
ConcTEX: Generating a concordance from

TEX input files

Laurence Finston

Abstract

ConcTEX is a package that generates a concordance
from a plain TEX file. It has been designed specifi-
cally for books containing transcriptions of medieval
manuscripts, such as facsimile editions, but it can
be adapted for other types of material. ConcTEX
consists of TEX code in the file conctex.tex and
a Common Lisp program in the file conctex.lsp.
The main advantage of ConcTEX is that the same
TEX files are used for typesetting and for generating
the concordance. It also performs alphabetization
of arbitrary special characters and lemmatization.
ConcTEX illustrates the power of using TEX and
Lisp in combination. It is available under the
normal conditions applying to free software.

Introduction

Designing and typesetting a facsimile edition of
a medieval manuscript is a formidable challenge.
The plates with the facsimile itself will be pho-
tolithographs or, in books of the finest quality,
collotypes, and will therefore require no typeset-
ting. However, facsimile editions invariably contain
parts which must be typeset, such as an introduc-
tion, a transcription and a concordance.

Manuscript transcriptions must be carefully
designed and they generally require frequent font
changes and numerous special characters. Typeset-
ters, if there are any left, are unlikely to be able
to read the language of the manuscript, and each
manuscript has its own peculiarities of language
and orthography, so the process of proofreading
and correction is even more difficult than for or-
dinary books. Nowadays, authors or editors are
often expected to supply camera-ready output to
the publisher. This often means a printout from
one of the popular word-processing packages, which
are incapable of producing typesetting of sufficient
quality for the task. In today’s market, using me-
chanically set lead type is prohibitively expensive
and the number of publishers willing to typeset
difficult copy in this way decreases every year.

The task becomes even more daunting when a
concordance is desired.1 Compiling a concordance
by hand requires so much labor that it is no longer
economically feasible. Today, concordances are

1 A concordance is a complete listing of all words occur-
ring in a manuscript, lemmatized, with the main forms of
the lemmata sorted alphabetically.

372 TUGboat, Volume 19 (1998), No. 4

generated by means of computer programs, but,
until now, this has required preparing a specially
formatted file containing the transcript. Since
a separate file, or a typescript, was used for
typesetting, changing either the transcript or the
concordance necessitated making the corresponding
change in the other. In some cases, a conversion
program could be used to automate this process.
Where this was not possible, either because a
typescript was used or no conversion program was
available, every change had to be made in two
places by hand: an editorial nightmare.

ConcTEX is a package that attempts to solve
these problems. It includes a file of TEX code,
conctex.tex, containing tools for designing a fac-
simile edition of a manuscript, and a program
written in Common Lisp, conctex.lsp,2 for gener-
ating a concordance from the TEX input files. The
concordance program performs lemmatization and
alphabetization of arbitrary special characters, and
its output is another TEX input file containing the
concordance. ConcTEX is designed for producing
facsimile editions of manuscripts, but it can be
adapted for other types of material.

Using ConcTEX makes it possible to bene-
fit from the typographic capabilities of TEX and
METAFONT, of which readers of TUGboat need not
be convinced. Apart from this, its most significant
advantage is that the TEX input files are used both
for typesetting and for producing the concordance,
so that any changes in the input files are automat-
ically reflected in both the printed output and the
concordance.

ConcTEX is not for novices. A certain amount
of TEXpertise and knowledge of Lisp are necessary to
use it successfully. The version I describe in this ar-
ticle has been designed for a particular project. Any
other project will require some customization. Many
of the individual features of ConcTEX as described
here are the result of decisions regarding the design
of a particular book. Other books will require other
decisions. I have programmed most of the routines
in a general way, so that details can be changed while
the basic operation of ConcTEX remains the same.

Both the TEX code in conctex.tex and the
Lisp program conctex.lsp use some fairly ad-
vanced techniques, so readers may find this article
somewhat difficult. I expect the description of
the Lisp program will present the most problems,
because Common Lisp is likely to be unfamiliar to

2 Technically, it is incorrect to speak of “the program”
conctex.lsp. In Lisp a program is not a file. It is, however,
convenient to refer to the file conctex.lsp as “the program”.

most TEX users.3 Some of the more difficult and
subtle points are in the footnotes; for others, I’ve

borrowed Prof. Knuth’s “dangerous bend” sign:�
I sometimes use footnotes and “dangerous bend”
paragraphs to refer to topics that are introduced
later in the article. Most readers will want to skip
these paragraphs on the first reading.

Generating a concordance is admittedly a spe-
cial application; most TEX users won’t want to do
such a thing. However, the techniques for extracting
information from TEX input files, described in this
article, are of general applicability.

In the following description and examples, I
use two transcriptions of Icelandic manuscripts of
the 13th century, AM 234 fol and Holm perg 11 4o,
each containing a vita of the Virgin Mary and a
collection of miracles. I wish to thank Dr. Wilhelm
Heizmann, my Doktorvater (dissertation advisor),
who prepared the transcriptions, for permission to
use them in this article.4

In the following, many phrases have special
meanings. They are all explained at their first
appearance, but to avoid confusion, they are listed
in a glossary on page 402.
Installation. In order to use ConcTEX, the file
conctex.lsp, containing the Lisp program, must
be in your working directory, and conctex.tex,
containing TEX code, must be either in your working
directory or in a directory in TEX’s load path. If
you don’t know what this is, or how to change it,
ask your local TEX wizard, or just put the file in
your working directory. The line

\input conctex

must be at the beginning of your input file.
Why not LATEX? ConcTEX is designed for use
with plain TEX. It is theoretically possible to
adapt it for use with LATEX, but I recommend
against doing so. I use plain TEX in preference to
LATEX in ConcTEX for the following reasons:

1. Making significant changes to one of LATEX’s
pre-defined formats is difficult and time-con-
suming, whereas programming a format based
on plain TEX is relatively easy.

2. LATEX enforces a rigid structure on formats.
This makes sense for formats that are intended

3 The standard introduction to Lisp is Patrick Henry
Winston and Berthold Klaus Paul Horn’s LISP. Once you
know how to program in Lisp, Guy L. Steele’s Common

Lisp, The Language is the one indispensable reference.
4 I would also like to thank Günter Koch and Jürgen

Hattenbach of the Gesellschaft für wissenschaftliche Daten-
verarbeitung mbH Göttingen, Germany for help above and
beyond the call of duty.

