Sergey Lesenko and Laurent Siebenmann

Viewing DVI files with Acrobat Reader:
DVIPDF gives birth to AcroDVI

Sergey Lesenko

Institute for High Energy Physics (IHEP)
Protvino (Moscow Region)

142284 Russia

lesenko@mx.ihep.su

Laurent Siebenmann
Mathématique, Bat. 425

Université de Paris-Sud

91405-Orsay, France
Laurent.Siebenmann@math.u-psud.fr

Abstract

The first author’s DVIPDF program converts from DVI, the output format
of TEX, to PDF, the input format for Adobe’s Acrobat Reader. Although
DVIPDF has existed as a prototype for about three years, the uses to which
it will be put by the TEX community are only gradually emerging. This
article presents one concrete application. DVIPDF has been adapted under the
Windows 9X/NT operating systems to allow “drag-and-drop” viewing of DVI
files in Acrobat Reader. The resulting viewer is called AcroDVI: it involves
DVIPDF and the Acrobat Reader, operating in concert. Intended for viewing
legacy DVI files, it aims to support the most common \special commands. An
evolutive change in electronic publishing practice is proposed in this connection:
the conventional EPS graphics format could well be replaced by various optimal
formats: JPEG or PNG for bitmaps, and PDF for vectorial graphics. These
can then be conveniently exploited in some natural ways hitherto unavailable:

shared, re-edited, or directly viewed.

Introductory viewing experience

... Egli e’ scritto in lingua matematica, e i
caratteri son triangoli, cerchi, ed altre figure
geometriche . ..

— Galileo, writing on physical science

To view an article, the modern scientist using
AcroDVI can simply push its DVI file icon onto the
icon of AcroDVI. The DVI file is quickly converted
to PDF; then a window pops up for viewing by
Acrobat Reader. If you are not already familiar
with Acrobat Reader, the biggest thrill will surely
be the top-quality graphics and typography, both
superior in various respects to what web browsers
offer. Worth noting for TEX users are the hypertext
features familiar from web browsers. All this is
remarkable, but only the notion that DVI can be
the root format is new.

In the AcroDVI viewing experience, even those
familiar with Acrobat Reader will enjoy one novelty:

enhanced visibility of the graphics objects. They
appear not only in the PDF page view but also
autonomously in native formats suitable for reuse
and also for display at an optimal scale. The
three formats that AcroDVI deals with directly are
PNG (Portable Network Graphics) for bitmapped
high contrast graphics, JPEG (Joint Photographic
Experts Group) for color photos, and PDF (Portable
Document Format) for vectorial graphics (more on
these later). Ome of these formats should be
optimal for just about any still (that is, non-
moving) graphics object.

If you push the icon of a PNG or JPEG or
PDF file onto that of AcroDVI, then it will be
immediately viewed in an Acrobat Reader window.
Likewise for EPS files, provided Acrobat Distiller
or Ghostscript is accessible and enough fonts are
available. Latent in Acrobat Reader, which does
not directly process PNG or JPEG files, are broad
graphics viewing capabilities, and DVIPDF has

272 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

merely tapped into them; Adobe could have done
as much for Acrobat Reader, but chose not to.

There are many specialized tools for both
viewing and editing PNG and JPEG files, notably
the free XNview under Windows and Linux and
the shareware program Graphics Converter on the
Macintosh. If you take care to view at scale 100%,
then you will see the bitmapped graphics at their
best possible quality.

The most widely used tools for viewing PNG
and JPEG graphics are probably the web browsers.
This is an open invitation to make double use of the
graphics in an article: first, in an illustrated HTML
introduction, and second, in the DVI file for the
article’s body. Thus, AcroDVI provides polyvalence
for graphics. At the same time, it provides a basic
polyvalence for text, namely, the possibility to view
the same DVI file with Acrobat Reader and with
traditional DVI viewers.

The need for polyvalence and low bulk was the
immediate motivation for developing AcroDVI. It
arose for mathematics journal content in the CD-
ROM project called MathCD, for which the second
author is managing editor. Indeed, MathCD has
an order of magnitude less space available for many
journals than a single journal can afford to use on
the Internet.

Where space is at a premium, as on some
CD-ROMs and in personal electronic libraries, the
DVI format plus auxiliary native graphics can now
reasonably replace the PDF format. On the other
hand, where space is virtually unlimited, as on
many Internet sites, expect to see more formats and
greater bulk.

There are relatively few hyper-references in
the electronic journal articles on MathCD. Cur-
rently, DVIPDF does support hyper-references using
a \special syntax, parallel to Acrobat Distiller’s
pdfmark syntax. However, it does not yet sup-
port the most common \special syntax of today’s
DVI files, namely the one introduced by xhdvi and
paralleling HTML.

What is AcroDVI really?

The technologically aware user will tend to see
AcroDVI as the sum of its parts: DVIPDF plus
Acrobat Reader plus some Windows programming
using the Dynamic Data Exchange (DDE) protocol
as the framework for collaboration between DVIPDF
and Acrobat Reader.

