
50 TUGboat, Volume 31 (2010), No. 1

Plotting experimental data using pgfplots
Joseph Wright

Abstract
Creating plots in TEX is made easy by the pgfplots
package, but getting the best presentation of ex-
perimental results still requires some thought. In
this article, the basics of pgfplots are reviewed before
looking at how to adjust the standard settings to give
both good looking and scientifically precise plots.

1 Introduction
Presenting experimental data clearly and consist-
ently is a crucial part of publishing scientific results.
A key part of this is the careful preparation of plots,
graphs and so forth. Good quality plots often make
results clearer and more accessible than large tables
of numbers. A number of tools specialise in produ-
cing plots for scientific users, both commercial (such
as Origin and SigmaPlot) and open source (for
example QtiPlot and SciDAVis). The output of
these programs is impressive, but TEX users may
find that it lacks the ‘polish’ that TEX can provide.

There are a few approaches to producing plots
directly within a TEX document, but perhaps the easi-
est method to use the pgfplots package (Feuersänger,
2010). This is an extension of the very popular pgf
graphics system (Tantau, 2008), which as many read-
ers will know works equally well with the traditional
DVI-based work flow and the increasingly popular
direct production of PDF output. pgfplots also works
with plain TEX, LATEX and ConTEXt, meaning that
it is an accessible route for almost all TEX users.

As with any tool, getting the best results with
pgfplots does require a bit of understanding. In this
article, I’m going to look at getting good results for
plots of experimental data. This includes things like
worrying about units and how to get the graphics
out of TEX for publishers who require it.

In the examples, I am going to use real experi-
mental data from the research group I work in,1 and
explain how I’ve presented this for publication. The
aim is to show pgfplots in use ‘in the wild’, rather
than the usual approach of somewhat contrived sets
of data. The examples do not aim to be a com-
plete survey of the power of pgfplots: its manual is
excellent and covers all of the options in detail.

2 The basics
There are some basics that need to be in place before
plots can be created. First, the code for pgfplots

1 My supervisor is Professor Christopher Pickett:
http://www.uea.ac.uk/che/pickettc

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 1: An empty set of axes

needs to be loaded. This is designed to work equally
well with TEX, LATEX and ConTEXt, and of course
the loading mechanism depends on the format:
\input pgfplots.tex % Plain TeX
\usepackage{pgfplots} % LaTeX
\usemodule[pgfplots] % ConTeXt

Plots are created inside an ‘axis’ environment,
which itself needs to be inside the pgf environment
‘tikzpicture’. The differences between the three
formats again mean that there are again some vari-
ations. So, for plain TEX:
\tikzpicture

\axis
% Plot code

\endaxis
\endtikzpicture

while for LATEX:
\begin{tikzpicture}

\begin{axis}
% Plot code

\end{axis}
\end{tikzpicture}

and for ConTEXt:
\starttikzpicture

\startaxis
% Plot code

\stopaxis
\stoptikzpicture

In the examples in this article I’ll leave out the wrap-
per and concentrate just on the plot code, which is
the same for all three formats.

If the wrapper is given with no content at all
then pgfplots will fill in some standard values. This
gives an empty plot (Figure 1). To actually have
something appear, data has to be added to the axes.
This is done using one or more \addplot instructions,
which have a flexible syntax which can be applied to
a wide range of cases.

Joseph Wright

http://www.uea.ac.uk/che/pickettc

TUGboat, Volume 31 (2010), No. 1 51

Table 1: Rates of a chemical reaction [Data taken
from Jablonskytė, Wright, and C. J. Pickett (2010)].

Concentration Rate
/mmol dm−3 / s−1

338.1 266.45
169.1 143.43
84.5 64.80
42.3 34.19
21.1 9.47

Before starting to produce some real plots, there
is one minor thing to set up. The most recent version
of pgfplots (1.3) makes a number of improvements
to the standard settings for the package, but only if
told to. For new plots, it makes sense to use these
improved abilities using
\pgfplotsset{compat = newest}

in the source. In this article, I’ve included this line
in the preamble for the source (which is in LATEX).