TUGboat, Volume 19 (1998), No. 4 373

to be used by many people, many of whom
may have minimal knowledge of how TEX
works. However, it is simply not worth the
time and effort to write a LATEX format for a
single book, when a plain TEX format is just
as good and can be written in a fraction of the
time. And every book (or series) deserves its
own design.

3. LATEX loads various files by default, and signals
an error if it doesn’t get them. Some of
the things in these files might not even be
necessary, but you’ve still got to wait until
they’re loaded.

4. The more macros you use, the more likely
it is that they will start to interfere with
each other. The problem is even worse when
using a large package with macros you a)
don’t need and b) don’t understand. LATEX’s
macros are very difficult to understand because
pieces of them are scattered all over the place.
For this reason, it can be very difficult and
frustrating trying to get LATEX to stop doing
something you don’t want it to do. ConcTEX
changes the \catcode of several characters and
includes a large number of macros. Therefore,
the likelihood is great that there would be
interference between ConcTEX and LATEX.

The TEX input file

Multiple input files can be used for typesetting a
document and generating a concordance, so the
document can be divided into several files in the
customary way. In the following, I will assume, for
simplicity’s sake, that there is only one input file.
This file can have any name within reason.

Like any other TEX input file, an input file for
ConcTEX will contain text, control sequences for
typesetting and perhaps comments (using %). But
it will also contain Lisp code used by the program
conctex.lsp. Therefore, TEX input files used for
generating a concordance are subject to greater
restrictions than is ordinarily the case with plain

TEX. Some parts of the input file will only be used
by TEX, some will only be used by conctex.lsp,
and some will be used by both, or neither. Many
of the complications of ConcTEX have to do with
making TEX and/or Lisp ignore items in the input
file.
Environments. ConcTEX changes some category
codes and redefines some control sequences in order
to format the transcription correctly. This can make
it difficult to type in “normal” text using plain

TEX’s familiar conventions. It might be useful to
do this if sections of transcription alternate with

sections of commentary. The macro \plain defines
an environment where \catcodes and macros are
reset to their normal values. This environment ends
with the macro \endplain.

In the \trans environment, which is the de-
fault, the \catcodes of characters and macro expan-
sions are set to the values needed for transcription

lines, i.e., the lines that contain the actual tran-
scription. The macros \endplain and \endtrans

are defined like this:

\let\endplain=\trans

\let\endtrans=\plain

The changes made by \trans and \plain (and
\endplain and \endtrans) are global. A \trans in
the input file need not be matched by an \endtrans,
but \plain and \endplain must be matched,
otherwise they will wreak havoc in conctex.lsp.

Another environment is used for commentaries,
which are described below. Commentaries also
reset some category codes and macros, but the
commentary environment is not identical to the
\plain environment. Commentaries will usually
contain material similar to that in the transcription
itself, whereas material in the \plain environment
should be formatted differently. The \catcodes of
several characters needed in math mode are also
reset by the token list \everymath.

� A line beginning with \trans or \endtrans in
an input file will be ignored by conctex.lsp,

but \plain and \endplain are replaced by *,
so conctex.lsp treats text between \plain and
\endplain as a commentary.

� Having the \trans environment be the default
isn’t hard-wired into ConcTEX; however, the

definitions of \- and - assume that \trans is the
default, so this will need to be fixed if you want
\plain to be the default environment.

� In both the \plain environment and within
commentaries, - is reset to \catcode 12 and

\- is used for discretionary hyphens, because line
breaking is not performed explicitly, but rather by
TEX’s line breaking routine.

Transcription lines are the lines in the input
file that contain the text of the transcription itself.
They are processed in whole or in part by both TEX
and conctex.lsp. In order to do its job, ConcTEX
redefines the \catcode of several characters. Each
of these changes is explained in its proper place,
but there is a list for reference on page 402.
Transcription lines are formatted according to the
settings in the \trans environment, and processed

374 TUGboat, Volume 19 (1998), No. 4

by conctex.lsp. Apart from the text, they may
contain items like comments, commentaries, and
certain macros.
Comments and commentaries. ConcTEX makes
a distinction between “comments” and “commen-
taries”. A comment can be a normal TEX comment
using %, but it can also be code that looks like this:

\begincomment{This is a comment.}

\endcomment

The format defined in conctex.tex uses a con-
ditional (defined with \newif) called \ifdraft.
Whenever \drafttrue, that is to say, whenever
\ifdraft≡\iftrue, certain things are done which
are useful for editing purposes, but which aren’t
done for the final draft. One of these things is
printing out comments. If \drafttrue, this line:

helgum m{\oe}nnum

\begincomment{This is a comment}%

\endcomment {\ae}{\dh}r i.~helgari

=⇒

helgum mœnnum * This is a comment *

æðr i. helgari

If \draftfalse, it yields

helgum mœnnum æðr i. helgari

A commentary, on the other hand, is text which
should be processed by TEX and appear in the
output, but should be ignored by conctex.lsp, i.e.,
not be used for generating the concordance. This is
for editorial remarks within the transcription itself.
Commentaries can be coded in several different
ways. Usually, a commentary begins and ends
in *.5

\catcode‘*=9

...

herbergi heilag{\slong} anda.~%

* This passage is particularly

interesting * {\oe}llvm\\

helgum m{\oe}nnum {\ae}{\dh}r

i.~helgari\\

{\tirok} haleitari.~er komin

at k{\ydot}n\\

=⇒

herbergi heilag� anda. This passage is particu-
larly interesting œllvm
helgum mœnnum æðr i. helgari
` haleitari. er komin at kẏn

5 The control symbol \\ in the following example is used

for breaking the lines. It’s explained on page 381. The
letter {\slong} −→ �, used in the following examples, is an
alternative form of “s”. It is simply the “f” from Computer
Modern Roman, with the crossbar removed.