However, to the passing user, the whole will be
more important than the parts. That is, AcroDVI
acts as a viewer that directly accepts most DVI files

AcroDVY

(modulo font availability), as well as graphics files
in the PNG, JPEG, or PDF formats—it is the first
viewer to do all this.

We have decided to dignify the whole with the
the acronym AcroDVI. A viewing eye is what you
should see in the logo:

AcroDVCi)

that is put together by a TEX macro \AcroDVI from
pieces of standard TEX fonts.

The Windows icon is a colored iris (an “eye-
con”); files to be viewed are dragged and dropped
on top of the icon. (See Fig. 1 for black-and-white
renditions of the current icon.)

In its present provisional state, AcroDVI in-
volves a single binary executable called dvipdf .exe
while the shortcut icon to it and the distribution
directory are called AcroDVI. This makes DVIPDF
and AcroDVI rather like a marsupial ‘mother-with-
baby-in-pouch’.

To facilitate portability, source code is divided
into modules of C++ source code devoted exclu-
sively to the AcroDVI viewer functions and modules
of C code that can hopefully be compiled as a
“black box” processor to implement DVIPDF as
a stand-alone DVI-to-PDF converter. Incidentally,
most of the \special features developed recently
for viewing legacy DVI files (see below) have become
permanent additions to the “black box” part of the
DVIPDF program.

What shape will maturity bring to AcroDVI?
Two options currently hold our attention.

In Lesenko (1997), it was proposed to build
a DVIPDF plug-in for Acrobat Reader. With this
approach, to view a given DVI file in Acrobat
Reader, one would push its icon onto the Acrobat
Reader icon rather than onto the DVIPDF icon. The
plug-in architecture promises to promote portability
of AcroDVI.

A second reasonable option would make Acro-
DVI an autonomous Windows application distinct
from DVIPDF. This architecture promises to fa-
cilitate orchestration by AcroDVI of multilateral
collaborations among DVIPDF, Netscape, Zip, Ac-
robat Reader, Ghostscript, and so on.

As soon as Ghostscript/Ghostview under Win-
dows provide support for the key functions “Open
Doc” and “Close Doc” of DDE, we will make avail-
able a new AcroDVI configuration that replaces
Acrobat Reader by Ghostscript/Ghostview. It will
probably be less luxurious than with Reader, but it
will, in addition, accept EPS files.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 273

Sergey Lesenko and Laurent Siebenmann

Fonts

DVI files do not contain fonts—that is one basic
reason why they are so compact. The question then
arises: where are fonts for AcroDVI to come from?
The best one can hope is that, in practice, enough
Type 1 fonts will be in AcroDVT’s expansible reper-
toire, which is based chiefly on B.K. Malyshev’s
BaKoMa Type 1 font collection, covering essen-
tially all fonts commonly used in freely distributed
electronic science publications.

Adobe’s Type 1 is currently the only font
format supported by DVIPDF; TrueType fonts are
not accepted. Nor are Adobe Type 3 fonts allowed,
bitmapped or not; Acrobat Reader would in any
case handle them poorly.

The Adobe Type Manager, which first made
screen viewing with scalable (vectorized) fonts a
significant reality is not needed by AcroDVI since
the relevant functions have been absorbed into
Acrobat Reader.

On MathCD, there are just a few DVI files that
call for commercial Adobe Type 1 fonts. DVIPDF
will not currently handle these unless you have them
installed in Type 1 format. Since many of these
have acceptable TrueType versions preinstalled by
Windows, more support for TrueType would be
desirable.

Until then, we recommend Malyshev’s own
DView for such fonts. It offers essentially universal
font support — although different graphics support.

Installing AcroDVI

AcroDVI (including DVIPDF) currently runs under
all recent versions of Microsoft Windows (not under
version 3.x). It is freely available on the Internet
(see Resources).

Currently, both AcroDVI and DVIPDF are
presented as a directory of approximately 1.5 mega-
octets (Mo), not including the BaKoMa font collec-
tion, which is another few megaoctets. As for many
Windows programs, an installer program is used.

The installed system is largely autonomous
in that it requires only the prior presence of the
Acrobat Reader (v. 4.0 or higher), and non-invasive
in that it alters the behavior of nothing outside its
own installed directory (currently called dvipdf).
To deinstall it, one just deletes that directory.

Hopefully, this means that AcroDVI will be as
simple to use as Acrobat Reader itself. For sophis-
ticated users, there is an extensive configuration file
to play with.

Performance testing

The following performance figures are for a 1997
PC with a Pentium I processor operating at clock
speed 200Mhz under Windows 95. For other
Windows environments, a simple correction for
clock speed should give a good first approximation
to performance. The standard warning that “your
mileage may vary” is appropriate. The programs,
like vehicles, are extensively configurable, and the
files, like terrain, are diverse.

For a typical mathematics article, the conver-
sion to PDF format goes at about 15 pages per
second, about 4 times greater than with Acrobat
Distiller, or with Ghostscript in its PS2PDF mode.
Comparison is relevant since it would be possi-
ble to publish compressed PostScript files without
included fonts while giving Acrobat Distiller or
Ghostscript access to the same BaKoMa font col-
lection.