3 Small data sets
Small sets of data, for example values calculated by
hand, can be plotted by including the data directly
in the TEX source. As an example set of data, I am
going to use the rate of a chemical reaction, recently
reported by the research group I work in (Table 1).
As shown, the rate of a chemical reaction depends on
the concentration of one of the ‘ingredients’, which
as a table is suggestive but not really immediately
accessible.

This can be plotted rapidly using the \addplot
macro along with the coordinates keyword, with
the input reading
\addplot coordinates {

(338.1, 266.45)
(169.1, 143.43)
(84.5, 64.80)
(42.3, 34.19)
(21.1, 9.47)

};

(placed inside the axis environment, as explained
above). This shows a number of features of the
pgfplots input syntax. First, after the primary macro
(\addplot) a keyword is used to direct the behaviour
of the code. Second, there is no need to worry about
white space, which makes it easier to read the in-
put. Third, as with other pgf commands, the entire
\addplot input is terminated by a semi-colon. This
will allow multiple plots to use the same axes, as will
be demonstrated later.

Using the input above also reveals why it is
necessary to think about plots, even with a powerful

0 100 200 300
0

100

200

Figure 2: A raw plot based on the data in Table 1.

system like pgfplots. Using the simple input I’ve
given results in Figure 2. There are a number of
issues with this initial plot. Most obviously, the
data points should not be plotted in a ‘join the dots’
fashion. Much better would be independent points
along with a best fit line showing the trend. The
plot is also in colour, which for a simple plot like this
one is not really necessary. Publishers prefer black
and white unless colour is adding real information.

As with other parts of the pgf system, pgfkeys
uses key–value arguments to alter settings. Here, the
options apply to a particular plot, and so are given
as an optional argument to the \addplot macro in
square brackets (irrespective of the format in use). So
the appearance of the plot can be altered by adding
an optional argument and suitable settings to the
\addplot macro.
\addplot[

color = black,
fill = black,
mark = *, % A filled circle
only marks

]

These keys all have self-explanatory names: the
pgfplots manual of course gives full details. It is
possible to use ‘black’ for the combination of color
= black and fill = black; here, I will stick to the
longer version including the key names, as it makes
the meaning a little clearer.

Adding a best fit line means a second \addplot
is needed. TEX is not the best way to do general
mathematics, and so the fitting was done using a
spreadsheet application. The easiest way to add a
line is to specify the two ends and show only the line:
\addplot[

color = black,
mark = none

]

Plotting experimental data using pgfplots

52 TUGboat, Volume 31 (2010), No. 1

0 100 200 300

0

100

200

300

Figure 3: Second version of a plot based on the data
in Table 1.

coordinates {
(0, 0)
(350, 279)

};

Making these first set of changes gives Figure 3,
which already looks more professional.

There is still more to think about before the
plot is finished. The axes do not start from 0, but
instead from a bit below zero: hardly very clear, and
certainly not needed here. Much more importantly,
the axes are not labelled and there are no units.
These are both problems about the entire plot, not
just one data set. So in this case the optional ar-
gument to the axis environment comes into play.
This follows the start of the environment in square
brackets (recall that the start of the environment is
format-dependent, as shown above). Once again the
various option names are pretty self-explanatory:
[

xlabel = Concentration\,/\,mmol\,dm$^{-3}$,
xmax = 400,
xmin = 0,
ylabel = Rate\,/\,s$^{-1}$,
ymax = 300,
ymin = 0

]

The result of these adjustments is Figure 4. The
contents of the axis environment is now:
[

xlabel = Concentration\,/\,mmol\,dm$^{-3}$,
xmax = 400,
xmin = 0,
ylabel = Rate\,/\,s$^{-1}$,
ymax = 300,
ymin = 0

]

0 100 200 300 4000

100

200

300

Concentration / mmol dm−3

R
at

e/
s−

1

Figure 4: Final version of a plot based on the data
in Table 1.

