
Introduction

Let us consider two projects large enough to chal-
lenge most TEX systems.

The first is a large science or math textbook
at the high school or elementary college level. Such
a book is often over 1000 pages long, requires four-
color printing, and contains many hundreds of full-
color photographs or other complicated images. It
has a large index, bibliography, and cross references
throughout. Answers to some of the exercises
appear at the back of the book. There may be
many supplements, such as a separate solutions
manual, a study guide, a lab manual, a bank of
test questions, or transparency masters. All of
these contain many references that need to be keyed
to the textbook itself. There may be a separate
book of instructor’s notes keyed to the text, or the
book may be simultaneously published in a special
instructor’s edition with the notes in the margins or
on extra, unnumbered pages. Some of these many
supplements may be published on paper, some on
the Internet, some in PDF or other format on
CD-ROM with interactive links.

Our second example project is the documenta-
tion library for a large software system, one that
may contain hundreds of thousands or millions of
lines of computer code, written in several differ-
ent programming languages and distributed over
many files. To avoid errors and inconsistencies,
it is important to keep all the documentation in
the same files with the code. Such a system
will have several kinds of documentation: informal

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 227

Managing Large Projects with PreTEX: A Preprocessor for TEX

Managing Large Projects with PreTEX:
A Preprocessor for TEX

Robert L. Kruse
PreTEX, Inc.

2891 Oxford Street

Halifax, Nova Scotia, B3L 2V9

Canada

bob@pretex.com

Abstract

PreTEX is a preprocessor for TEX that supplies an author with many tools
to simplify the writing and management of larger (book-length) projects. This
paper concentrates on PreTEX’s use of secondary input files and conditional
typesetting in managing large projects. The user may insert location tags within
a file which can then be used by PreTEX to include parts of one file within
another, in any order determined by the user. Parts of a file may also be
selectively typeset according to the status of various conditions.

introductory guides for the user, reference volumes
for more sophisticated users, precise specifications
for each part of the program, in-house documenta-
tion and other comments from programmers, and
bug/modification reports and history.

PreTEX is a preprocessor for TEX (consisting of
about 15,000 lines of C code), designed explicitly to
facilitate the work of authors and editors in writing
and production of large projects such as these.
PreTEX’s features, moreover, remain equally useful
for more ordinary book-length projects or even for
small typesetting projects such as research papers.

By exploiting context dependency, PreTEX sup-
plies much of the routine markup required for high-
quality typesetting in TEX, simplifies the notation
for mathematics, supplies user-friendly error diag-
nostics, uses its own tables of information to resolve
many ambiguities in typesetting, and, by recog-
nizing some of the syntax of various programming
languages, provides powerful tools for typesetting
computer-program listings.

Some of these features were discussed for a
preliminary version of the PreTEX software in Kruse
(1988). Since that article was published, the PreTEX
software has been substantially revised, extended,
and used intensively in a commercial environment.
It is now ready for initial public release.

This paper discusses only a fraction of the tools
provided by PreTEX. Here, we concentrate on Pre-
TEX’s file-management facilities that are especially
valuable to authors of large projects. For a discus-
sion of PreTEX’s implementation of hypertext links
in PDF, see Mailhot (1999).



Independent chapter processing

High-resolution scans of color photographs or other
complicated graphics require considerable space in
computer storage. If a book contains hundreds
of such images, its output files can become pro-
hibitively large, often several gigabytes in Post-
Script. It therefore becomes imperative to divide
such a project into smaller files that can be pro-
cessed independently.

In fact, PreTEX allows a project to be di-
vided into conveniently small, chapter-length files
which are processed independently at every stage,
including the final production of PostScript or PDF

files. At the same time, PreTEX integrates the
cross references, the index and contents entries, and
the bibliographic citations from all the input files
comprising the entire project. Hence, while the
author works on the files for one chapter, cross ref-
erences to other chapters will still resolve properly.
Page numbers, chapter numbers, and other elements
that number consecutively throughout the book are
automatically updated for each chapter file.

To accomplish these goals, PreTEX maintains
a whole directory of auxiliary files in place of the
single auxiliary file used by LATEX. Indeed, for each
chapter there are several auxiliary files that are
accessed by PreTEX, by TEX, by BibTEX, and by
PreTEX’s enhanced equivalent of MakeIndex. Under
normal circumstances, the user never needs to look
at any of these auxiliary files directly. Since there
are separate auxiliary files for each chapter, the
system modifies only those corresponding to the
chapter currently being developed.

For some purposes, PreTEX must string all
these files together in the correct order; to do so,
PreTEX uses a short file containing a master list of
all chapter files. A sample of this master file list is:

title
contents
preface
part1
chapter1
chapter2
part2
chapter3
appendix1
appendix2
index

The blank line specifies that the page numbering is
not continuous from preface to chapter1; other-
wise each file begins after its predecessor. Contents,
index, cross-reference, and bibliographic entries,
however, are merged for all the files.