For its PDF output, DVIPDF does both font
subsetting and stream compression. (The new
compressed Type 1 font format has yet to be
exploited by DVIPDF.) The efficiency of its default
PDF output is thus respectable but not yet optimal.
For example, it is comparable to that of the PDF files
currently published by the American Mathematical
Society, for the electronic research journal ERA
(Electronic Research Announcements). However,
by playing with the settings of Distiller, we were
usually able to do better with Distiller, typically
by a 3:2 ratio, particularly for small files. Do not
rush to conclude that this ratio in favor of Distiller
applies to all math journals. Indeed, the advantage
swung in favor of DVIPDF for the next test by (not
quite) a 2:3 ratio. It seems that both these PDF
compilers could still reduce PDF bulk somewhat, in
spite of many years of effort in this direction. From
this point, however, we will focus on AcroDVI as a
viewer of DVI, while ignoring its role as a compiler
of PDF.

The DVI files used by AcroDVI are far less
bulky than the PDF files used by Acrobat Reader.
As evidence, here are a few examples from the first
1999 issue of the Electronic Journal of Probability,
which added the PDF format compiled by Distiller
to its web offerings in 1998:

Article Pages .pdf .pdf.gz .dvi .dvi.gz Adv

1 11 402 284 48 22 129
2 19 437 320 78 27 118
3 19 459 343 85 35 9.8
4 81 1162 960 412 154 6.2
5(7) 12 251 112 55 33 3.4

274 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

All file sizes are given in kilo-octets (Ko). Notice
that DVI files regularly compress to about 40%
of their original size while PDF files compress far
less (as big internal chunks are precompressed).
The last column of the table, the DVI advantage,
gives the size ratio of compressed PDF files to
compressed DVI files. This is an accurate measure
of modem transfer speed ratios— whether the files
are compressed or not—because during modem
transfer, all material is compressed. The same ratio
will be roughly the file size advantage of DVI files
on a CD-ROM such as MathCD, which attempts
to make the best use of available space. Indeed,
a thoroughly precompressed form of PDF would
be chosen for such a CD-ROM while the DVI files
would probably be zip-compressed, along with any
auxiliary graphics files.

The fifth article was anomalous in a number of
respects. It had \special commands; there were
two .eps figures, and these were complemented by
their .pdf versions from Distiller, and the total
of these graphics inclusions was less than 12 Ko
of insertions (compressed). The explanation for
PDF being only 3.4 times less efficient than DVI
turned out, on investigation, to be mostly due to
a common error in the production of PDF; namely,
it was made with bitmapped TEX fonts, which
perform disastrously in Acrobat Reader. When this
is corrected, one can expect a PDF size similar to
that of the first article.

Here are a couple of further examples, the
shortest and longest available articles from a 1999
issue of ERA:

Article Pages .pdf .pdf.gz .dvi .dvi.gz Adv

1 3 105 84 12 5.0 15.3
2 12 248 215 66 27 8.0

These examples were reworked by us using well-
tuned settings for Distiller (Windows version); the
results (see below) are more flattering for the
PDF format while leaving substantial advantage to
DVI. Note that the difference between efficient and
inefficient PDF is often many times greater than the
total size of a DVI version.
Article Pages .pdf .pdf.gz .dvi .dvi.gz Adv

1 3 62 50 12 5.5 9.1
2 12 144 118 66 27 4.4

In the same vein, we note that the electronic
journal Geometry and Topology (see www.emis.de)
posts no TEX format whatsoever, just the Adobe
formats PS and PDF. For their first 1000 pages
the average PDF bulk per page is 10Ko (fonts
included) or about 8 Ko compressed. Thus, the DVI

AcroDVY

advantage would probably be somewhat less than 4.
Expert use of PDF does make a big difference.

The modem bottleneck. Modem transfer speed
is an important time factor. With a good telephone
modem and a good line one can hope to get a
transfer rate of about 5 Ko per second of compressed
material. Now, a mathematics article in DVI format
is about 2Ko per compressed page, and thus the
transfer rate is about 2.5 pages per second. This
is about the speed at which one can scroll through
the article with the 200 MHz PC used for these
tests. Note that DVIPDF converts to PDF format
at 6 times this speed. The time taken is perhaps
time lost, but it is negligible.

With poor telephone lines or modems, or again
congested web conditions, transfers that last more
than a minute or two are likely to be broken; clearly
the large PDF files are the ones at greatest risk,
and with present web protocols, partial transfers
are completely wasted.

Article transport costs. To get a very rough
cost estimate, consider a mathematics article of 100
pages posted on the Internet and ultimately down-
loaded by a thousand readers (the typical number
of subscriptions to a paper journal). Let is assume,
to get an easily calculated figure, that everyone uses
a contempory 56K baud modem with telephone
charges of $2 per hour and in compensation let us
neglect all other charges. With these figures, the
telephone cost for delivering the article is about $22
for DVI format and between $70 and $250 for PDF
format. Such figures suggest that use of DVI does
reduce data transport costs significantly.