\addplot[
color = black,
fill = black,
mark = *,
only marks

] coordinates {
(338.1, 266.45)
(169.1, 143.43)
(84.5, 64.80)
(42.3, 34.19)
(21.1, 9.47)

};
\addplot[

color = black,
mark = none

] coordinates {
(0, 0)
(350, 279)

};

The plot now looks good, but there are a few
other points to note before moving on to more com-
plex challenges. In a real publication, the caption
of the figure should give any necessary experimental
details about the data presented. Also notice that
both axes of the plot are in simple whole numbers.
For this plot (and Table 1), the original concentra-
tions were in mol dm−3, and were multiplied by 1000
to make them whole numbers. Usually this approach
makes the final result much easier to read (even if it
requires more effort initially). pgfplots can do simple
mathematics, but I tend to favour doing the calcula-
tions first in an external tool and stick to using TEX
for its strength: typesetting.

The ideas used for the preceding plot can readily
be applied to presenting several sets of data on the
same axes. pgfplots allows the user to pick a number

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 53

of markers to differentiate the plots, and to include
legends and so forth. However, it rapidly becomes
unwieldy to have the raw data in the TEX source
when there are a number of curves to plot. Luckily,
pgfplots has an alternative \addplot syntax that
help out.

4 Large sets of data
As the number of data points to plot grows, adding
the information directly to the source rapidly be-
comes laborious and error-prone. Almost always, the
data will be available in a structured format, and so
reading an external file becomes a much more effi-
cient way to proceed. pgfplots can read data tables
from, for example, tab-separated text files, which can
conveniently be written by standard data handling
software. There are two approaches to reading such
data: loading the entire table into a macro which
can then be used for plotting, or reading the data
as part of the \addplot line. The most appropriate
method depends on the context: both methods will
be illustrated here.

4.1 One set of axes, several plots
When several related sets of data need to be presen-
ted on one set of axes, it rapidly becomes easier to
use external data files even if each plot has only a
small number of points.

Here, I will illustrate the methods using the
change in amount of four chemicals over time. The
data here are available as a single text file, and there
are not too many time points. It therefore makes
most sense to load all of the data into a macro, and to
use it to create each plot in turn. With the numbers
saved in a file called data-set-two.txt, the reading
instruction is
\pgfplotstableread{data-set-two.txt}

\datatable

Here, the name of the storage macro (\datatable) is
arbitrary: in a complex document it would probably
be more descriptive.

In the table here each column has a header for
ease of reference, with the first few rows reading
Time a b c d
0 49 7 41 1.3
67 55 9 33 1.6
134 61 10 26 1.9
200 65 12 20 1.9
...

The columns can be referred to either by their header
name (‘y = 〈header name〉’) or by their position in
the table (‘y index = 〈header index〉’), with column
‘a’ here being the y column with index 1, ‘b’ with
index 2, and so on. It’s also possible to include

0 200 400 600 800 1,000
0

20

40

60

Figure 5: Raw plot using a pre-loaded data table.

comment lines in the data file, which can be used
for things like the units or reference numbers for the
raw data.

The plot can then be created using the ‘table’
keyword after the \addplot macro:
\addplot table[y = a] from \datatable ;
\addplot table[y = b] from \datatable ;
\addplot table[y = c] from \datatable ;
\addplot table[y = d] from \datatable ;

Here, the second keyword ‘from’ indicates that a
macro will be used to supply the data to plot. With
no formatting changes the result is Figure 5. As
with the first data set, it is better not to ‘join the
dots’. As this applies to the entire plot, only marks
can be given in the optional argument to the start
of the axis environment, rather than repeating the
same instruction for each \addplot macro. There
also needs to be a legend to tell the reader which
curve is which. Using the \addlegendentry macro
after each \addplot line will automatically gather
the necessary information (symbol type and colour),
and will result in a legend being added to the plot:
\addplot table[y = a] from \datatable ;
\addlegendentry{Compound \textbf{a}} ;
\addplot table[y = b] from \datatable ;
\addlegendentry{Compound \textbf{b}} ;
...