In this example, TEX simply ignores the character
*, because its \catcode has been changed from 12
(other) to 9 (ignored), so the commentary is printed
in the same font as the transcription. If I want the
commentaries to be printed in a different font, I can
code something like this:

\catcode‘*=\active

\font\ssf=cmss10

\def\startcommentary{\begingroup\ssf}

\let\finishcommentary=\endgroup

\let\docommentary=\startcommentary

\def*{\docommentary

\ifx\docommentary

\startcommentary

\global\let\docommentary=%

\finishcommentary

\else

\global\let\docommentary=%

\startcommentary

\fi}

This makes * an active char whose expansion
switches back and forth between \startcommentary

and \finishcommentary. The example above then
comes out looking like this:

herbergi heilag� anda. This passage is particularly
interesting œllvm
helgum mœnnum æðr i. helgari
` haleitari. er komin at kẏn

If you want * to do more than just change the
font, you can put more code into the expansions of
\startcommentary and \finishcommentary. The
macros \begincommentary and \endcommentary

are both \let to *, so using them is exactly the
same as using *. They can be useful for marking
longer commentaries, e.g.,

herbergi heilag{\slong} anda.~{\oe}llvm\\

\begincommentary

\<This commentary is so long that it’s

nice to mark it with

{\tt\string\begincommentary}

and {\tt\string\endcommentary}

to make it easier

to see in the input file, since * and *

might be easy to overlook.\>

\endcommentary\space

helgum m{\oe}nnum {\ae}{\dh}r

i.~helgari\\

{\tirok} haleitari.~er komin

at k{\ydot}n\\

TUGboat, Volume 19 (1998), No. 4 375

herbergi heilag� anda. œllvm
〈This commentary is so long that it’s nice to mark
it with \begincommentary and \endcommen-
tary to make it easier to see in the input file,
since * and * might be easy to overlook.〉 helgum
mœnnum æðr i. helgari
` haleitari. er komin at kẏn

The explicit \space following \endcommen-

tary is necessary, because ordinary spaces following
\endcommentary would just be swallowed up in the
usual way. It would be easy enough to change by
redefining \finishcommentary, so that it always
inserts a space into the current list.

\def\finishcommentary{\endgroup\space}

However, it might be desirable to have commentaries
end within a word sometimes.
Ignored lines.

• Lines that begin with % are ignored both by
TEX and conctex.lsp. (A % in the middle of
a line causes both TEX and conctex.lsp to
discard the rest of the line.)

• Entirely blank lines are processed normally by
TEX (the second 〈return〉 in a row is converted
to \par), and ignored by conctex.lsp.

• Lines that begin with \ are treated in the
normal way by TEX and ignored by conc-

tex.lsp, with a few exceptions. This makes it
possible to include undelimited macros (control
sequences that are not surrounded by braces)
in the input file without worrying about how
the Lisp program is affected by them. These
can be skips, font changes or other commands.
Beginning a line with \relax or \empty makes
it possible to type anything in the input file
and have conctex.lsp ignore it.

� Certain undelimited macros, such as \lineno

and macros like \putontop and \overstroke

that are used for text, do not cause conctex.lsp to
ignore a line, so they can appear at the beginning of
text lines. Other exceptions may be programmed.

Evaluated lines. Lines in the input file can contain
Lisp code to be evaluated by conctex.lsp. The
first non-blank character in these lines must be the
commercial “at” symbol, @. The \catcode of @

has been changed to 14 (comment), so TEX ignores
these lines. An evaluated line should contain a
complete balanced expression (s-expression or sexp);
multiline Lisp expressions are not permitted in the
input file. If an @ is not the first non-blank character
in a text line, both TEX and conctex.lsp discard
the rest of the line following the @, and Lisp does
not evaluate it.

� The most common use of evaluated lines is to
reset the text position for a new leaf, side or

column.

@ (set-position "28va")

They can also be used for adding occurrences
for words which TEX can’t format in the normal

way, perhaps because a word is written vertically
and extends over multiple lines (see page 398).

@ (add-occurrences "drotning" "1va~1-7")

The character ¥. The program conctex.lsp

considers all letters (\catcode 11) and some char-
acters of type “other” (\catcode 12) in text lines
as “word elements”. Some “other” characters are
considered “word separators”: in particular, blanks
and punctuation. The character ¥ (decimal 165,
octal 245, hexadecimal A5)6 is a special kind of
word separator: it is ignored by TEX (\catcode 9).
The program conctex.lsp will ignore most lines
that begin with an undelimited macro, but if the
line begins with ¥, conctex.lsp will process it.

¥\vskip12pt DROTNING himins ok

iar{\dh}ar . . .

The character ¥ may look different on your ter-
minal.7 However it looks, it should always be
used rather than ^^a5 in your input file;8 TEX will
recognize ^^a5 as referring to a single token, but
conctex.lsp will treat it as a string of 4 charac-
ters. It’s never necessary to use ¥, it is merely a
convenience.

Curly braces. As far as plain TEX is con-
cerned, the characters { and } are simply set to
categories 1 and 2, beginning and end of group,
respectively. They can be set to other categories,
and other characters can be set to categories 1
and 2. ConcTEX doesn’t support this generality;
the \catcodes of { and } should not be changed

6 It’s sometimes convenient to know the decimal, octal
or hexadecimal notation for an integer in another of these
radices. ConcTEX includes a lagniappe, a C program that
converts between decimal, octal and hexadecimal integers
easily and quickly, and several Emacs-Lisp functions for
calling this program from within Emacs.

7 If you’re using Emacs, you can enter any character by
typing Control-q followed by an octal integer, so I can type
Control-q 245 to get ¥. You may get another character,
though, depending on your editor, operating system, etc. A
better way to type in special characters is to define a key
sequence or an abbreviation to do it. There’s more about
this in the documentation supplied with ConcTEX.

8 Any character can be represented in a TEX file as ^^

followed by two lowercase hexadecimal digits (The TEXbook,
p. 45). If necessary, conctex.lsp can be made to recognize
this notation.

376 TUGboat, Volume 19 (1998), No. 4

and other characters should not be used in their
place. The reason for this is that the program
conctex.lsp uses { and } explicitly in strings. It
would be possible to change this and have a general
mechanism for recognizing a beginning-of-group and
an end-of-group character, but I did not consider
that this was worthwhile.

Braces are used in transcription lines for their
normal purpose: to delimit macros and their ar-
guments. TEX normally permits “unmotivated
braces”, i.e., braces that are typed into the input
file for no particular reason.

Th{is} line has {unm}otiv{ated} br{ace}s.

=⇒

This line has unmotivated braces.

The unmotivated braces will only have an effect if
they separate parts of a ligature, as in waf{f}le

−→ waffle, or prevent kerning, as in {V}A −→
VA. Sometimes, of course, as in {shelf}ful −→
shelfful,9 this is useful, but then the braces aren’t
unmotivated. ConcTEX does not permit them,
and the function letter-function in conctex.lsp will
signal an error when it finds an unmotivated }. If
cases like “shelfful”, where the word looks better
without the ligature, are desired, they must be
accounted for in conctex.lsp.

