
TUGboat, Volume 22 (2001), No. 4 339

Hints & Tricks

Glisterings

Peter Wilson

Not all that tempts your wand’ring eyes
And heedless hearts, is lawful prize;
Nor all, that glisters, gold.

Ode to a Favourite Cat
Thomas Gray

For many years Jeremy Gibbons has edited a
very successful column in TEX and TUG NEWS and
TUGboat called Hey — It works! [?]. I have learnt
much from this but apparently not enough to de-
cline when asked to take over the column. On the
other hand I have learnt to my cost that the quick-
est way to get a correct answer to a question on the
comp.text.tex (ctt) newsgroup is to give an in-
correct answer. In order not to sully Jeremy’s rep-
utation my first thought was to change the title to
Hey — It might work but after some consideration
the new title is as you see it above — Glisterings —
implying that there might be some dross among the
nuggets.

Corrections, suggestions, and contributions will
always be welcome.

Several questions on ctt recently have been re-
lated to comparing two words or strings. To my
chagrin I gave an incorrect answer to one of the ques-
tions, so I’ll now try and redeem myself.

If you can meet with triumph and
disaster
And treat those two imposters just the
same. . .

If—
Rudyard Kipling

Checking for an optional argument

If you are defining a new command that has an op-
tional argument you often need some way of check-
ing whether or not it is present when the macro is
called, especially when it should be ignored if it is
not present. One convention is to use the kernel
\@empty macro as the default for the optional argu-
ment.
\newcommand{\mine}[2][\@empty]{%

% if #1 is \@empty do nothing else

% do something

To me the obvious way of performing the check
was to use TEX’s \ifx primitive to compare \@empty
and the actual value of the argument, as in

340 TUGboat, Volume 22 (2001), No. 4

\newcommand{\testoptarg}[1][\@empty]{%

\ifx #1\@empty

Optional (#1) unused%

\else

Optional (#1) present%

\fi}

If you try this you can get some odd results:
\testoptarg Optional () unused
\testoptarg[full] Optional (full) present
\testoptarg[oops] psOptional (oops) unused

It was kindly explained to me1 that \ifx checks
the following two tokens and in TEX a token is ei-
ther a command sequence (e.g., \@empty) or a single
character, like ‘o’. In the oops example, \ifx checks
‘o’ and ‘o’, concludes that they are the same, and
hence the strange result. Flipping the token order-
ing works better:

\ifx\@empty#1

Now \testoptarg and \testoptarg[\@empty] will
report ‘Optional () unused’. Any other call, for
example \testoptarg[], will report ‘Optional ()
present’, and in particular \testoptarg[oops] re-
ports ‘Optional (oops) present’.

String comparisons

A more general problem along the same lines is to
check if two words, or strings are the same. We can
use \ifx for this as well. When \ifx compares two
tokens that are macro names, the result is true if
the macros have been defined in the same way, and
if their first level replacement texts are the same.
So, we define two macros whose replacement texts
are the strings, and compare these.
\newif\ifsame

\newcommand{\strcfstr}[2]{%

\samefalse

\begingroup

\def\1{#1}\def\2{#2}%

\ifx\1\2\endgroup \sametrue

\else \endgroup

\fi}

The two arguments to \strcfstr2 are the strings
to be tested. \ifsame is set true if the two strings
match character to character. If the arguments are
macro names it checks the characters in the names,
not their definitions. If there are any spaces in the
arguments, each group is reduced to a single space
before the strings are compared. \strcfstr{}{ }
sets \ifsame false but \strcfstr{ }{ } sets it
true.
\newcommand{\StrCfStr}[2]{%

1 By, among others, Donald Arseneau, Michael Downes
and Stephan Lemke.

2 The cf used in the names of macros is the abbreviation
cf (from the Latin confer = compare).

\lowercase{\strcfstr{#1}{#2}}}

The \StrCfStr macro performs a case insen-
sitive test on two strings. For example, it will set
\ifsame true for any of the pairs (abc, abc), (abc,
Abc), (abc, aBc), and so on. It uses \lowercase
to convert any uppercase letter to a lowercase let-
ter so all the letters will be lowercase at the time
\strcfstr does the checking. This will not work if
the arguments include differently cased macro names
as \lowercase does not touch those.

