control how the lines of 〈file〉 are to be
fed to TEX. This callback is passed a string rep-
resenting the file to read and should return a table
with two entries: reader, a function called whenever
TEX wants a line, and (optionally) close, a function
executed when the end of the input file is reached.
The simplest implementation of reader is to read
a line of the input file and return it to TEX; be-
fore that, however, one can also modify that line or
read others (and perhaps modify them too), which
is exactly how Interpreter works. Some practical
examples: one can ask Interpreter to change ‘some
*bold* text’ into ‘some \bold{bold} text’ or

=========================

=== A section heading ===

=========================

into

\section{A section heading}

or to surround with verbatim macros any material
indented with ten spaces, and stop interpreting it at
once (so the material is really left verbatim).

Defining simple patterns

As already mentioned, \interpretfile will look for
an external file matching its first argument; more
precisely, if that argument is e.g. lang, then the file
should be called i-lang.lua. It contains all the re-
placements that will take place to convert the input
file; as the extension indicates, the language is Lua.
The main function is interpreter.add_pattern(),
which takes a table defining a pattern to be searched
for and replaced with something else. Not surpris-
ingly, one of the entries is pattern; another is re-

place; and Interpreter will try to find all material
matching the former and replace them with the lat-
ter.

For instance, the following will replace /text/

with \italic{text}:†

† Since the function’s single argument is a table, Lua
allows the parentheses to be omitted; e.g. myfn({mytab})
and myfn{mytab} are equivalent in such cases. The same
is true for strings: myfn"mystr" works in the same cir-
cumstances.

TEX as you like it: The Interpreter package



interpreter.add_pattern{

pattern = "/(.-)/",

replace = "\\italic{%1}"

}

The reader will notice that Lua’s magic characters
are used, and (.-) thus means ‘capture the shortest
possible sequence made of any number of matching
characters’, and not a dot followed by a minus sign
between parentheses. To denote a magic character
itself, one should prefix it with %; thus if one wanted
to use stars instead of slashes, the pattern should be
%*(.-)%*, because the star is a magic character (see
the Lua reference manual for the list of magic char-
acters). Alternatively, Interpreter has a function
interpreter.nomagic() which reverses the magic:
no character is magic unless prefixed with %, ex-
cept that ... means the magic (.-). For exam-
ple, interpreter.nomagic("*...*") is equivalent
to "%*(.-)%*".

I’ve mentioned captures, and indeed replace

makes use of them: %1 refers to the first (and in this
case, only) capture of pattern. This follows the
behavior of Lua’s string.gsub(), since ultimately
Interpreter uses that function to make the replace-
ment. Accordingly, replace can be a string, as is
the case here, but also a table (and the entry re-
turned is the one with the first capture, or the entire
match if there is no capture, as its key) or a func-
tion (to which the captures, or the entire match, are
passed as arguments).

Now Interpreter will search all lines for the spec-
ified pattern and use the replacement if a match
occurs; a limitation (and security) is that matches
must be contained in a single line. For instance, the
following material will be left untouched:

This will /not be

put/ in italics.

To span several lines, two solutions are possible.
First, one can redefine the pattern to match a sin-
gle slash, which is converted to \italics{ or } de-
pending on a conditional. To do this, one can use a
function in replace:

local italic

local function makeitalic ()

if italic then

italic = false

return "}"

else

italic = true

return "\\italic{"

end

end

346 TUGboat, Volume 32 (2011), No. 3

interpreter.add_pattern{

pattern = "/",

replace = makeitalic

}

The second solution, sounder and more general, will
be explained in the next section.

Before turning to more advanced topics, a word
of caution: Interpreter does not define TEX macros
as \italic or \bold or \section. They are used
here because their meaning is clear, but one should
obviously use macros defined elsewhere. In other
words, Interpreter simply manipulates strings and
has nothing to do with typesetting.

Handling paragraphs

Simple patterns are fine as far as they go, but some-
times manipulating input line by line doesn’t suffice.
For instance, suppose you want to turn

1. First item.

2. Second item.

3. Third item.

into something like

\list

\item First item.

\item Second item.

\item Third item.