Changing fonts. Manuscript transcriptions
often require frequent font changes, sometimes
within a single word. For example, editorial
emendations may be printed in italics: prestr
(Engl. “priest”), and perhaps enclosed in brackets,
too: p[re]str. Some letter forms may be represented
in the transcription as small capitals, such as the
“r” in p[re]str. Different fonts may be used for
various other purposes, too, according to the book
design. For instance, initials, large and/or decora-
tive letters, and letters written in a different color
ink in the manuscript may all be indicated by a
special font in the transcription. Font changes are
handled in the normal way by TEX and discarded
by conctex.lsp. Font changes can extend over
multiple transcription lines.

Special characters and other macros.

A fundamental decision in editing a manuscript
transcription is, to what degree the transcription
should correspond to the actual appearance of the
manuscript, e.g., how special characters are repre-
sented, whether abbreviations are expanded, etc.
With TEX and METAFONT, it is possible to imitate
the appearance of the manuscript to a greater degree
than is possible with other methods; however it is up

9 The TEXbook, pp. 19 and 306.

to the editor and the book designer whether to make
use of this capacity or not. I believe that a transcrip-
tion will usually be of greater interest if it’s not nor-
malized, and if the abbreviations are not expanded.
No matter what style of transcription is chosen, a
wide range of special characters is usually required.

In TEX, special character macros can be typed
with or without enclosing braces, e.g., the word
“ætt” (Engl. “a quarter of the heavens, one’s fam-
ily”)10 can be coded as “{\ae}tt” or “\ae tt”, or
even “\ae tt” since spaces following a control
word are ignored. The second and third alternatives
are impractical even under normal circumstances,
because it is unclear in the input file that “\ae”
and “tt” belong together. In ConcTEX, however,
all special character codings must be enclosed in
braces (“{\ae}tt”). TEX will handle “\ae tt” and
“\ae tt” in the normal way, but conctex.lsp
will signal an error when it reads “\ae” without
enclosing braces.11 All macros used in transcription
lines must be accounted for in conctex.lsp. Others
will cause an error.

In most medieval manuscripts, words are often
abbreviated. There are several methods of abbre-
viation. One is to write some of the letters of a
word and put a stroke over them, like “mm” for
“mo�nnum.” It may be desirable to expand these
abbreviations in the transcription. One way of
doing this is to print out the characters that do
not appear in the manuscript, but in italics and
underlined, e.g., “mo�nnum”. (Other solutions may
be used according to the book design.) The macro
\ustroke is used to do this:

m{\ustroke{{\ohook}nnu}}m

=⇒

mo�nnum

You can type “m{\ustroke{{\ohook}nnu}}m” or
“m\ustroke{{\ohook}nnu}m”, i.e., the macro \us-

troke can be delimited or undelimited. Either way,
conctex.lsp discards the macro and its braces,
and the argument is treated as part of the word, so
in this example, “mo�nnum” is printed in the out-
put and “mo�nnum” will appear in the concordance
(under the main form “maðr”, Engl. “man”).

Since such abbreviations occur frequently, the
\catcode of the underline character _ (decimal
95, octal 137, hexadecimal 5F) has been reset to
\active and \let to \ustroke. So now you can
type “m_{{\ohook}nnu}m” to get “mo�nnum”, which

10 Cleasby-Vigfusson, p. 760.
11 It is letter-function that signals the error, when it reads

the \.

TUGboat, Volume 19 (1998), No. 4 377

makes the input file somewhat easier to type and
read. The \catcode of _ is reset to 8 (subscript) in
math mode, so it’s available for making subscripts,
and also in the \plain environment, so that it’s
possible to load files with the character _ in their
names. But it’s not reset in commentaries, which
might very well want to use _ for \ustroke.

� The macro \ustroke is defined as follows:

\def\ustroke#1{%

\def\subustroke{\leavevmode

\ifx\next.% It’s a period

\setbox0=\hbox{{\it#1}}\else

\ifx\next,% It’s a comma

\setbox0=\hbox{{\it#1}}\else

% It’s neither a period nor a

% comma

\setbox0=\hbox{{\it#1\/}}%

\fi\fi

$\underline{\box0}$}%

\futurelet\next\subustroke}

Since the underlined text is put in italics, it’s nice
to have \ustroke insert the italic correction (\/)
automatically, if and only if \ustroke’s argument
is followed by something other than a period or a
comma. In order to find this out, it’s necessary to
peek at the following token, using \futurelet. If
\ustroke uses a non-slanted font, it can be defined
more simply. It uses the \underline macro, which
is available only in math mode. This makes
the underlines go below the bottom of the lowest
character in \ustroke’s argument.

_{ypq} _{abc}

_{{\ehook}{\ohook}{\oehook}}

=⇒

ypq abc e�o�ø�

It might be nicer to have the underlines all at the
same depth, preferably close to the baseline, but
unfortunately, this doesn’t turn out to look very
good. If \ustroke is defined like this:

\def\ustroke#1{%

\def\subustroke{\leavevmode

\ifx\next.% It’s a period

\setbox0=\hbox{\it#1}\else

\ifx\next,%

% It’s a comma

\setbox0=\hbox{\it#1}\else

% It’s neither a period

% nor a comma

\setbox0=\hbox{\it#1\/}\fi\fi

% This makes a .25pt rule.

\hbox to 0pt{\vrule height -.8pt

depth 1.05pt

width \wd0\hss}\box0}%

\futurelet\next\subustroke}

then

_{ypq} _{abc}

_{{\ehook}{\ohook}{\oehook}}

=⇒

ypq abc e�o�ø�

I think it looks worse to have the underline stroke
go through the descenders of y, p, and q, and the
ogoneks (�) of e�, ø� , and o� , than it does to have
the underline stroke be at different heights. To
do this properly, it would really be necessary to
design fonts with the underline stroke included in
the individual letters.12

Sometimes manuscript transcriptions will re-
quire the use of special characters which are not
available in existing fonts. It may be possible to
create them by manipulating existing sorts.13 For
example, in Holm perg 11 4o, many words have
letters with smaller letters placed over them. A
logotype14 a

b
, coded as {\bOVERa}, can be defined

using the existing letters “a” and “b”, boxes, and
glue. For other sorts, like ,̀ the Tironian symbol
for Latin “et” (“and” in English and “ok” in Old
Icelandic), it may be necessary to program a font
using METAFONT.
� \bOVERa is actually defined as

\putontop{a}{b}{}{}{}. The macro \puton-

top is defined like this:

1. \def\putontop{\begingroup

2. \catcode‘\-=12

3. \def\subputontop##1##2##3##4##5{%

4. \setbox1=\hbox{##1}%

5. \setbox3=\hbox{##3}%

12 Cf. The TEXbook, p. 323.
13 “Sort” is a technical term for a typographical unit,

synonymous with “character”. The term “character” is am-
biguous in the context of TEX, because the characters in
the input file differ in nature from the characters in the
fonts used for typesetting, and the coding of the latter in
terms of the former is subject to modification. Therefore, I
sometimes prefer the unambiguous term “sort” for a char-
acter when I mean a typographic unit belonging to a font.
Williamson defines a character or sort as a “single figure,
letter, punctuation mark, symbol or word-space cast as a
type or generated by photocomposition, CRT [cathode-ray
tube] or digital system, or typed.” (368).