The \strcfstr and \StrCfStr macros have
provided all the string testing that I have needed,
but I’ll show a couple of extensions. One thing is
that \strcfstr relies on \def which is not expand-
able so, for example, it cannot be used in an \edef.
Both Victor Eijkhout [?, section 13.8.7] and David
Kastrup [?] have presented solutions for this. The
other is that you may want to check if a macro ex-
pands to a particular string. David’s expandable
macro also provides a solution for this and Michael
Downes[?] gives a somewhat different method using
\expandafter.

We can use \strcfstr as the basis for the macro
to string comparison, by using \expandafters.
\newcommand{\macrocfstr}[2]{%

\expandafter\strcfstr\expandafter{#1}{#2}}

The first argument to \macrocfstr is either a string
or a macro that is expected to expand to a string.
The second argument is the test string.

We can also do a case insensitive test by using
\newcommand{\MacroCfStr}[2]{%

\lowercase{\macrocfstr{#1}{#2}}}

The \charscfchars expandable macro below
is based on Victor’s code. It is tricky because it
uses recursion to perform pairwise comparisons of
the individual characters in its two arguments, and
it requires two supporting macros.
\catcode‘\^^G=11 % make a letter

\newcommand{\charscfchars}[2]{%

\IfAllChars#1^^G\Are#2^^G\theSame}

\charscfchars adds a character at the end of its
arguments to mark the ends of the strings. Victor
used $ as the marker which meant that neither argu-
ment could include $ among the characters. I chose
to use ^^G (TEX’s notation for the ASCII BEL con-
trol character, which is normally invalid TEX). The
\catcode changes first make ^^G appear to be a let-
ter and then at the end of the macro definitions it
is set back to its normal invalid state.

The next macro, which is presented with some
interspersed commentary, does most of the work.
\def\IfAllChars#1#2\Are#3#4\TheSame{%

\if#1^^G\if#3^^G\sametrue

\else\samefalse\fi

TUGboat, Volume 22 (2001), No. 4 341

The macro takes two pairs of arguments that are
delimited by the tokens \Are and \TheSame. The
first pair of arguments are for the first string under
test and the second pair for the other string. More
specifically, #1 will be the first character in the first
string and #2 contains the remaining characters (in-
cluding the ^^G marker), and similarly for #3 and
#4. If the ends of both strings have been reached,
then the strings are the same, but if only the end
of the first string has been reached, the strings are
different. If we are not at the end of the first string
there is more work to be done.

\else\if#1#3\IfRest#2\TheSame#4\else

\samefalse\fi\fi}

If the corresponding characters in the two strings are
the same then the rest of the character pairs must be
checked, otherwise the characters don’t match and
we are done.

The last of the macros takes three arguments
which are delimited by the tokens \TheSame, \else,
and \fi\fi. The first two arguments are strings to
be compared, and it throws away the third.
\def\IfRest#1\TheSame#2\else#3\fi\fi{%

\fi\fi \IfAllChars#1\Are#2\TheSame}

\catcode‘\^^G=15 % return to invalid

This macro simply calls \IfAllChars... to com-
pare the strings.

\charscfchars can be used as a basis for case
insensitive and macro to string comparisons exactly
like \strcfstr.

Apart from \charscfchars being expandable
while \strcfstr is not, it also ignores all space
characters while \strcfstr does not. For exam-
ple, \charscfchars{ab}{a b} thinks that the ar-
guments are identical but they will be reported as
different if \strcfstr{ab}{a b} is used.

� Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166 USA
herries.press@earthlink.net