228 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Robert L. Kruse

Secondary input files

One of PreTEX’s most powerful features is its
ability, while processing one file, to include portions
of other files, arranged in any desired order, with
parts skipped under the control of Boolean (that
is, true-false) variables. This feature is like TEX’s
\input command, except that \input includes the
entire file, whereas PreTEX may select only portions.

First, we need some notation.

PreTEX Command Syntax. As a preprocessor,
PreTEX has its own extensive command language,
as well as responding to certain TEX commands.
It recognizes several different environments and
processes its input differently according to the
environment. In the mathematics, verbatim, and
computer-program environments, the characters ‘<’
and ‘>’ are processed as usual, but in text (where
they would normally not appear) ‘<’ and ‘>’ are used
to delineate commands to the PreTEX preprocessor.
Such commands take forms such as

<:command_name option1 option2>

where the number of options and their syntax vary
with the command.

To access a secondary input file, we need only
write an instruction such as

<:read file filename from tag1 to tag2>

at the place where we wish to include part of the
secondary file filename. The location tags, denoted
<tag1:> and <tag2:>, are placed immediately be-
fore and after the part of the secondary file that
will be read. Any number of location tags may be
placed in a file (at any place where the file is in text
environment); these tags are used only to control
file reading and will not appear in the output after
processing by PreTEX.

Conditional Typesetting. When the same ma-
terial is processed for different purposes by PreTEX,
it is often convenient to use TEX macros both to
control how an element is typeset and, depending on
the purpose, to determine if the element is included
at all. In a textbook, for example, the author may
wish to place solutions to exercises immediately
adjacent to the exercises themselves, so that, if
the exercise is modified, its solution can easily be
modified to match. When we are processing the
textbook itself, these solutions must not be included
in the output, but when typesetting the solutions
manual, they must appear.

We can accomplish this goal by instructing
PreTEX to create a new Boolean variable, which we
might call solutions, and to use this variable to



control the typesetting of material between a pair of
control sequences, which we might call \solution
and \endsolution. With this instruction, PreTEX
will recognize two new commands:

<:solutions on> and <:solutions off>

Depending on the setting, PreTEX will include or
delete material between

\solution and \endsolution

For the textbook itself, we specify
<:solutions off>

(likely in a style file, so it need be done only once
for the entire book), in which case all solutions will
be deleted. When processing the solutions manual,
we specify

<:solutions on>

so that all solutions will appear immediately after
their exercises.

With these tools, typesetting a separate solu-
tions manual is trivial, and it will be guaranteed
to be kept current with any revisions to exercises
in the text. All we need to do is to place location
tags before and after each group of exercises in
the text’s chapter files. Then the file for the solu-
tions manual will contain almost nothing except for
the command <:solutions on> followed by a long
series of <:read file ...> commands to include
each group of exercises and their solutions from the
various chapter files.

Some authors, on the other hand, prefer to
place all exercises and their solutions into separate
files, one or more exercise files per chapter. This
organization will work just as well. Now, with loca-
tion tags before and after each group of exercises,
<:read file ...> commands in the main chapter
files will include the exercises where desired (along
with their solutions, which will be deleted, provided
solutions is off).

To place answers in the back of the book is
just as easy. We now introduce a second Boolean
variable, say answers, include the commands <:so-
lutions off> and <:answers on>, and use the
same <:read file ...> commands to typeset, at
the book’s end, only the selected answers.

Production of other supplements for a large
book follows much the same plan. The material
for these supplements can either be placed in the
main files with typesetting controlled by Boolean
variables, or placed in separate files used to produce
the supplements, with <:read file ...> com-
mands as appropriate to include material from the
main file or other supplements. In any case, the
names of the files for all the supplements should

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 229

Managing Large Projects with PreTEX: A Preprocessor for TEX

normally be included (in separate groups) in the
master file list for PreTEX. In this way, cross refer-
ences may be made from any of the supplements to
any other or to the main text. Similarly, in PDF,
hypertext links allow the user to jump directly from
locations in the text to appropriate locations in any
supplement, or the reverse.

Program code and StripTEX

Now let us turn to our second motivating exam-
ple, a documentation library for a large software
system, where the code and documentation are
distributed over many different files, generally with
differentauthors.

By treating each file of program code and doc-
umentation as a secondary file, PreTEX can be used
to combine any desired extracts of the documen-
tation or the program code in any desired order.
The identical source files can in this way be used to
construct, for example, informal user guides, user
reference manuals, programmer’s reference manuals,
or other documentation, either for in-house use or
external distribution.

