
TUGboat, Volume 31 (2010), No. 3 219

Managing printed and online versions of
large educational documents

Jean-Michel Hufflen

Abstract

We have developed a LATEX2ε package, pfa-macros,
usable for both presentational education, concerning
‘classical’ students, and distance education, where
most of a curriculum is performed by means of online
documents. First, we explain why requirements for
educational documents are not the same for these
two ways of teaching. Then we show why our pack-
age allows us to manage two versions—printed and
online—of the same textbook.
Keywords Presentational education, distance
education, course text, online course, case study,
LATEX, PDF, pdfLATEX, pfa-macros package.

1 Introduction

The Internet has revived correspondence education:
now many network tools are widely used within this
field: electronic mail, mailing lists, forums, online
documents available via the Web, etc. The term ‘cor-
respondence education’ seems to be quite old, since
it appears to be related to ‘classical’ letters sent and
delivered by post, so nowadays the term ‘distance
education’ is preferred. As result of greater and
greater interest in distance education, most universi-
ties in the world have increased such offerings. An
example of a French academic institution delivering
distance education is the CTU,1 part of the Univer-
sity of Franche-Comté, located at Besançon. The
CTU allows students to get all the units required
for a master in Computer Science. Of course, the
University of Franche-Comté still provides curric-
ula in presentational education— for students who
physically attend ‘classical’ lectures, exercises and
lab classes—which remains the ‘traditional’ way of
teaching. Obviously some teaching units are common
to the two curricula of presentational and distance
education.

In this article, we show how some new LATEX
commands allow us to manage the different parts of
a single document’s body, for presentational students
as well as distance ones. In fact, these parts have
been initially written as chapters and appendices of
a textbook for presentational students. Later, they
have been reused and maintained as we explain in
Section 2. Then Section 3 goes thoroughly into re-
quirements about educational documents and shows
that requirements for textbooks for presentational

1 Centre de Télé-enseignement Universitaire, that is, Uni-
versity Centre for Teleteaching.

students and online documents for distance students
are not the same. Our commands have been grouped
into a package pfa-macros:2 Section 4 describes the
broad outlines of it. Finally, Section 5 discusses some
alternative solutions.

A report about this work has already been pub-
lished as [7], but within a general conference about
computer-aided education, so there we reduced tech-
nical details about LATEX’s features as far as possible.
The present article gives a bit more detailed de-
scription of our package’s functionalities.3 However,
reading it only requires knowledge of LATEX as an
end user.

2 History

One of the teaching units we are in charge of is
devoted to functional programming .4 In fact, it is
entitled Advanced Functional Programming, PFA for
short,5 since it is attended by graduate students—
4th-year university degree in computer science— that
is, students who already have experience in program-
ming. The ‘philosophy’ and contents of this unit
are described in [6]. Let us just recall briefly that
students actually practise only one programming
language within this unit—Scheme [20]—but alter-
native implementations of functional programming
concepts are exemplified using other programming
languages, such as Common Lisp6 [21], Standard
ML7 [16], CAML8 [12], and Haskell9 [17]. Other com-
parisons with modern object-oriented languages such
as Java [9], C++ [22], and C# [13] are also given.
In addition, we show in [6] that some examples are
demonstrated using TEX’s language. As a conse-
quence, a textbook based on what is taught within
this unit should include many excerpts of programs
using various languages. Setting up this teaching unit
PFA began in spring 1997 and the first version of
our printed document [4] came out in August 1997,
with a pre-version of a short additional document [5]
devoted to an introduction to the λ-calculus [1], the
common root of functional programming languages.

2 Available online: http://lifc.univ-fcomte.fr/home/
~jmhufflen/latex-etc/pfa-macros.sty.

3 An extended version [8], more technical, is given in
the proceedings of the 2010 conference of the guIt (Gruppo
Utilizzatori Italiani di TEX ), the Italian-speaking users group.

4 Functional programming emphasises application of func-
tions, whereas imperative programming —the paradigm im-
plemented within more ‘traditional’ languages such as Pascal
[25] or C [11]—emphasises changes in state.

5 Programmation Fonctionnelle Avancée, in French. Our
package’s name— pfa-macros—originates from this acronym.

6 ‘Lisp’ stands for LISt Processor.
7 ‘ML’ stands for MetaLanguage.
8 Categorical Abstract Machine Language.
9 Named after Haskell Brooks Curry (1900–1982).