Improving the AcroDVI environment. First,
the problem to be solved: in browsing the literature,
it is not uncommon to look quickly at dozens of
articles. This can quickly eat up many megaoctets
of disk space if PDF format is involved. Now, one
of Murphy’s computing laws asserts that any hard
disk that isn’t new is surely nearly full, no matter
what its capacity, since “data expands to fill any
void”. Thus, DVIPDF constantly risks running out
of space.

To largely eliminate this overflow risk, there
will be a setting for AcroDVI that makes the PDF
file ephemeral and invisible. As soon as the next
DVI file is processed, the previous invisible PDF
will be erased. (That is no loss, since it can be
regenerated quickly.) With this scheme, it suffices
to verify at the beginning of a browsing session that
your hard disk has enough space for the largest

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 275

Sergey Lesenko and Laurent Siebenmann

single PDF file you expect to read, plus enough
space for the relatively small DVT files.

Going one step further, the speed of AcroDVI
can now be doubled by switching off compression of
the the PDF output. At this point AcroDVI has
been nicely optimized as a DVI viewer — at the cost
of temporarily neglecting its role as a PDF compiler.

Comparing PDF and DVI formats

Adobe’s Acrobat Reader has PDF as its native file
format. This format is very autonomous:

e Graphics objects are always embedded within
the PDF file.

e Fonts are usually embedded as well (the al-
ternative, to use system fonts, has proved
somewhat unreliable).

These positive features bring some disadvantages:

e Bitmapped graphics are unlikely to be dis-
played on-screen at optimum quality since that
means no scaling. Vectorial graphics may not
be seen in their full glory since that often
requires the full screen.

e It is difficult to export graphics objects from
the PDF file in the most useful formats.

e PDF files tend to be many times larger than DVI
files. This is, of course, partly because of the
font burden,' but the complexity of the PDF
file structure brings substantial hidden costs.

Besides its space economy, the DVI format
has other virtues worth mentioning. Like all of
TEX, the DVI format is very stable, in spite of
(and even because of) its \special appendages.
This is important for archiving. Second, DVI is
simple: only a few pages in Knuth’s book on the
TEX program (Knuth, 1986) are needed to define
it adequately. Finally, one can derive from DVT all
formats currently used for mathematics, excepting
TEX source (i.e. the .tex file).

The strongest argument for PDF format has
been the wide availability and high performance of
the Acrobat Reader. Particularly outstanding are
the user interface, the graphics quality, and the
graphics speed. Adding to this: search, hypertext,
copy-and-paste to text files, annotations, printing
facilities, and PostScript (or EPS) export, it is clear
that Acrobat Reader is a major contender for the
affections of the reading public.

! The journal Geometry and Topology posts PDF
format both with and without included fonts; omis-
sion of fonts economizes 25% over the first thousand
pages of articles.

This does not prove that Acrobat Reader has
no rivals among DVI readers. For example, xdvi
(under unix) is by far the fastest viewer; the recent
BaKoMa DView can do better in quality and scope
of typography; emTEX provides better search and
text export. Interesting new DVI viewers continue
to appear: for example, tkdvi and nDVI (see
Resources for details). It would be destructive
not to serve such DVI readers. And ultimately
destructive of TEX itself since TEX systems are
typically built around them.

EPS, and now PDF, PNG and JPEG

The schemes to be described follow proposals in
(Siebenmann, 1996); they are just some of many
that have been elaborated for integration of graphics
into the PDF output of DVIPDF (see Lesenko, 1997,
1998).

Let us begin by considering the graphics in-
tegration issue that arose for electronic journal
articles to appear on MathCD. The DVI format is
usually one of two or three presented, and it entails,
for each article, one DVI file accompanied perhaps
by some EPS graphics files. For MathCD it was
important that the TEX version of the articles not
be necessary for the integration of the reformatted
graphics files.

Since DVIPDF cannot, on its own, convert EPS
graphics to PDF, it was initially decided to provide
PDF versions of the graphics objects via Distiller.
One reason for this decision was that the PDF
versions of vectorial graphics files are of optimal
quality and often quite efficient, provided that font
subsetting is used in creating them. Inasmuch
as these PDF files can be immediately viewed by
Acrobat Reader on most platforms, this conversion
is of immediate benefit to almost all users.

Gradually, it became apparent that conversion
to PNG and JPEG formats by various methods
sometimes offers greater advantages. Fortunately,
the solution to be described for PDF extends to
PNG and JPEG graphics files.

The \special syntax in the DVI files used
for EPS integration was most often the one used
by Tomas Rokicki’s epsf.tex. Aiming to exploit
pre-existing DVI files using with Rokicki’s dvips,
we decided to have DVIPDF interpret the existing
Rokicki syntax:

\special{Psfile=test.eps 1lx=11 11ly=22
urx=33 ury=44 rwi=550 rhi=660}

276 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

This is probably the world’s most common \spe-
cial syntax.?

The unit for the first four “bounding box”
entries is 1 bp (“big point”). 11x is the x-coordinate
of the lower left corner of the bounding box, etc.
Most often (but not always), this bounding box has
simply been copied by TEX from the bounding box
indicated in the EPS file header.