The ideas about labelling axes and setting an appro-
priate scale which were necessary for the first plot
also apply here. Making these adjustments leads to
Figure 6.

Once again, colour is not really necessary here
if care is taken with the rest of the plot. The visual
difference between the different markers should be
enough to show which curve is which. When pre-
paring the real diagram for publication, my super-
visor asked for all of the symbols to be circles, filled

Plotting experimental data using pgfplots

54 TUGboat, Volume 31 (2010), No. 1

0 200 400 600 800 1,0000

20

40

60

80

Time / s

R
el

at
iv

e
am

ou
nt

/%
Compound a
Compound b
Compound c
Compound d

Figure 6: Second version of a plot from a pre-loaded
data table.

in different ways. That needed a bit of help from
comp.text.tex to get half-filled circles, which can
be achieved by creating a special marker using some
lower level pgf code:
\pgfdeclareplotmark{halfcircle}{%

\begin{pgfscope}
\pgfsetfillcolor{white}%
\pgfpathcircle{\pgfpoint{0pt}{0pt}}

{\pgfplotmarksize}
\pgfusepathqfillstroke

\end{pgfscope}%
\pgfpathmoveto

{\pgfpoint{\pgfplotmarksize}{0pt}}
\pgfpatharc{0}{180}{\pgfplotmarksize}
\pgfpathclose
\pgfusepathqfill

}

(don’t worry too much about this; for myself, I just
accept that it works!). Including the above code in
the source means that halfcircle can be used as a
value for the mark key:
\addplot[mark = halfcircle, ...

The filled portion can be moved ‘around’ the circle
by rotating the mark
\addplot[

mark = halfcircle,
mark options = {rotate = 90},

There are a couple of other issues with Figure 6.
Most obviously, the legend is covering some of the
data points, while there is a handy space right in
the middle. This can be fixed by asking pgfplots to
move the entire legend box using the legend style
key, which is used in the optional argument to the
axis environment. It takes a bit of experimentation
to get the correct position; in this case

0 200 400 600 800 10000

20

40

60

80

Time / s

R
el

at
iv

e
am

ou
nt

/% Compound a
Compound b
Compound c
Compound d

Figure 7: Final version of a plot from a pre-loaded
data table.

[
legend style = { at = {(0.6,0.75)}}

]

seems to be about right.
The x axis label for 1000 includes a comma as

a digit separator: that is not usual in publications
in English. So there is a slight modification to make
to the digit formatting routine: this is a general pgf
setting:
\pgfkeys{

/pgf/number format/
set thousands separator =

}

Making these changes, and adjusting a few minor
settings to get the colours correct leads to the final
version of the plot (Figure 7). Here is the code:
[

legend style = { at = {(0.6,0.75)}},
only marks,
xlabel = Time\,/\,s,
xmax = 1000,
xmin = 0,
ylabel = Relative amount\,/\,\%,
ymax = 80,
ymin = 0

]
\addplot[

color = black,
mark = *

] table[y = a] from \datatable ;
\addlegendentry{Compound \textbf{a}} ;
\addplot[

color = black,
fill = white,
mark = *

] table[y = b] from \datatable ;

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 55

\addlegendentry{Compound \textbf{b}} ;
\addplot[

color = black,
mark = halfcircle

] table[y = c] from \datatable ;
\addlegendentry{Compound \textbf{c}} ;
\addplot[

color = black,
mark = halfcircle,
mark options = {rotate = 90}

] table[y = d] from \datatable ;
\addlegendentry{Compound \textbf{d}} ;

4.2 An experimental spectrum
One common technique in scientific research is record-
ing spectra: how a sample absorbs light, microwaves,
radio waves, etc. Often, these are published by simply
taking the raw print out from the control program
and pasting it into the article, which does not make
for a good appearance. So replotting with pgfplots
is a good idea.