Managing printed and online versions of large educational documents



220 TUGboat, Volume 31 (2010), No. 3

When the master’s for distance students was
launched, for the academic year 2004–2005, its cur-
riculum obviously resembled the master’s in presen-
tational education. But a unit common to these two
curricula was not necessarily handled by the same
teacher. Concerning us, we have been in charge of
the PFA unit within both presentational and dis-
tance education, but this arrangement does not hold
true for all the units. So we were interested in a
method that would allow us to derive the two ver-
sions—printed and online— from the same source
files. Such a modus operandi would ease the mainte-
nance of our documents. For example, some slight
mistakes should be fixed once, and we wished to add
more examples. More ambitiously, the version of
standard Scheme changed, from [2] to [10], so we
ought to adapt some existing texts and examples.10

3 Different requirements

The document [4] consists of six chapters. Each chap-
ter includes exercises, given with model solutions.
These chapters are followed by several appendices—
making precise some extra information or devoted
to lab class exercises done by students—and a rich
‘Bibliography’ section. The whole document is ap-
proximately 400 pages long. It can be viewed as
a textbook, even if its dissemination is limited to
this unit’s students. The students are progressively
given the successive parts of this document, but it
is organised as a whole, with precise architecture:
cross-references are widely used throughout it. Of
course, it contains not only text— in the sense of
successive paragraphs—but also many examples of
programs and some mathematical formulas, even if
it is not really a textbook in mathematics.

3.1 Requirements about typography

When the first teaching units were launched in dis-
tance education, teachers were obviously asked to
install online documents on the Web. Some teachers
wrote documents using HTML.11 However, such a
choice seemed to us unsuitable for scientific docu-
ments: the look of resulting Web pages depends on
the browser used; in addition, formatting mathemat-
ical formulas and program fragments often results in
poor-quality output. We could have used some con-
verters from LATEX source texts to HTML pages,12
which may use images to insert fragments whose
conversion to HTML is difficult, e.g., mathematical
formulas. However, even if these converters allow the

10 Later, in 2007, another change occurs, from [10] to [19].
11 HyperText Markup Language. A good introduction to

it is [15].
12 Some are described in [3, Ch. 3–4].

output’s quality to be improved, in comparison with
direct writing in HTML, authors have to adapt source
texts in order for the conversion to work properly.
In other words, it may be difficult to do such a task
for a large document already written and formatted.

Concerning the insertion of program fragments,
let us recall that this point was essential, especially
about the fragments given in languages other than
Scheme. We could perform some demonstrations
during the lab classes of presentational students, so
they could observe these other programs’ behaviour.
The same modus operandi was impossible for dis-
tant students, and it was difficult to ask them to
install many compilers or interpreters. So the solu-
tion was to ask them for exercises only in Scheme—
as done for presentational students—but the exam-
ples given throughout our text must be explicit, in
order for these students to understand without run-
ning them. In addition, we paid much attention to
the indentation of these programs and inserted some
comments throughout them using special effects—
e.g., slanted fonts— so they do not use verbatim-like
environments, but are built by means of tabbing
environments.

From our point of view, only PDF13 [3, Ch. 2]
offers some sufficient warranty about the quality of
texts displayed on the Web. This point is also re-
lated to communication: when a teacher writes some
formulas onto a blackboard, students see the result
exactly as the teacher formats it. The same warranty
is given by PDF files, not by HTML pages. So we
decided to systematically use PDF files, generated
by the pdfLATEX program [3, § 2.4]. In addition,
if the hyperref package [3, § 2.3] is used, PDF files
produced by pdfLATEX can support hyperlinks, as in
HTML. Let us now come to the organisational differ-
ences between texts for presentational and distance
students.

3.2 Presentational vs. distance education

Of course, distance students could not be given a
single document as a huge PDF file. It is preferable
for distance students to get separate medium-sized
files, according to the steps of their planning. Be-
sides, let us not forget that these files are downloaded:
students cannot be asked to download a huge file
again if only some typing mistakes have just been
fixed. Splitting this big document into separate files
induces a precise organisation of cross-reference links
throughout the original version. Information redun-
dancy should be avoided, so all the parts should point
to the same ‘Bibliography’ section, as a separate file.

13 Portable Document Format.

Jean-Michel Hufflen



TUGboat, Volume 31 (2010), No. 3 221

Model solutions can be given after each exercise
for presentational students, especially if this exercise
has already been proposed in class. That cannot
be the same for a document devoted to distance
education: model solutions should be grouped at the
end of each chapter, or provided in separate files.