\endlist

Converting a string of digits followed by a dot at
the beginning of a line into \item is easy enough.
However, how should \list and \endlist be added
to the material?

Such a situation is the reason why Interpreter
manipulates paragraphs instead of lines. Instead of
fetching a line, converting it according to the defined
patterns, and returning it to TEX, Interpreter col-
lects an entire paragraph, does all the conversions,
and only then passes it line by line to TEX. In the
meantime new lines might have been added.

For Interpreter a paragraph is anything up to
and including the first line matching completely the
pattern stored in interpreter.paragraph, where
‘matching completely’ means that if the material
matching the pattern is removed from the line, the
line is empty. By default, interpreter.paragraph
is defined as %s*, i.e. a paragraph is marked by a
line containing at most spaces.

To manipulate paragraphs, one should define a
pattern with a call entry. This should be a func-
tion, and it will be executed as follows:

function (paragraph, line, index, pattern)

The first argument is the entire paragraph where the
match occurred. It is represented as a table with nu-

Paul Isambert



merical indices; line is the index of the line where
the match occurred, so that paragraph[line] re-
turns a string representing that line; index is the
position in that string where the match was found;
finally, pattern is the entire table which has been
defined with interpreter.add_pattern.

Our situation with lists could be solved like this:

local item = "^%s*%d+%.%s*"

local function makelist (paragraph)

for n, l in ipairs(paragraph) do

paragraph[n] = string.gsub(l, item,

"\\item ",1)

end

table.insert(paragraph, 1, "\\list")

table.insert(paragraph, "\\endlist")

end

add_pattern{

pattern = item,

call = makelist

}

The following will happen: when Interpreter spots a
string of one or more digits followed by a dot at the
beginning of a line (spaces notwithstanding), it calls
the makelist function. This functions searches for
the same pattern in all the lines of the paragraph
and replaces it with \item; also, it inserts new lines
with \list and \endlist at the beginning and the
end of the paragraph.

This example used only the first argument of
the call function. As a more complicated case us-
ing all four arguments, let’s solve the question of
defining /.../ as a marker for italics possibly span-
ning several lines. Basically, the solution is identical
to the one shown in the previous section: the first
slash should be turned into \italic{ and the sec-
ond into }. But, as already mentioned this solution
will be sounder, because the conversion will be done
if and only if a pair of slashes is found (so that a
slash on its own isn’t modified), and also more gen-
eral, because the same function will be used for all
similar patterns.

local match,gsub = string.match,string.gsub

local function markup (par, line, index,

pattern)

local patt = pattern.pattern

local rep = "\\" .. pattern.replace .. "{"

if match(par[line], patt, index+1) then

par[line] = gsub(par[line], patt, rep, 1)

par[line] = gsub(par[line], patt, "}", 1)

else

local n = line+1

while par[n] do

if match(par[n], patt) then

TUGboat, Volume 32 (2011), No. 3 347

par[line] = gsub(par[line], patt,

rep, 1)

par[n] = gsub(par[n], patt, "}", 1)

return

else

n = n+1

end

end

return index+1

end

end

interpreter.add_pattern{pattern = "/",

call = markup, replace = "italic"}

interpreter.add_pattern{pattern = "%*",

call = markup, replace = "bold"}

interpreter.add_pattern{pattern = ’"’,

call = markup, replace = "quote"}

Given a pattern, the markup function looks for an-
other occurrence of this pattern in the same line or
in the following lines of the paragraph. Only if the
search succeeds does the replacement happen. Then
we specify patterns so /text/ will be replaced with
\italic{text}, *text* with \bold{text}, and fi-
nally "text" with \quote{text}.

Two things should be remarked upon in the
code above. First, the line return index+1 at the
end of the function instructs Interpreter to resume
its search for patterns at the next position in the
current line; without it, the search would start again
at the same position where the pattern was found.
This return statement occurs if no matching char-
acter was found, i.e. if the pattern was launched
on a lonely slash (or star or double quote). Thus
that character was not converted, and if the search
were to start again at the same position, Interpreter
would find the same character, and enter a loop.