Spectra tend to involve a lot of numbers, and
so using an external table is once again a good idea.
As these are large files that will only be used once,
loading to a macro is not efficient. Instead, the data
table can be loaded as part of the \addplot line,
with the syntax
\addplot table {data-set-three.txt};

The first version of the plot in this case (Fig-
ure 8) already includes a number of the refinements
discussed in the first two examples. The example
shows data from a technique called ‘nuclear mag-
netic resonance’, in which radio waves are absorbed
by a sample. In the plot, the x axis is related to the
frequency of the radio waves, while the y axis shows
how much is absorbed.

The plot looks generally good, but there are
some adjustments required. First, the y scale is es-
sentially arbitrary, and so is usually not given any
values at all. This can be achieved by setting the
yticklabels option to an empty value in the op-
tional argument to the axis environment:
[yticklabels =]

Second, for various historical reasons it is normal to
plot the x axis backward (running high to low). The
latest version of pgfplots can do this automatically
using the x dir option.
\addplot[

x dir = reverse,
...

These changes give an improved version of the plot
(Figure 9).

The final thing this plot needs is some ‘peak
labels’: markers showing the exact value at the top

18 19 20 21 22 23 240

0.2

0.4

0.6

0.8

1

1.2

Chemical shift / ppm

Figure 8: First version of a single spectrum.

18192021222324
Chemical shift / ppm

Figure 9: Second version of a single spectrum.

of each peak. For this, the pgf \node macro can be
used. A \node can be used to put material anywhere
on a plot, and each node takes a range of options to
control its appearance. In this case, the node itself
is going to be completely empty, and a pin will be
used to point to the node. A pin generates a short
line from the node to some associated text, which in
this case I want to rotate by 90◦ to pack the labels
in. The syntax ends up a little bit complicated, as
various options need to be correct, for example:

\node[
coordinate,
pin = {[rotate=90]right:22.26}

] at (axis cs:22.26,1.1) { };

Plotting experimental data using pgfplots

56 TUGboat, Volume 31 (2010), No. 1

The right keyword here can be replaced by an angle,
which can then be used to be slightly off a peak’s
position, for example
\node[

coordinate,
pin = {[rotate=90]5:22.32}

] at (axis cs:22.32,1.1) { };

Once again, putting everything together leads
to the completed plot (Figure 10).
[

x dir = reverse,
xlabel = Chemical shift\,/\,ppm,
xmin = 18,
xmax = 24,
ymax = 1.75,
ymin = 0,
yticklabels =

]
\addplot[

color = black,
mark = none

] table from {data-set-three.txt};
\node[

coordinate,
pin = {[rotate=90]5:22.32}

] at (axis cs:22.32,1.1) { };
\node[

coordinate,
pin = {[rotate=90]right:22.26}

] at (axis cs:22.26,1.1) { };
\node[

coordinate,
pin = {[rotate=90]right:21.96}

] at (axis cs:21.96,1.1) { };
\node[

coordinate,
pin = {[rotate=90]-5:21.90}

] at (axis cs:21.90,1.1) { };
\node[

coordinate,
pin = {[rotate=90]right:21.26}

] at (axis cs:21.26,1.1) { };
\node[

coordinate,
pin = {[rotate=90]right:19.03}

] at (axis cs:19.03,1.1) { };
\node[

coordinate,
pin = {[rotate=90]right:18.32}

] at (axis cs:18.32,1.1) { };

4.3 Changes over time
The previous example demonstrated how to plot a
single spectrum from an external file. In a final
example, I want to look at going beyond this to
showing how experimental data changes over time.
This means plotting a series of spectra on the same

18192021222324

22
.3

2
22

.2
6

21
.9

6
21

.9
0

21
.2

6

19
.0

3

18
.3

2

Chemical shift / ppm

Figure 10: Final version of a single spectrum.

axes, and finding a good way to show which way
time is running. Some people choose to use a ‘three-
dimensional’ plot for this scenario, and pgfplots in-
cludes the ability to generate this type of output.
However, experience suggests to me that there is
more value in a well-constructed two-dimensional
plot than a three-dimensional representation of the
same data. The challenge is therefore to find the
best way to represent the results on paper.