In PreTEX’s different environments, the same
symbols will be processed in different ways. PreTEX
provides special facilities for typesetting computer
programs, understanding enough of the program
syntax to adjust spacing and choose special symbols.
For example, curly braces { . . . } (delineating a
group in TEX) become printed symbols in C or C++,
enclosing code segments, whereas in Pascal, they
delineate comments that will be typeset as text, not
as computer code. PreTEX provides environments
for many common programming languages (Java,
C++, C, Pascal, Ada, Fortran, Basic, Cobol, among
others). By treating program lines as tab-controlled
lines (as illustrated in The TEXbook, page 234), tab
stops can be used to achieve proper alignment, or
other TEX markup can be inserted into programs.

For these program files, PreTEX provides a
further utility, called StripTEX, that removes all
the text surrounding program code, as well as
any TEX markup in the program code, yielding
output that can be submitted directly to a com-
piler. StripTEX recognizes all the same commands
as PreTEX, including reading from secondary files.
Hence, the order of subprograms within files and
their accompanying documentation need not have
any connection with the order expected by the
compiler; StripTEX can be used to extract sub-
programs from arbitrary files and arrange them in
whatever order is needed by the compiler. The
same file(s), containing both documentation and



code, can be processed through PreTEX to obtain
a well-formatted, documented program listing, or
through StripTEX to obtain the program in exactly
the form needed by the compiler.

In this way, PreTEX and StripTEX provide all
the functionality and capabilities of Knuth’s WEB sys-
tem. PreTEX replaces WEAVE, and StripTEX replaces
TANGLE. The PreTEX–StripTEX system, moreover,
brings several advantages over WEB:
• The user has unlimited flexibility in the or-

dering of subprograms and documentation and
their placement in various files.

• The same software manages programs in any
number of computer languages, including sev-
eral for which WEB is not available. For software
systems using several languages, the identical
software generates all the files needed for the
various compilers.

• The user has no need to learn a new command
language: StripTEX shares the identical syntax
of PreTEX, which is an easy extension of TEX.

Bibliographic entries

For large projects with many references, maintain-
ing the bibliography can require considerable work.
BibTEX provides excellent facilities for maintaining
a bibliographic database; PreTEX uses BibTEX with-
out change. Any LATEX user of BibTEX will immedi-
ately be familiar with the PreTEX commands <:cite
...>, <:nocite ...>, <:bibliography ...>, and
<:bib_style ...>.

As a preprocessor, PreTEX can automate and
streamline the use of BibTEX. LATEX, for example,
requires a four-pass process:

1. Run LATEX to collect the citation keys.
2. Run BibTEX to assemble the corresponding

references from the database(s).
3. Run LATEX to associate the citation keys with

their references.
4. Run LATEX to resolve the citations.

PreTEX accomplishes the same results with only two
passes and with no special attention from the user.
On its first pass, PreTEX assembles the citation keys
and automatically invokes BibTEX, after which Pre-
TEX immediately associates the citations with their
references. On its second pass, PreTEX resolves
the citations. Whenever the document is processed
again, PreTEX automatically detects if the citations
have been changed, and PreTEX invokes BibTEX
only when necessary to keep the bibliography up
to date.

As our final example, consider a symposium
or conference proceedings in which the individual

230 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Robert L. Kruse

chapters are written by different authors who may
not be in touch with one another. Each chapter
will then be written and processed independently;
if desired, each chapter may have its own cross
references, index, or contents. The editor may then
later merge all these resources for the entire volume.
The editor may supply a bibliographic database for
use by all authors, accessed as needed by BibTEX
from within PreTEX. In addition to these global
citations, PreTEX allows bibliographic citations local
to each chapter, so each author may use both
the global database and, independently, use local
citations from other bibliographic databases. To
enable local citations, PreTEX includes a second set
of citation commands with ‘l’ prefixed to the name
of each, such as <:lcite>, <:lbibliography>, and
the like.

Preview

This paper touches on only a few of the tools
PreTEX provides to authors to simplify the writing,
management, and typesetting of large projects.
Together with its preprocessor, the full PreTEX
software package contains the StripTEX processor,
an auxiliary program for the construction of the
index, another for the table of contents, and a large
TEX macro package of about the same size and
capability as LATEX, but with a somewhat different
design philosophy.

The PreTEX software has been under devel-
opment and revision for several years, and at the
same time it has been used intensively by PreTEX,
Inc., for the commercial typesetting of many text-
books in mathematics, engineering, and science.
The software is now ready for initial external test-
ing and application, with public release to follow
in due course. Before its general public release,
however, some work remains to be completed, espe-
cially the writing of user guides, reference manuals,
and other documentation necessary for the effective
application of the PreTEX tools.

Bibliography

Kruse, Robert L. “PreTEX: Tools for Typeset-
ting Technical Books.” TEXniques No. 7: Confer-
ence Proceedings of the Ninth Annual Meeting,
Montreal, August 1988. Ed. Christina Thiele,
pp. 219–226. TEX Users Group. 1988.

Mailhot, Paul A. “Implementing Dynamic Cross-
Referencing and PDF with PreTEX.” 1999. (See
elsewhere in these Proceedings.)