14 Williamson defines “logotypes” (or “logos”) as fol-

lows: “letters joined to each other & cast on a single
shank.” (p. 379.) He also notes that there is a shortage of
logotypes in some photocomposition systems, where they are
replaced by separate characters.

378 TUGboat, Volume 19 (1998), No. 4

6. \setbox4=\hbox{##4}%

7. \setbox5=\hbox{##5}%

8. %

9. %% These are the default dimensions.

10. %% For shifting the top letter

11. %% to the right or left:

12. \dimen3=-.8\wd1

13. %% For shifting the top letter

14. %% up or down:

15. \dimen4=1.2\ht1

16. %% For increasing or decreasing

17. %% the kern following \putontop:

18. \dimen5=0pt

19. %

20. \ifdim\wd3>0pt

21. \advance\dimen3 by ##3\fi

22. %

23. \ifdim\wd4>0pt

24. \advance\dimen4 by ##4\fi

25. %

26. \ifdim\wd5>0pt

27. \advance\dimen5 by ##5\fi

28. %

29. \setbox2=\hbox{\kern\dimen3

30. \raise\dimen4

31. \hbox{{\small ##2}}}%

32. \leavevmode\box1

33. \hbox to 0pt{\hss\box2\hss}%

34. \kern\dimen5\endgroup}\subputontop}

The macro \putontop takes its second argu-
ment and puts it above its first argument in a
smaller size. The third and fourth arguments can
be empty, or they can be used to shift the position
of the second argument. The fifth argument can
also be empty, or it can be used to increase or
decrease the space following \putontop. The first
and second arguments to \putontop need not be
single characters. Here are some examples of using
\putontop.

\putontop{abc}{def}{}{}{} ghi

=⇒

abc
def

ghi

This shifts the raised letters to the right.

\putontop{abc}{def}{10pt}{}{} ghi

=⇒

abc
def

ghi

This shifts them down.

\putontop{abc}{def}{}{-20pt}{} ghi

=⇒

abc
def

ghi

This increases the kern following “abc”.

\putontop{abc}{def}{}{}{20pt} ghi

=⇒

abc
def

ghi

And this reduces it.

\putontop{abc}{def}{}{}{-10pt} ghi

=⇒

abc
def

ghi

At the beginning of \putontop, the \catcode of
- is reset temporarily to 12 (other). This makes
it possible to use negative dimensions in its third,
fourth, and fifth arguments.

� If a certain combination of letters like a
b
appears

frequently in a transcription, it’s easier to
define a macro like \bOVERa for it rather than using
\putontop explicitly over and over. The function
replace-items can replace {\bOVERa} with “ab” or
any other string, so that a word like “ra

b
bit” will

appear in the concordance as “rabbit”. Another
possibility is to account for {\bOVERa} in letter-
function. In this case, “ra

b
bit” will be written

to the concordance, unless “r{\bOVERa}bit” has
been specified as a variant of “rabbit” in the
lemmatization dictionary.

(generate-entry "rabbit"
:variants "r{\\bOVERa}bit")

� If a word like “eptir” (Engl. “after”) is abbre-
viated as \putontop{e}{p}{}{2pt}{}tir −→

“e
p

tir” in the input file, the first two arguments
shouldn’t be discarded, because they belong to the
word. However, the string “\putontop” and its
other arguments, whether they’re empty or not,
will cause an error in letter-function, if they reach
it. The function process-macro inside the function
discard-items discards the string “\putontop”, takes
the first two arguments out of their braces and
discards the rest.15

� This works, if words using \putontop always
conform to this pattern. When they do,

\putontop can be used explicitly in the input file.
However, when they don’t, a different approach
is required. Sometimes, for instance, letters that
are put over other letters stand for parts of the
word which are left out. If the word “drotning”

is abbreviated frequently in the manuscript as “d
r

”,

15 The function process-macro receives two arguments
which tell it which arguments to take out of their braces and
which to discard.

TUGboat, Volume 19 (1998), No. 4 379

then it would make sense to define a macro \dr as
follows:

\def\dr{\putontop{d}{r}{}{}{}}

Then, {\dr} can be made a variant of “drot-
ning” in the lemmatization dictionary.

(generate-entry "drotning" :variants "{\\dr}")

or

(add-variants "drotning" "{\\dr}")

Alternatively, the function replace-items can
replace all occurrences of “{\dr}” in the input

file with “drotning” before current-line is passed
to process-line. Note that “{\dr}” should always
appear within braces, like the special character
macros.16

If there are a lot of cases of this type, and the
transcription does not expand the abbreviations,
then it would be a good idea to add another
argument to \putontop.

\putontop{ma{\dh}r}{m}{r}{}{}{}

In this example, the word maðr (Engl. “man”) is ab-
breviated as m

r
. Then, discard-items can call process-

macro in such a way that the first argument, contain-
ing the whole word as it should appear in the con-
cordance, is taken out of its braces so that it reaches
process-line and read-word, and the other arguments
are discarded. In this case, \putontop should dis-
card the first argument when TEX is run, so that
only the abbreviation is printed to the output.