The last two entries, tagged by rwi (for real
width) and by rhi (for real height), specify, in units
of 0.1bp, the width and height of the integrated
bounding box on the output page. Either of these
two entries, may be absent, in which case uniform
scaling is used. By convention, the integrated box
has its lower left corner placed at the DVI insertion
point.

The (expanded) argument of this \special
command is passed intact into the DVI file. Beware
that it is normally generated inside of TEX, so that
the author sees only some high-level commands, as
those found in epsf.tex.

For both the .eps file and its derived .pdf file,
the figure is located on a coordinate plane with unit
of length = 1bp; also, the scale and orientation are
the same for both planes. In the event the .pdf
file was created by Ghostscript, the two coordinate
systems will be exactly the same. Then the dvips
rules of integration from dvips are applied without
modification and the results are identical.

If the .pdf file was created by Distiller, the
two coordinate systems are related by a translation
and some care is required required to make it
predictable. We omit the details.

In fact, MathCD has used Distiller mainly, en-
countering only occasional problems. Fortunately,
the reader of an article will be completely obliv-
ious to such complications; only website editors,
CD-ROM editors, and conscientious authors are
concerned.

Generalizing to bitmapped graphics. There is
an important variant of the above mechanism that
is optimal for bitmaps. EPS and PDF are very
general formats that can accommodate vectorial or
bitmapped images; however, for bitmaps, EPS tends
to be bulky and slow, and both seem to obstruct the
recovery of embedded bitmaps. On the other hand,
bitmap manipulation tools such as XNview under
Windows and Linux/UNIX or Graphics Converter
for Macintosh are easy to obtain and can generate

2 Tt is not, however, the simplest for the job;
indeed, one could get by without the “bounding
box” entries (cf. Siebenmann, 1996).

AcroDVY

an EPS format at any time. Thus, to the extent
that you wish to grant full control of bitmapped
graphics to the reader of your article, you may wish
to use a native bitmapped norm.

The converse applies too: one can lock a PDF
file or restrict its use in various ways. And it must
be conceded that PDF manages to inherit the space
efficiency of both leading public bitmapped formats:
PNG and JPEG.

Recall that PNG (Portable Network Graphics)
is the most efficient contemporary norm for faithful
bitmap compression and is suitable for scientific
figures and for most of the myriad uses which the
commercial GIF format enjoys on the web. PNG
is typically 15% more compact than GIF.? JPEG
is the dominant “lossy” format for compression of
low-contrast color images such as photos. JPEG
(like GIF) is well supported by current versions of
the Web browsers.

Hopefully, the above considerations will en-
courage more TEX users to exploit PNG and JPEG
bitmaps. Those who are still restricted to vector
graphics in TEX should be reminded, every time
they see a web browser, that the full gamut of (still)
bitmapped images, color included, as seen on the
web, are begging to be used in TEX.

What we have said about PNG and JPEG
being native or editable graphics formats is to some
extent true for PDF. Indeed, the Windows graphics
program Mayura Draw uses it as its storage format;
however, it does not read arbitrary PDF files.

It is clear from the above conversion, that
the preparation ab initio of a manuscript in DVI
format with PNG bitmapped graphics inclusions can
use the conventional EPS integration mechanism.
We summarize since the process applies with little
change also to JPEG and PDF:

e convert the PNG graphics to EPS, in XNview
or similar program;

e integrate the .eps file using the consensual
special command; and finally,

e replace the .eps file by the original .png file
(the .eps file is usually bulky and is perhaps
best discarded since it can be regenerated if
the need arises).

The end user then just pushes the .dvi file onto
the AcroDVI icon and viewing in Acrobat Reader
will begin — using the original PNG graphics.

3 Unfortunately, the leading browsers, Netscape
and Internet Explorer, have been tardy and half-
hearted in their support for PNG. It may become
necessary for AcroDVI to support GIF.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 277

Sergey Lesenko and Laurent Siebenmann

But there is a shortcut; it is unnecessary to
generate an EPS file. Specifying

DoBBoxFile =YES

in a configuration file, preview the PNG by pushing
its icon onto that of AcroDVI. As a by-product, this
previewing creates an auxiliary file (extension .bb),
which contains the BoundingBox comment as in an
EPS file header. With a suitable macro package
such as boxedeps.tex (version for year 2000) or
the IATEX packages graphics or graphicx, the .bb
file can be used in lieu of an EPS file.

Auxiliary roles for Ghostscript. The first is
to allow on-the-fly integration by AcroDVI of EPS
files into DVI format; optional settings of AcroDVI
enable this when Ghostscript is present. This is
very useful for viewing legacy DVI-plus-EPS postings
prevalent on the Internet.

When an author or publisher is preparing an
article for publication in DVI format with graph-
ics inclusions, the strategy should be to vary the
graphics format: maximize image quality while
minimizing bulk. Effort spent on this often leads to
surprising but useful results (see the 1999 documen-
tation for boxedeps). Thus, it is advisable to urge
authors to present originals of all graphics objects.*

Secondly, Ghostscript is a valuable converter
to bitmap formats from PS, EPS, and even PDF;
it has command-line options for parameters such
as resolution. Unfortunately, Ghostscript has its
quirks as a rasterizer. On the other hand, we
have mentioned that the Adobe PS- and PDF-based
systems seem loath to surrender internally stored
bitmaps; they can be likened to a bank so eager
for deposits that it has forgotten to provide for
withdrawals. When need for withdrawals comes,
Ghostscript may be your best friend.