4 The pfa-macros package

Let us assume that the chapters, sections, etc. of
the two versions—printed and online—are num-
bered identically. Besides, LATEX allows each chap-
ter of a document to be associated with its own
auxiliary (.aux) file, containing information solving
cross-references. So we can compile a chapter for the
online version by using the auxiliary files of the docu-
ment’s other chapters of the ’presentational’ version.
A cross-reference written by LATEX’s \ref command
is implemented in pdfLATEX as an internal hyperlink,
which is fine for cross-references within the same
chapter. For external references, we define a new
command:

\pfaexternalref[chapter-file]{label0}

If the big document for presentational education is
generated, this works like \ref{label0}. If the chap-
ter is generated as part of the online text, a link to
the file chapter-file .pdf is put. In both cases, the
same text is displayed or enlighted by a hyperlink. If
the complete version has already been put on the site,
it can be searched. Otherwise, it is a kind of stub
whose contents reads ‘This chapter will be put later’
and when the complete version is put, the hyperlink
will remain the same.14 We use similar technique for
cross-references to footnotes belonging to another
chapter (commands \pfacite, \pfaexternalref,
\pfaexternalfootnotref, etc.).

5 Other methods

There exists some work allowing a LATEX document
to refer to a label belonging to an external document.
A first example is given by some commands of the
html package [3, § 3.5.3], unsuitable for us, since
this package is only interesting if you want to derive
HTML pages. A second implementation of external
references using hyperlinks is given by the xr-hyper
package [14, § 2.4.6]. Nevertheless, this package has
two drawbacks for us. First, it does not deal with
bibliographical citations (\cite commands). Second,
it cannot refer to an external label that will be defined

14 Of course, when we started this task, such a choice led
us to look for all the occurrences of the \ref command and
change some into \pfaexternalref ones. In practice, that
was not difficult, because a good technique is to prefix labels’
name by an identifier for the corresponding chapter. So the
file name to be put was not difficult to supply.

later. To explain that, let us consider that the first
chapter refers to a section of the second chapter. As
long as the second chapter is replaced by a stub, the
hyperlink will fail; it will work only as soon as this
chapter’s complete text is made public.15 Within our
system, the hyperlink always points to the second
chapter’s PDF file, a stub or the complete text.16

If we had started from scratch, that is, if both
the presentational and distance unit were launched
at the same time, an interesting method could have
been to specify our input files using XML,17 and
XSLT18 [24] could have been used to derive texts for
LATEX, or in XSL-FO19 [23]

6 Conclusion

A first sketch of the present article was initially de-
signed for the EuroTEX 2010 conference. The Web
page announcing this event mentioned that LATEX
is still widely used, but ‘the landscape is changing’,
and other word processors continue to emerge.

From our point of view, the present work shows
that LATEX is still unrivalled to ‘intelligently’ process
texts for several purposes. As mentioned above, the
first version of our course text came out in 1997.
Then it has evolved deeply—chapters and appen-
dices have been wholly revised—and continuously,
since we have applied some changes each year. We
did it successfully— in particular when we had to be
conformant with new revisions of standard Scheme—
so we can think that our system is reliable.

7 Acknowledgements

I am grateful to the distance education students who
addressed me very constructive criticisms; year after
year, they indirectly helped me improve my tools.
Thanks to Karl Berry and Barbara Beeton, who
kindly proofread this article.

� Jean-Michel Hufflen
LIFC (EA CNRS 6942)
University of Franche-Comté
16, route de Gray
25030 Besançon Cedex
France
jmhufflen (at) lifc dot univ-fcomte dot fr
http://lifc.univ-fcomte.fr/home/~jmhufflen

15 From a pedagogical point of view, such a forward ref-
erence is often viewed as bad. But it can occur within a
footnote, or a fragment that can be skipped at first reading.

16 That could be improved in a future version: if the ex-
ternal label exists, the hyperlink directly points to the corre-
sponding resource, if not, it points to a stub.

17 eXtensible Markup Language. [18] is a good introduc-
tion to this meta-language.

18 eXtensible Stylesheet Language Transformations.
19 eXtensible Stylesheet Language—Formatting Objects.

Managing printed and online versions of large educational documents



222 TUGboat, Volume 31 (2010), No. 3

References
[1] Alonzo Church: The Calculi of Lambda-Conversion.

Princeton University Press. 1941.
[2] William D. Clinger and Jonathan A. Rees,

with Harold Abelson, Norman I. Adams iv,
David H. Bartley, Gary Brooks, R. Kent
Dybvig, Daniel P. Friedman, Robert Halstead,
Chris Hanson, Christopher T. Haynes,
Eugene Edmund Kohlbecker, Jr., Donald
Oxley, Kent M. Pitman, Guillermo Juan Rozas,
Guy Lewis Steele, Jr., Gerald Jay Sussman
and Mitchell Wand: “Revised Report4 on the
Algorithmic Language Scheme”. ACM Lisp
Pointers, Vol. 4, no. 3. July 1991.