� If the word “maðr” appears frequently in the
manuscript, which is likely, it might make sense

to define a macro as follows:

\def\madhr{\putontop{}{m}{r}{}{}{}}

Here, the first argument can be empty, since TEX
ignores it. The string “{\madhr}” must be made
a variant of “maðr” in the lemmatization dictio-
nary or replaced by “ma{\dh}r” in the function
replace-items, as above. The macro \madhr can
be used in words like “{\madhr}inn” −→ “m

r
inn”

for “maðrinn” (nominative singular with enclitic
article). Cases where a single special charac-
ter is used to represent a frequently used word,
like {\hxbarhk} −→ “” (abbreviation for “hans”,
Engl. “his”, personal pronoun, masculine singular
genitive) and {\thxbarhk} −→ “	” for the word

16 The control word \dr could even be accounted for

in letter-function, which would make “d
r
” appear in the

concordance. If it was assigned the list (d-value r-value o-
value t-value n-value i-value n-value g-value), it would even be
alphabetized correctly. I don’t think this would be useful for
a concordance, but it might be for some other application.

“þessu” (demonstrative pronoun, feminine singular
dative), can handled in the same way.

An advantage in using TEX is the ability to
use temporary definitions for special characters. If
I hadn’t programmed ` yet, I could define it as
follows:

\def\tirok{\&$^{\rm Tir.}$}

Then, a line like the following:

{\tirok} haleitari.~er komin at

k{\ydot}n

will be printed like this:

&Tir. haleitari. er komin at kẏn

When I’ve gotten around to programming ,̀ it
will be printed like this:

` haleitari. er komin at kẏn

but I won’t have to change my input file.17

� This is the TEX code that’s necessary for using
special characters like ,̀ assuming the font is

called specialfont.

\font\specialfontnine=specialfont9

\font\specialfontten=specialfont10

\font\specialfonttwelve=specialfont12

...

Now, \specialfont must be defined where
\rm, \large, \small etc. are defined, so that

\specialfont accesses the correct size of the font
specialfont, e.g.

\def\rm{\let\specialfont=%

\specialfontten ...

\def\small{\let\specialfont=%

\specialfontnine ...

\def\large{\let\specialfont=%

\specialfonttwelve ...

Finally, \tirok is defined like this:

\def\tirok{{\specialfont\char’140}}

The character “ ”̀ is in position octal 140

(decimal 96, hexadecimal 60) in specialfont.

� In a similar way, TEX makes it possible to
distinguish words in the input file which should

not be distinguished in the output. For instance,
there are two forms of “m” in Holm perg 11 4o which
are used interchangeably. Depending upon the
degree of normalization desired in the transcription,
these two letters can be distinguished in the output
or not, as desired. One form can be coded as m −→

17 TEX is generous with space for storing macros; there’s
room for over 2000, so there should be enough for all the
special characters you need.

380 TUGboat, Volume 19 (1998), No. 4

“m” and the other as {\mone} (for “m-one”) which
also prints as “m” and is defined as

\def\mone{m}

The function replace-items can convert each
occurrence of the string “{\mone}” in the

input file to “m” before current-line is passed on
to process-line, so {\mone} will never appear in the
concordance. If, later, a different letter form should
be used to represent {\mone} in the output, \mone
can be redefined, e.g.,

\def\mone{{\specialfont\char’001}}

Math mode material is always treated in the
normal way by TEX. It is treated in different ways by
conctex.lsp. Display math material is processed
normally by TEX and discarded by conctex.lsp.18

Math mode is very likely to appear in transcription
lines, mainly for sub- and superscripts and certain
special characters. Sometimes, the math mode
material will be irrelevant for the concordance, but
at other times it may be an essential part of a word,
or even serve to distinguish between two otherwise
identical words. If math mode material is attached
to a word, that is, if it isn’t separated from the word
by blank space or another word-separator (like most
punctuation marks), it is considered to be part of
the word. If not, conctex.lsp discards it. For
example,

drotning$^\pi$

is treated as a word, “drotningπ”. It will appear
as such in the concordance and will be a separate
entry from “drotning”, if this word occurs in the
transcription. If this appears in the transcription,

drotning $^\pi$

conctex.lsp will discard the math mode material,
“drotning π” will appear in the output and “drot-
ning” will appear in the concordance. To have
conctex.lsp discard the math mode material, but
not separate it from the word in the output, type:

drotning¥π

In this case, conctex.lsp also discards the math
mode material, and “drotning” appears in the con-
cordance, but “drotningπ” appears in the output,
because ¥ is ignored by TEX (\catcode‘\¥=9), and
treated as a word separator by conctex.lsp. The
math mode material can also be put on the next
input line following a %.

drotning%

$^\pi$ himins ...

18 The program conctex.lsp converts $$ to *, so display
math mode material is treated as a commentary.

=⇒

drotningπ himins ...

and “drotning” appears in the concordance.

The \catcodes of some characters, such as
-, _ and <, that have been changed for use in
transcription lines, should have their normal values
in math mode. The token list \everymath resets
them.

\everymath={\catcode‘\-=12\catcode‘_=8

\catcode‘*=12\catcode‘\<=12\relax}

The \relax at the end of \everymath is necessary
because assignments, such as changes to \catcodes,
only take effect when TEX is building a list.19 The
same effect could be achieved with \vbox{} or
\hbox{}, or a harmless macro (but not \empty).

� Math mode material should not extend over
more than one transcription line. If it does,

conctex.lsp will signal an error. Normally, it
shouldn’t be necessary anyway, since most manu-
scripts don’t contain multiline equations. Even if
yours does, the elements of the equation probably
don’t belong in the concordance anyway, so the
multiline math mode material can be put in a
commentary. In this case, it may be necessary to
reset the line number explicitly with set-position. If
your application requires a lot of math mode, it
would be advisable to reprogram the routines for
handling it. Display math mode material is treated
as a commentary, so it can extend over any number
of lines.

Line ends. The treatment of line ends is an
important factor in ConcTEX. A typeset manuscript
transcription will generally have lines corresponding
to the lines in the manuscript, so it is undesirable to
have TEX do the line breaking for the text lines. (It
would also be a lot of work to write a hyphenation
dictionary for a medieval manuscript.) However, it
will rarely if ever be desirable to use \obeylines,
because there are many other items which can
appear in the input lines, making it impractical
for the lines in the input file to correspond to the
lines in the output: font changes, index entries,
footnotes, comments, etc. Therefore, the ends of
transcription lines must be indicated.

Most transcription lines should end in \\. The
control symbol \\ is \let to \par in conctex.tex

and recognized as a line end by conctex.lsp.
The program conctex.lsp keeps track of the line
numbers, so this is important. A transcription line

19 The TEXbook, p. 373.

TUGboat, Volume 19 (1998), No. 4 381

in the input file that is followed by a blank line is
treated as if it ended in \\.