The medium molds the message. One has to
bear in mind that the various graphics formats
and the various viewing mechanisms may influence
what ultimately reaches the human eye. The pages
of TUGboat, for example, are printed in black
and white by photo-offset methods and will never
faithfully render the colored iris that is the icon
for AcroDVI.

For the reader’s amusement, Fig.1 shows in
black-white several rather different renditions of the
iris, all of which derive from one multicolored pastel
original contributed by Tina and Keira Miyata. This

4 For example, in preparing MathCD, the lack of
such originals has been more of a vexation than the
lack of TEX source files!

Figure 1

was scanned in 32-bit color to a 450 x 450 -pixel

bitmap, and stored as a 57 Ko file in JPEG format.

This TUGboat article used the .eps versions.

(a) a suitable projection to black-white (= b/w)
by Graphics Converter; size 30 Ko as .eps.gz,
20Ko as .pdf.gz, 14 Ko as .png.

(b) is derived by Floyd-Steinberg filtering by Graph-
ics Converter; size 36 Ko as .eps.gz, 26 Ko as
.pdf, and 18 Ko as .png,

(c) (colored) arises from vectorization, by 16 re-
gions of flat color, using Adobe’s Stream-
line (v.3); size 144Ko as .eps.gz, 146 Ko as
.pdf.gz, and 30Ko as . jpg.

(d) (b/w) is the 1000 or so curves that are the
boundaries of the 16 colors of (c); size 203Ko
as .eps.gz, 186 Ko as .pdf.gz, and 15Ko as
.png. This last bitmap blurred the curves;
doubled resolution gave a 53 Ko .png file.

The quest for image clarity and beauty is an
empirical art; with no testing, the results of photo-
offset printing may be disappointing. We apologize
in advance.

On the need for DVI efficiency

There is currently lukewarm support for the use
of efficient methods. What can be done efficiently
by astute programming is by preference done by
the liberal expenditure of RAM or disk space
or processor power. Thus, for AcroDVI to be
taken seriously, cogent evidence is wanted that
the resources economized through maintaining and

278 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

developing the efficient DVI format can be used
decisively.

This is perhaps most evident with CD-ROMs.
A CD-ROM contains about 650 Mo of data. If
exploited to archive mathematics in compressed DVI
form (and no other) a CD-ROM could contain about
300,000 pages of mathematics. That is enough space
to record all the mathematics currently on the
xxx.lanl.gov “e-print” archive (recently named
“arXiv”), which is said to amount to about 200,000
pages. Alternatively, it is enough to distribute
all the mathematics research articles published in
one year (on paper or electronically). Again, it is
enough space to reprint the whole of the Annals of
Math (the most prestigeous math journal) plus the
whole of Crelle (the oldest math journal).

Going beyond mathematics, it might be possi-
ble to present a complete encyclopedia on a single
CD (or two), using compressed DVI (and graphics)
files for storage and AcroDVI for viewing. Cur-
rently, the favored storage format for encyclopedias
is RTF (Rich Text Format) and the usual viewer
is MSWord. RTF enjoys efficiency comparable to
that of HTML and DVT; it allows the same enviable
flexibility of line length as HTML, and it is some-
what more expressive than HTML but less so than
DVI. AcroDVI (allied with Acrobat Reader) offers
the best typography and $peed.

Although such projects may not be realized in
the immediate future, MathCD is intended to hint
at them all.

There should also be evidence that CD-ROM
capacity will not grow so fast that it outstrips the
increasing demand for such permanent storage. If it
does, then it is plausible that there is room for waste.
The spectacular 1000-fold growth of the capacity
of inexpensive hard disks in the last dozen years
has fed wild expectations of storage technologies.
But the reality for CD-ROMs is sobering. It is now
known that the next (second) generation of CD-
ROMs, called DVDs (Digital Versatile Disc) coming
about 15 years after the first, will be based on a
simple evolution of the current CD-ROMs: a rough
doubling of density is involved, along with use of
both sides of the disk. The capacity gain to 4.5 Gig®
will be somewhat less than 10-fold (not 1000-fold).
This is a factor frighteningly similar to the wastage
factor that would be imposed by general adoption
of the bulky PDF format. Furthermore, it could
be a decade before the new CD-ROM format is
sold at the affordable prices of today’s CD-ROMs,

5 Double that for two-layer versions— whose
durability is, unfortunately, in doubt.

AcroDVY

since that is the time it took for today’s CDs to
reach mass consumer prices. This is one of the
strongest arguments for retaining the efficient DVI
norm. Fortunately, DVD readers will accept today’s
CD-ROMs.

The current pause in progress of telephone
modem speeds gives additional arguments. The 56
kilobaud telephone modems of today are considered
to be the last gasp of a tired technology up
against what is called the “Shannon limit”. In
this case, a dramatic switch to ADSL (Asymetrical
Digital Subscriber Lines) is being promoted with
great speed gains: nominally 1.5 megabits/sec
download and .5 megabits for upload (but, in
practice, perhaps only one third or one quarter of
that). There remains the question whether and
when this technology will be as widely available and
as affordable as the present modem technology.

