
178 TUGboat, Volume 31 (2010), No. 2

LuaTEX: PDF merging

Hans Hagen

1 Introduction

It is tempting to add more and more features to
the backend code of the engine but it is not really
needed. Of course there are features that can best be
supported natively, like including images. In order to
include PDF images in LuaTEX the backend uses a
library (xpdf or poppler) that can load a page from a
file and embed that page into the final PDF, including
all relevant (indirect) objects needed for rendering.
In LuaTEX an experimental interface to this library
is included, tagged as epdf. In this chapter I will
spend a few words on my first attempt to use this
new library.

2 The library

The interface is rather low level. I got the following
example from Hartmut Henkel, who is responsible
for the LuaTEX backend code and this library.

local doc = epdf.open("luatexref-t.pdf")

local cat = doc:getCatalog()

local pag = cat:getPage(3)

local box = pag:getMediaBox()

local w = pag:getMediaWidth()

local h = pag:getMediaHeight()

local n = cat:getNumPages()

local m = cat:readMetadata()

print("nofpages: ", n)

print("metadata: ", m)

print("pagesize: ", w .. " * " .. h)

print("mediabox: ",box.x1,box.x2,box.y1,box.y2)

As you see, there are accessors for each interest-
ing property of the file. Of course such an interface
needs to be extended when the PDF standard evolves.
However, once we have access to the so-called cata-
log, we can use regular accessors to the dictionaries,
arrays and other data structures. So, in fact we
don’t need a full interface and can draw the line
somewhere.

There are a couple of things that you normally
do not want to deal with. A PDF file is in fact a
collection of objects that form a tree and each object
can be reached by an index using a table that links
the index to a position in the file. You don’t want to
be bothered with that kind of housekeeping. Some
data in the file, like page objects and annotations, are
organized in a tree form that one does not want to
access in that form, so again we have something that
benefits from an interface. But the majority of the
objects are simple dictionaries and arrays. Streams

(these hold the document content, image data, etc.)
are normally not of much interest, but the library
provides an interface as you can bet on needing it
someday. The library also provides ways to extend
the loaded PDF file. I will not discuss that here.

Because in ConTEXt we already have the lpdf

library for creating PDF structures, it makes sense
to define a similar interface for accessing PDF. For
that I wrote a wrapper that will be extended in due
time (read: depending on needs). The previous code
now looks as follows:

local doc = epdf.open("luatexref-t.pdf")

local cat = doc.Catalog

local pag = cat.Pages[3]

local box = pag.MediaBox

local llx, lly, urx, ury

= box[1], box[2] box[3], box[4]

local w = urx - llx -- or: box.width

local h = ury - lly -- or: box.height

local n = cat.Pages.size

local m = cat.Metadata.stream

print("nofpages: ", n)

print("metadata: ", m)

print("pagesize: ", w .. " * " .. h)

print("mediabox: ", llx, lly, urx, ury)

If we write code this way we are less dependent
on the exact API, especially because the epdf library
uses methods to access the data and we cannot easily
overload method names in there. When you look at
the box, you will see that the natural way to access
entries is using a number. As a bonus we also provide
the width and height entries.

3 Merging links

It has always been on my agenda to add the possibil-
ity to carry the (link) annotations with an included
page from a document. This is not that much needed
in regular documents, but it can be handy when you
use ConTEXt to assemble documents. In any case,
such a merge has to happen in a way that does not
interfere with other links in the parent document.
Supporting this in the engine is not an option as each
macro package follows its own approach to referenc-
ing and interactivity. Also, demands might differ
and one would end up with a lot of (error prone)
configurability. Of course we want scaled pages to
behave well too.

Implementing the merge took about a day and
most of that time was spent on experimenting with
the epdf library and making the first version of the
wrapper. I definitely had expected to waste more
time on it. So, this is yet another example of an

Hans Hagen



TUGboat, Volume 31 (2010), No. 2 179

extension that is quite doable in the Lua–TEX mix.
Of course it helps that the ConTEXt graphic inclusion
code provides enough information to integrate such
a feature. The merge is controlled by the interaction
key, as shown here:

\externalfigure[somefile.pdf][page=1,scale=700,

interaction=yes]

\externalfigure[somefile.pdf][page=2,scale=600,

interaction=yes]

You can fine-tune the merge by providing a
list of options to the interaction key but that’s still
somewhat experimental. As a start the following
links are supported.

• internal references by name (often structure re-
lated)

• internal references by page (like on tables of
contents)

• external references by file (optionally by name
and page)

• references to URIs (normally used for web pages)

When users like this functionality (or when I
really need it myself) more types of annotations
can be added although support for JavaScript and
widgets doesn’t make much sense. On the other
hand, support for destinations is currently somewhat
simplified but at some point we will support the
relevant zoom options.

The implementation is not that complex:

• check if the included page has annotations
• loop over the list of annotations and determine

if an annotation is supported (currently links)
• analyze the annotation and overlay a button

using the destination that belongs to the anno-
tation

Now, the reason why we can keep the implemen-
tation so simple is that we just map onto existing
ConTEXt functionality. And, as we have a rather
integrated support for interactive actions, only a few
basic commands are involved. Although we could do
that all in Lua, we delegate this to TEX. We create
a layer that we put on top of the image. Links are
put onto this layer using the equivalent of:

\setlayer

[epdflinks]

[x=...,y=...,preset=leftbottom]

{\button

[width=...,height=...,offset=overlay,frame=off]

{}% no content

[...]}}

The \button command is one of those inter-
action-related commands that accepts any action-
related directive. In this first implementation we see
the following destinations show up:

somelocation

url(http://www.pragma-ade.com)

file(somefile)

somefile::somelocation

somefile::page(10)

References to pages become named destinations
and are later resolved to page destinations again,
depending on the configuration of the main docu-
ment. The links within an included file get their own
namespace so (hopefully) they will not clash with
other links.

We could use lower-level code which is faster but
we’re not talking of time-critical code here. At some
point I might optimize the code a bit but for the
moment this variant gives us some tracing options for
free. Now, the nice thing about using this approach
is that the already existing cross-referencing mech-
anisms deal with the details. Each included page
gets a unique reference so references to not-included
pages are ignored simply because they cannot be
resolved. We can even consider overloading certain
types of links or ignoring named destinations that
match a specific pattern. Nothing is hard coded in
the engine so we have complete freedom in doing
that.

4 Merging layers

When including graphics from other applications it
might be that they have their content organized in
layers (that can then be turned on or off). So it
will be no surprise that merging layer information
is on the agenda: first a straightforward inclusion
of optional content dictionaries, but it might make
sense to parse the content stream and replace refer-
ences to layers by those that are relevant in the main
document. Especially when graphics come from dif-
ferent sources and layer names are inconsistent some
manipulation might be needed, so maybe we need
more detailed control. Implementing this is no big
deal and mostly a matter of figuring out a clean and
simple user interface.

� Hans Hagen
Pragma ADE
The Netherlands
http://luatex.org

LuaTEX: PDF merging