Normally, the lines in the output should corre-
spond to the lines in the manuscript, so they should
be wide enough, i.e., the value of \hsize should be
large enough so that transcription lines don’t have
to be broken. In exceptional cases, however, this
may not be possible, for example, if a line includes
a long commentary.

\lineno{8} himins _{ok} *\<{\ss This

is an extremely long commentary which

causes this otherwise short line to

be broken so that it results in more

than one line in the output.}\>*

iar{\dh}ar.~s{\ae}l {ok} dyr{\dh}\-

\lineno{9} lig m{\o}r Maria.~mo{\dh}ir

d_{ro}tti_{n}s\\

=⇒

8: himins ok 〈This is an extremely long commen-
tary which causes this otherwise short line to
be broken so that it results in more than one
line in the output.〉 iarðar. sæl ok dyrð

9: lig mør Maria. moðir drottins

� The control symbol \\ expands to \par and
the value of \parskip and \parindent have

been set to 0pt in order that multiple blank lines
won’t cause excessive vertical space or unwanted
indentation in the output. If \\ expanded to
\hfil\break, a blank line following \\ would cause
two \baselineskips to appear in the output, one
from the \break and one from the second ^^M

(〈return〉), which is converted to \par. On the
other hand, a \par following a \par is harmless.20

The text in manuscripts is generally not divided
into paragraphs, so it’s unnecessary to use blank
lines to indicate paragraphs, and it’s convenient to
allow them for the sake of making the input file
more readable.

� The control symbol \\ is not needed in the
\plain environment, because TEX does the

line breaking there. The values of \parskip and
\parindent can also be changed in the definition of
\plain, for text that should be formatted differently
from the transcription itself.

Manuscript positions are defined according
to leaf (folium), side (recto or verso), column (if
there are multiple columns), and line number. The

20 The first \par puts TEX into vertical mode, where the
second \par has no effect, “except that the page builder
is exercised . . . and the paragraph shape parameters are
cleared.” (The TEXbook, p. 283.)

leaves of Holm perg 11 4o and AM 234 fol have
two columns, so a position is identified as follows:
2ra 17 is leaf 2, recto, column a, line 17. When a
new leaf, side or column begins, the input file must
contain a line that looks like this:

@ (set-position "28vb")

If that column starts with line 15, perhaps because
the top of the leaf is missing or unreadable, the line
should look like this:

@ (set-position "28vb" 15)

Lines beginning with @ are ignored by TEX and
evaluated by conctex.lsp. The Lisp program
counts the lines and keeps track of the position in
the manuscript. However, it will usually be useful
to indicate line numbers in the transcription itself,
so a line in the input file might look like this:

31: f_{ra} savgn_{n} Mathevs

In the output, it will look like this:

31: fra savgnn Mathevs

However, “31” should not appear as a lemma in
the concordance. Therefore, conctex.lsp discards
numbers, punctuation and blanks at the beginning
of transcription lines. Another possibility is to use
the macro \lineno to make them print or not,
according to the value of a conditional.

\ifprintlinenumbers

\def\lineno#1{...}\else

\def\lineno#1{\relax}\fi

\lineno{1} Drotning etc.

\newif\ifprintlinenumbers

\printlinenumberstrue

=⇒

1: Drotning etc.

\printlinenumberfalse

=⇒

Drotning etc.

The macro \lineno is an exception to the rule
about conctex.lsp discarding lines that begin with
undelimited macros. It can be defined as follows:

\ifprintlinenumbers

\def\lineno#1{\leavevmode

\setbox0=\hbox{33:\space}%

\hbox to \wd0{\hss#1:\space}%

\hangindent\wd0\hangafter 1}

\else

\def\lineno#1{\relax}\fi

Line numbers, whether explicit or in \lineno, are
discarded by conctex.lsp. Since \\, \- and -

382 TUGboat, Volume 19 (1998), No. 4

(explained below) and a blank line all cause a \par

to be added to the current list, \lineno always
begins a paragraph (assuming \printlinenumbers-
true). Usually, this paragraph will consist of one
output line, just as it corresponds to one line in
the manuscript, but if the paragraph is longer than
one line, the \hangafter and \hangindent macros
cause the following lines to be indented so that they
begin directly below the text of the first line in the
paragraph.

� The same effect could be achieved by using the
token list \everypar, and separate \everypars

could be maintained for the \plain and \trans

environments.

� The “magic number” 33 in \box0 in the defi-
nition of \lineno is there simply to make the

box an appropriate size. Numbers wider than “33”
extend into the left-hand margin, so the colons (or
periods, or whatever) always line up.

In some applications, positions may not require
line numbers. For instance, positions in a concor-
dance of the Bible should be given as book, chapter
and verse. In this case, TEX could take care of
the line breaking, and \\ could be used to indicate
the end of a verse. It could be \let to \relax in
conctex.tex and cause conctex.lsp to increment
a “verse-counter” instead of line-counter (explained
below). The exact way that ConcTEX handles line
numbers in the input file can and should be set for
each particular project.

� While it is convenient to define macros in this
way:

\ifprintlinenumbers

\def\lineno#1{...}\else

\def\lineno#1{\relax}\fi

it is sometimes preferable to define them like
this:

\def\lineno#1{\ifprintlinenumbers

...\else\relax\fi}

or like this:

\def\linenoprint#1{...}

\def\linenonoprint#1{\relax}

\ifprintlinenumbers

\let\lineno=\linenoprint

\else\let\lineno=\linenonoprint

\fi

The advantage of the last two alternatives
is, that it is possible to put the definitions

of \linenoprint and \linenonoprint in a file

used for generating a preloadable format file with
INITEX. If you try to generate a format file using the
first example, where the definitions themselves are
within the conditional construction, one version
will be skipped when INITEX runs, depending
on the current value of \ifprintlinenumbers.
However, in the second example, the conditional
construction is within the definition, so it will
expand according to the value of \ifprintline-
numbers when \lineno is called. This means that
the expansion of \lineno can switch back and forth
during the TEX run. In the third example, the
two definitions are assigned to two different macros,
and \lineno is \let to one of them according to
the value of \ifprintlinenumbers at the time.
This conditional construction can be put in an
ordinary macro file, loaded after the preloaded
format. The assignment must occur before \lineno
is called for the first time. A subsequent change
to the value of \ifprintlinenumbers later in
the TEX run has no effect on the expansion of
\lineno. You can, however, switch the definition
explicitly by saying \let\lineno=\linenoprint or
\let\lineno=\linenonoprint at any time. If you
have a lot of macros, it can be useful to create a
preloadable format in this way.21

� The Lisp program doesn’t use the explicit line
numbers in the input file for its line counting

routine, although it could. Explicit line numbers
are optional, so conctex.lsp needs its own line
counting routine anyway. It does, however, check
that the line numbers from its routine and the
explicit line numbers in the input file match up. If
they don’t, it issues a warning, but doesn’t signal
an error. Warnings are written to standard output
when conctex.lsp is run, but also to the file
warnings. If conctex.lsp is set up to write code
like this to warnings:

echo "At line 21 of input.tex:

Line numbering is incorrect.