Although hard disk capacity has been growing
prodigiously, electronic libraries such as ELibMath
EMS (www.emis.de) could come to need DVI’s
polyvalence and efficiency. Thus far, a hard disk of a
few gigaoctets is sufficient to store the entire library
of a few dozen journals. At current affordable prices
for storage, dozens of mirror copies of the library
have been established worldwide. As time passes,
journals are not only multiplying and individually
growing but are offering more and more formats for
downloading, notably the bulky PDF. If and when
this causes overflow of the current generation of the
ELibMath hard disks, DVI format could offer an
attractive remedy.

The xxx.1lanl.gov e-print server has shown the
way on economy by deriving essentially all formats
from a .tex source on demand. This server suc-
cessfully deploys immense expertise and resources
under UNIX systems and manages to compile any
document from .tex files to derive on-the-fly any
other format the user requests. To do much the
same on a CD-ROM, but using .dvi format, seems
just within the realm of possibility —relying heav-
ily on the greater simplicity and wide acceptance
of DVI format. The first edition of MathCD will
nevertheless be far more liberal (heteroclite) than
the xxx.lanl.gov server.

We conclude that the economy and polyvalence
of TEX’s original DVI norm may indeed be the
magical stuff from which dreams can be woven.

Is AcroDVI in the lead?

As a front end to Acrobat Reader for DVI viewing,
how well does AcroDVI face competition?

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 279

Sergey Lesenko and Laurent Siebenmann

There are several interesting indirect competi-
tors that we merely mention in historical order:
Ghostscript/ Ghostview, then Distiller teamed with
Acrobat Reader, and most recently pdfTEX (see
Thanh, 1998), also for use with the Reader.

Potentially, the strongest indirect competitor
would be Acrobat Reader itself using a more com-
pact and agile version of PDF format — but there is
no sign of that.

One direct competitor of AcroDVI is Malyshev’s
BaKoMa DView, which not only has the broadest
typographic capabilities in the TEX world of 1999,
but also the ability to output PDF files. We leave
the user to judge the relative virtues. Both will be
provided on MathCD.

A second direct competitor is dvipdfm by
Mark A. Wicks, which surfaced in 1998. It is
an autonomous converter quite similar in concept
to DVIPDF. Executable binaries are available
on CTAN for 2 platforms, WIX/NT and i386
Linux. The reviewer of our paper informed us of
many compiled dvipdfm binaries on the TEX-Live 4
CD-ROM. The platform/OS combinations served
include: DEC alpha/OSF4, HP/HPUX10, i386
/Linux, SGI/IRIX6.2, RS6000/AIX4.1.4, Sparc/
Solaris 2.5-2.6, and Windows (32-bit).

Thus far, neither of these direct competitors has
provided close integration with Acrobat Reader. It
is probably fair to say that both are presently aiming
at PDF publication, not DVI viewing. They are not
yet competing frontally —but they soon could.

As for support of the most frequently used
\special commands, BaKoMa DView is well ad-
vanced, thanks to adherence to dvips syntax.
AcroDVI has some catching up to do here because
it originally fashioned its own \special syntax;
basic functionality for color and hyper-references
are, however, present. Least adapted for viewing
legacy DVI files is dvipdfm — because of its reliance
on ‘pdfmark’ syntax; however, it has good basic
\special functionality.

On the other hand, the recent wide porting
of dvipdfm and distribution via the TEX-Live CD
could well eclipse DVIPDF, and with it, AcroDVI.
If that is our fate, we hope that both DVIPDF
and AcroDVI will nevertheless be remembered as
seminal proofs of feasibility.

Acknowledgements and History

The second author is grateful for an invitation from
Stanislas Klimenko to visit IHEP in Protvino for
several weeks in the autumn of 1997 to work with
the first author, and also with Basil Malyshev. Basil

has very kindly permitted us to distribute a version
of his BaKoMa font collection with AcroDVI.

The idea of exploiting DVIPDF and Acrobat
Reader together as a feature-rich DVI reader has
been a subject of discussion between us (Lesenko
and Siebenmann) since the 1996 TUG meeting in
Dubna, Russia. For a long time, this project
remained on a back burner while basic features
of DVIPDF were perfected by the first author.
As MathCD project took shape, it offered many
stimulating design challenges, and the last year has
brought substantial progress that seems to justify
our early optimism.

Resources

Acrobat: a series of products by Adobe Inc.,

including Acrobat Reader, and Acrobat Dis-
tiller; the former is free while the latter is sold
(but low prices for Distiller are available to
academic users in many countries). Supported
platforms include: Windows 3.x, Windows 9X,
Windows NT, Macintosh, OS/2-Warp, Linux,
IBM-AIX, SunOS, Solaris, SGI-IRIX, HP-UX,
and Digital UNIX. Adobe’s website address:
www.adobe. com.
There is an active news list (comp.text.pdf)
that can provide user support. See also EMJ,
below, in particular Nelson Beebe’s comments
of 23 April 1999.