Second, the patterns store the macro to be used
in the replace field. That is totally arbitrary: the
table making up the pattern can contain any field.
Here the replace entry can be used because if a
pattern has both call and replace, the latter is ig-
nored (i.e. the mechanism described in the previous
section doesn’t apply).

Bells and whistles

As said in the introduction, this paper is not a com-
plete manual for Interpreter. Here I’ll mention a few
other bits of functionality.

First and foremost, the search for patterns is
done according to an order. Each pattern belongs to
a class, as specified by the class entry in the pattern
table (this entry defaults to the number recorded in

TEX as you like it: The Interpreter package



interpreter.default_class), and classes are ap-
plied one after the other in ascending order; patterns
belonging to the same class are ordered by length
and are applied from longer to shorter.

One of the reasons why classes are important
is so input can be protected, i.e. prevent Interpreter
from converting some lines or an entire paragraph.
For instance, consider a pattern denoting verbatim
material. It will launch a call function to add some-
thing like \verbatim and \endverbatim as the first
and last lines. In addition, it should call the func-
tion interpreter.protect(), to stop Interpreter
from manipulating the current paragraph, i.e. other
patterns won’t be searched for and replaced, as ex-
pected for verbatim material. Such a pattern should
belong to the very first class, so that it is executed
before all the others; otherwise, protection would be
only partial.

Another way to protect input, this time locally,
is to record a pair of strings as left and right mark-
ers such that the enclosed material shouldn’t be
touched. The function interpreter.protector()

does this; e.g. after interpreter.protector(’"’),
material between double quotes will be left intact (if
the function is called with only one argument, it is
used for both the left and right markers).

Interpreter allows you to mix different syntaxes,
or rather, it has no notion of well-formedness for the
language you define. Thus usual TEX commands can
be used in the middle of an interpreted file. One
convenient trick is to define an easy syntax to add
new patterns to the file being read. For instance,
with

interpreter.add_pattern{

class = 1,

pattern = "^DEF%s*(.-)%s*=%s*(.+)",

replace = function (pat, rep)

interpreter.add_pattern{

pattern = pat,

replace = rep}

return ""

end

}

simple new patterns can be created as follows:

DEF pattern = replacement text

I let the reader check that it works properly.

Input files that look like main files

One of Interpreter’s limitations is that it works only
on input files: it can’t work with a main file di-
rectly fed to TEX. The reason for this is that it uses

348 TUGboat, Volume 32 (2011), No. 3

the open_read_file callback which, as its name im-
plies, concerns \input and \read (\interpretfile
ultimately boils down to \input).

The main file could be manipulated with the
process_input_buffer callback, but this isn’t as
flexible as open_read_file, and most importantly
it doesn’t attach to a specific file. Yet one can have
the impression to work on the main file by invoking
LuaTEX as follows (this works for plain TEX; LATEX
users should adapt accordingly):

luatex -jobname=〈file〉
\input interpreter

\interpretfile{〈language〉}{〈file〉}
\bye

The important point is to set -jobname to the input
filename, so the relevant output files (the PDF, log,
etc.) are created with the proper name. It might be
wise to set -output-directory to the file’s direc-
tory too, but that is not necessary.

Of course, one can also input other files besides
Interpreter. It might also be interesting to use a
Lua initialization script, an alternative I won’t in-
vestigate here.

Conclusion

LuaTEX keeps changing my TEX world every day:
new horizons, new solutions, a new language. With
Interpreter, even my usual TEX source doesn’t look
the same! I’m even working on a document where
unmarked macros represent themselves, i.e. \macro
is turned to \string\macro.

One thing I do not know is whether Interpreter
would be convenient to process something like XML;
not using that language, I haven’t tried to create
an interpretation file for it, and I wonder whether
Interpreter would be up to the task or would rather
get in the way. If the reader finds a solution, just
let me know!

� Paul Isambert
zappathustra (at) free dot fr

Postscript: Just before this article went to press, Inter-
preter was rewritten with the Gates package. None of
what is said here needs updating, since Interpreter hasn’t
changed on the surface, but its implementation now al-
lows deep hacking, because it is made of small logical
steps that can be externally controlled. Details can be
found in the new version’s documentation and general
principles in the documentation for Gates.

Paul Isambert