In this example, the raw data is how a sample
absorbs infra-red light (heat). There is a reaction
taking place, and so the absorption will change over
time. The initial results simply show a series of peaks,
a bit like Figure 10. The changes are quite subtle
compared to the overall scale, so the first stage in cre-
ating a plot is not TEX related. Using a spreadsheet
it’s possible to find how the signal changes relative
to the one at the start of the experiment: this gives
a ‘difference spectrum’ for each time. That can then
be saved as a text file which can be used as the input
to pgfplots.

In this case, a single file contains all of the data
for the plot. To get each \addplot line to use a single
time, the optional argument to the table keyword
is used, for example:
\addplot[mark = none] table[y index = 1]

{data-set-four.txt};
\addplot[mark = none] table[y index = 2]

{data-set-four.txt};
...

As there are many almost identical lines, the pgf
\foreach macro can be used to vary only the y
index used
\foreach \yindex in {1,2,...,20}

\addplot[mark = none]

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 57

19001950200020502100

−10

0

10

20 19
90

20
01

20
31

20
55

Wavenumber / cm−1

∆
M

ill
ia

bs
or

ba
nc

e

Figure 11: First plot of a change over time.

table[y index = \yindex]
{data-set-four.txt};

A bit of experimentation showed that around
20 lines gave a good appearance for the plot (the full
data set has nearly 200 time points!). The \foreach
syntax makes it easy to show an evenly-spaced subset
of the available points, by setting the gap between
selected columns to be larger:
\foreach \yindex in {1,10,...,189}

\addplot[mark = none]
table[y index = \yindex]

{data-set-four.txt};

This uses every 9th column for the plot, and in the
example results in 19 separate curves (Figure 11).

There is one obvious problem with the plot:
which way is time running? Here, careful use of
colour can be used in a way which really does add
to the information imparted by the plot. To do this,
a ‘plot cycle’ is needed to specify the colour used for
each plot. There are some built in to pgfplots, but
one is also easy to construct:
\pgfplotscreateplotcyclelist

{blue to red}{%
color = red!0!blue\\%
color = red!5!blue\\%
color = red!10!blue\\%
color = red!15!blue\\%
color = red!20!blue\\%
color = red!25!blue\\%
color = red!30!blue\\%
color = red!35!blue\\%
color = red!40!blue\\%
color = red!45!blue\\%
color = red!50!blue\\%
color = red!55!blue\\%
color = red!60!blue\\%
color = red!65!blue\\%

19001950200020502100

−10

0

10

20 19
90

20
01

20
31

20
55

Wavenumber / cm−1

∆
M

ill
ia

bs
or

ba
nc

e

Figure 12: Second plot of a change over time (time
runs blue to red).

color = red!70!blue\\%
color = red!75!blue\\%
color = red!80!blue\\%
color = red!85!blue\\%
color = red!90!blue\\%
color = red!95!blue\\%
color = red!100!blue\\%

}

It’s important to note that the end of lines here must
end in comments. With that cycle available, the
option cycle list name can be used for the axes:
this will mean that the first plot will be pure blue,
the second 95 % blue and 5 % red, and so on.

The other minor adjustment to make is to in-
clude a line at for y = 0. This can be done by
including an extra ‘tick’:
[

extra y ticks = 0,
extra y tick labels = ,
extra y tick style =

{ grid = major }
]

(The ‘extra y tick labels = ,’ line makes sure
that the label for 0 is not printed twice, as this gives
a slightly ‘bold’ appearance.)