AcroDyY (with DVIPDF): by S. Lesenko and L.
Siebenmann. Alpha versions are posted by
anonymous ftp in Europe and N. America:
topo.math.u-psud.fr/pub/tex/
cmstex.maths.umanitoba.ca/pub/acrodvi
When AcroDVI is reasonably stable, it will be
submitted to the CTAN archive.

BaKoMa TEX: by Basil K. Malyshev. A TEX imple-
mentation for the Microsoft Windows OS that
appeared in 1998. Includes an advanced version
of the BaKoMa font collection, the DVI viewer
DView, and a DVI-to-PDF converter. Available
from CTAN and from ftp://ftp.mx.ihep.su.

boxedeps: by Laurent Siebenmann. A macro
package for EPS graphics integration that is
valid for all PS printer drivers. Available from
CTAN. The year 2000 version co-operates with
some PDF compilers to integrate PDF, PNG,
JPG graphics using .bb files.

dvips: by Tomas G. Rokicki; available from CTAN
in the dviware directory.

280 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

dvipdfm: by Mark A. Wicks. A DVI-to-PDF
converter that appeared in 1998:
http://odo.kettering.edu/dvipdfm/
Currently available on CTAN for i386 Linux,
and for Windows 9X/NT as part of the MikTEX
and fpTEX distributions.

EMJ: the Electronic Math Journals discussion list:
http://math.albany.edu:8800/hm/emj.

graphics, graphicx: I#TEX2¢ packages by David
Carlisle and Sebastian Rahtz, on CTAN.

Graphics Converter: by Thorsden Lemke. bitmap
editor and converter for Macintosh; shareware.
www.lemkesoft.de.

Ghostscript: by Peter L. Deutsch.
A PostScript and PDF interpreter, that pro-
vides bitmapped or PDF output; the latter
function is called PS2PDF.
ftp.cs.wisc.edu/pub/ghost/aladdin.

GSview: by Russell Lang. A viewer based on
Ghostscript

ftp.cs.wisc.edu/pub/ghost/rjl/.

MathCD: CD-ROM (in prep.) devoted chiefly to
journals and software for mathematics.
Go to MathCD.html at the editors’ web sites:
www.math.washington.edu/ burdzy,
topo.math.u-psud.fr/"1cs, and
rsp.math.brandeis.edu.

Mayura Draw: a graphics program by Karunakaran
Rajeev; its native format is a dialect of PDF.
www.wix.com/mdraw210.zip.

nDVI: a DVI viewer by K. Peeters.
norma.nikhef.nl/~"t16/ndvi_doc.html.

tkdvi: a DVI viewer by A. Lingnau.
www.tm.informatik.uni-frankfurt.de
/~lingnau/tkdvi.

XNview: by Pierre-E. Gougelet, bitmap editor and
converter for Windows, Linux, etc.:
latour.univ-paris8.fr/“pierre.

AcroDVY

References

Bienz, Tim; Richard Cohn; and James Meehan.
Portable Document Format Reference Manual.
Addison-Wesley, Reading, Massachusetts, 1993.

Knuth, Donald. TEX The Program. Addison-Wesley,
Reading, Mass., 1986.

Lesenko, Sergey. “The DVIPDF Program.”
TUGboat 17(3), 252-254 (1996).

Lesenko, Sergey. “DVIPDF and Graphics.”
TUGboat 18(3), 166-169 (1997).

Lesenko, Sergey. “DVIPDF and Embedded PDF.”
Proceedings of Euro-TEX Conference, St. Malo.
Cahiers GUTenberg 28—29, 231-241 (1998).
www.gutenberg.eu.org/pub/GUTenberg/

Malyshev, Basil. “Problems of the conversion of
METAFONT fonts to PostScript Type 17. TUG-
boat 16(1), 60—68 (1995).

Siebenmann, Laurent. “DVI-based Electronic Pub-
lication.” TUGboat 17(2), 206-214 (1996).

Sojka, Petr, Han Thé Thanh and Ji{ Zlatuska. “The
joy of TEX2PDF — Acrobatics with an Alternative
to DVI Format.” TUGboat 17(3), 244-251 (1996).

Thanh, Han Thé. “The pdfTEX Program.” Proceed-
ings of Euro-TEX Conference, St. Malo. Cahiers
GUTenberg 28—29, 197-210 (1998).
www.gutenberg.eu.org/pub/GUTenberg/

Post-Conference Addendum

With reference to the discussion on modem down-
loading speeds (section “On the need for DVI
efficiency”), Michael Doob reports top speeds near
500Ko/sec on an optical cable network installed
originally for cabled home television. This is stun-
ning progress; even the authors’ institutional ether-
net LANs have never offered speeds quite so high.
Curiously, the slower ASDL technology is attract-
ing more investment. One should bear in mind
that better Internet access may well increase ‘peak
time’ Internet congestion, at which times effective
throughput is often less than for a simple telephone
modem.

We authors thank Michael Doob for hosting
our alpha version, and also for making the oral
presentation in Vancouver, when, at the last minute,
the first author was unable to attend.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 281