[3] Michel Goossens and Sebastian Rahtz,
with Eitan M. Gurari, Ross Moore and
Robert S. Sutor: The LATEX Web Companion.
Addison-Wesley Longman, Inc., Reading,
Massachusetts. May 1999.

[4] Jean-Michel Hufflen : Programmation
fonctionnelle avancée. Notes de cours et exercices.
Polycopié. Besançon. Juillet 1997.

[5] Jean-Michel Hufflen : Introduction au λ-calcul
(version révisée et étendue). Polycopié. Besançon.
Février 1998.

[6] Jean-Michel Hufflen: “Using TEX’s Language
within a Course about Functional Programming”.
MAPS, Vol. 39, pp. 92–98. In EuroTEX 2009
conference. August 2009.

[7] Jean-Michel Hufflen: “Recycling Previous
Documents for Distance Education”. In: Proc.
CSEDU 2010, Vol. 1, pp. 469–472. Valencia, Spain.
April 2010.

[8] Jean-Michel Hufflen: “Managing Printed
and On-Line Versions of Large Educational
Documents”. ArsTEXnica. To appear. November
2010.

[9] Java Technology. March 2008. http://java.sun.
com.

[10] Richard Kelsey, William D. Clinger, and
Jonathan A. Rees, with Harold Abelson,
Norman I. Adams iv, David H. Bartley, Gary
Brooks, R. Kent Dybvig, Daniel P. Friedman,
Robert Halstead, Chris Hanson, Christopher T.
Haynes, Eugene Edmund Kohlbecker, Jr,
Donald Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay
Sussman and Mitchell Wand: “Revised5 Report
on the Algorithmic Language Scheme”. HOSC,
Vol. 11, no. 1, pp. 7–105. August 1998.

[11] Brian W. Kernighan and Dennis M. Ritchie:
The C Programming Language. 2nd edition.
Prentice Hall. 1988.

[12] Xavier Leroy, Damien Doligez, Jacques
Garrigue, Didier Rémy and Jéróme Vouillon:
The Objective Caml System. Release 3.12
Documentation and User’s Manual. 2010.

http://caml.inria.fr/pub/docs/manual-ocaml/
index.html.

[13] Microsoft Corporation: Microsoft C#
Specifications. Microsoft Press. 2001.

[14] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and Joachim
Schrod: The LATEX Companion. 2nd edition.
Addison-Wesley Publishing Company, Reading,
Massachusetts. August 2004.

[15] Chuck Musciano and Bill Kennedy: HTML
& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[16] Lawrence C. Paulson: ML for the Working
Programmer. 2nd edition. Cambridge University
Press. 1996.

[17] Simon Peyton Jones, ed.: Haskell 98 Language
and Libraries. The Revised Report. Cambridge
University Press. April 2003.

[18] Erik T. Ray: Learning XML. O’Reilly
& Associates, Inc. January 2001.

[19] Michael Sperber, William Clinger, R. Kent
Dybvig, Matthew Flatt and Anton van
Straaten, with Richard Kelsey, Jonathan
Rees, Robert Bruce Findler and Jacob
Matthews: Revised5.97 Report on the
Algorithmic Language Scheme. June 2007.
http://www.r6rs.org.

[20] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The MIT
Press, McGraw-Hill Book Company. 1989.

[21] Guy Lewis Steele, Jr., with Scott E. Fahlman,
Richard P. Gabriel, David A. Moon, Daniel L.
Weinreb, Daniel Gureasko Bobrow, Linda G.
DeMichiel, Sonya E. Keene, Gregor Kiczales,
Crispin Perdue, Kent M. Pitman, Richard
Waters and Jon L White: Common Lisp. The
Language. Second Edition. Digital Press, 1990.
http://www.cs.cmu.edu/Groups/AI/html/cltl/
cltl2.html.

[22] Bjarne Stroustrup: The C++ Programming
Language. 2nd edition. Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts. 1991.

[23] W3C: Extensible Stylesheet Language (XSL).
Version 1.1. W3C Recommendation. Edited
by Anders Berglund. December 2006. http:
//www.w3.org/TR/2006/REC-xsl11-20061205/.

[24] W3C: XSL Transformations (XSLT). Version 2.0.
W3C Recommendation. Edited by Michael H.
Kay. January 2007. http://www.w3.org/TR/2007/
WD-xslt20-20070123.

[25] Niklaus Wirth: “The Programming Language
Pascal”. Acta Informatica, Vol. 1, no. 1, pp. 35–63.
1971.

Jean-Michel Hufflen