These two adjustments lead to Figure 12:
[

cycle list name = blue to red,
extra y ticks = 0,
extra y tick labels = ,
extra y tick style = { grid = major },
x dir = reverse,
xlabel = Wavenumber\,/\,cm$^{-1}$,
xmin = 1900,
xmax = 2100,
ylabel = $ \Delta $Milliabsorbance,

Plotting experimental data using pgfplots

58 TUGboat, Volume 31 (2010), No. 1

ymax = 27,
ymin = -15

]
\foreach \yindex in {1,10,...,189}

\addplot table[y index = \yindex]
{data-set-four.txt};

\node[
coordinate,
pin = {[rotate=90]right:1990}

] at (axis cs:1990,16) { };
\node[

coordinate,
pin = {[rotate=90]right:2001}

] at (axis cs:2001,16) { };
\node[

coordinate,
pin = {[rotate=90]right:2031}

] at (axis cs:2031,16) { };
\node[

coordinate,
pin = {[rotate=90]right:2055}

] at (axis cs:2055,16) { };

As with the other plots, it’s important to include
details about the experiment somewhere close to the
figure: usually the caption is a good place for this. In
the published article, I included details about what I
used as time zero, the time range and concentrations
for the experiment in the caption.

5 Exporting plots from TEX
Processing a large number of plots in TEX can lead
to the program running out of memory. The ability
to set up plots as separate files which can then be
included in the main document as graphics is there-
fore important. At the same time, some publishers
require all graphics to be available as stand-alone
files, which again means finding a way to export plots
from TEX.

pgfplots includes methods for carrying out this
process in an automated fashion. The latest release
of pgfplots makes the process much easier than was
previously the case, and includes full instructions on
how to proceed. When using pdfTEX the lines
\usetikzlibrary{pgfplots.external}
\tikzexternalize{<filename>}

will instruct pgfplots to make each plot into a separate
PDF file. To create PostScript files the additional
command:

\tikzset{external/system call =
{latex -shell-escape -halt-on-error
-interaction=batchmode -jobname "\image"
"\texsource"; dvips -o "\image".ps
"\image".dvi}}

is needed, and the main file should be typeset in DVI
mode. In both cases \write18 (external command
execution) needs to be enabled for the process to
work correctly.

6 Conclusions
Producing scientific plots using pgfplots can produce
high quality output with relatively little effort for
the user. To do so, some thought about both the
information to be reported and the appearance of
the output is needed.

7 Acknowledgements
Thanks to Stefan Pinnow for a number of useful
improvements both to the code and to the text while
drafting this article.

The published versions of the figures used here
originally appeared in Wright and Pickett (2009) and
Jablonskytė, Wright, and C. J. Pickett (2010). They
are reproduced by permission of The Royal Society
of Chemistry.

References
Feuersänger, Christian. “pgfplots”. http://mirror.

ctan.org/graphics/pgf/contrib/pgfplots,
2010.

Jablonskytė, Aušra, J. A. Wright, and
C. J. Pickett. “Mechanistic aspects of the
protonation of [FeFe]-hydrogenase subsite
analogues”. Dalton Transactions (39),
3026–3034, 2010.

Tantau, Till. “The TikZ and pgf Packages”.
http://mirror.ctan.org/graphics/pgf,
2008.

Wright, Joseph A., and C. J. Pickett. “Protonation
of a subsite analogue of [FeFe]-hydrogenase:
mechanism of a deceptively simple reaction
revealed by time-resolved IR spectroscopy”.
Chemical Communications (38), 5719–5721,
2009.

� Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph.wright (at)

morningstar2.co.uk

Joseph Wright

http://mirror.ctan.org/graphics/pgf/contrib/pgfplots
http://mirror.ctan.org/graphics/pgf/contrib/pgfplots
http://mirror.ctan.org/graphics/pgf

	Introduction
	The basics
	Small data sets
	Large sets of data
	One set of axes, several plots
	An experimental spectrum
	Changes over time

	Exporting plots from TeX
	Conclusions
	Acknowledgements