(\\lineno: 12) (line-counter = 14)"

and conctex.lsp is run using a UNIX shell script,
then the shell script can execute warnings by
calling sh warnings, causing all of the warnings to
be printed to standard output after conctex.lsp is
done.

Broken words. Some lines may end in words
that are continued on the next line. In AM 234 fol,
some of the broken words have hyphens and some do
not. It is necessary to distinguish between these two
cases in the input file. I use - (hyphen) to indicate

21 The TEXbook, p. 344.

TUGboat, Volume 19 (1998), No. 4 383

a broken word with an explicit hyphen and \- to
indicate a broken word with no hyphen. Using \-

indicates broken words in the input file, and causes
conctex.lsp to treat such a broken word as a unit,
but no hyphen appears in the typeset output. For
example:

tok j vpphafi {\slong}n{\slong}

Gv{\dh}{\slong}pia-

llz.~at telia {\ae}tt drottin{\slong}

ie{\slong}us

=⇒

tok j vpphafi �n� Gvð�pia-
llz. at telia ætt drottin� ie�us

Whereas

tok j vpphafi {\slong}n{\slong}

Gv{\dh}{\slong}pia\-

llz.~at telia {\ae}tt drottin{\slong}

ie{\slong}us

=⇒

tok j vpphafi �n� Gvð�pia
llz. at telia ætt drottin� ie�us

If a line in the input file ends in - or \-,
this obviously indicates the end of a line in the
manuscript, so it would be redundant to type -\\

or \-\\.22

The program conctex.lsp recognizes - and \-

at the end of a line as line ends for its line numbering
routine. TEX also recognizes them as line ends at
the end of a line and inserts a \\. However, - can
also occur within a line, or even at the beginning of
a line. Here it should not be recognized as a line
end, either by TEX or by Lisp. A - at the beginning
of or within a line is simply printed as - (what
else?). As far as TEX is concerned, a \- within a
line is harmless, but doesn’t make any sense, since
it doesn’t print anything. Therefore, TEX issues a
warning but doesn’t signal an error. The program
conctex.lsp discards \-s that are neither at the
end of an input line nor followed by \\. The strings
-- and --- still yield – (en-dash) and — (em-dash)
respectively, but they do not cause line ends, either
in TEX or in Lisp.23

The following code is necessary to accomplish
this:

1. \catcode‘\ c©=\active

2. \let c©=\-

3.

22 Although it’s redundant, it is nonetheless permitted.
23 If a concordance is to be generated for a manuscript

which uses more characters to indicate broken words, like --
or ---, both conctex.tex and conctex.lsp must be modified
to account for these cases.

4. \def\hyphen{-}

5. \def\dash{--}

6. \def\Dash{---}

7.

8. \catcode‘\-=\active

9.

10. \begingroup

11. \catcode‘\^^M=\active

12. \global\let^^M=\empty

13.

14. \gdef\invisiblehyphen{

15. \begingroup\catcode‘\^^M=\active

16. \def\subhyphen{\ifx\next^^M\\\else

17. \ifx\next\\ % Do nothing

18. \else

19. \message{Ignoring \noexpand\-. %

20. Don’t use \noexpand\- %

21. in the middle of a line.}

22. \fi\fi\endgroup}

23. \futurelet\next\subhyphen}

24.

25. \global\let\-=\invisiblehyphen

26.

27. \gdef-{\begingroup\catcode‘\^^M=\active

28. \def\aEathyphens##1{

29. \futurelet\next%

30. \bEathyphens}

31. \def\bEathyphens{

32. \ifx\next-\Dash

33. \expandafter\cEathyphens\else

34. \dash\endgroup\fi}

35. \def\cEathyphens##1{

36. \futurelet\next\endgroup}

37. \def\subhyphen{

38. \ifx\next^^M\hyphen\\% It’s a return.

39. \let\eathyphens=\endgroup\else

40. \ifx\next-% It’s a hyphen

41. \let\eathyphens=%

42. \aEathyphens\else

43. %% It’s not a return or a hyphen.

44. \hyphen

45. \let\eathyphens=\endgroup

46. \fi\fi

47. \eathyphens}

48. \futurelet\next\subhyphen}

49.

50. \endgroup

The primitive \-, which is ordinarily used for
inserting discretionary hyphens, must be redefined.
Since the user decides where transcription lines are
to be broken, discretionary hyphens are unnecessary
there. In case they are needed, however, the
character c© (decimal 169, octal 251, hexadecimal

384 TUGboat, Volume 19 (1998), No. 4

A9) is made active and \let to \- before \- is
redefined (lines 1 and 2). Make sure you use c©
and not ^^a9. TEX will treat ^^a9 as a single
token, but conctex.lsp will not, just as with ¥ and
^^a5 (unless conctex.lsp is modified to allow this).
In commentaries and the \plain environment, \-
reverts to its primitive self.

TEX’s ligature routine won’t work for -, --,
and --- after the \catcode of - has been changed
to \active (line 8), so first I put -, -- and
--- into the expansion of the new control words
\hyphen, \dash and \Dash, so I can still use them.
Now I define - and \invisiblehyphen and \let\-

to \invisiblehyphen.24 They check whether the
token following - or \- is a 〈return〉, ASCII code
13, which can be notated as ^^M, in which case \\

should be inserted to break the line.25

Under normal circumstances, i.e., when \cat-

code‘\^^M=5, it wouldn’t be possible to tell whether
the character following an active char is a 〈return〉
or not. For example:

\def\abc#1{\show#1}

\abc

d

causes

> the letter d.

<argument> d

\abc #1->\show #1

to be printed to the screen, or standard output, to
be precise, and

\abc

d

causes an error.

?

Runaway argument?

! Paragraph ended before

\abc was complete.

24 The macro \invisiblehyphen is defined in order to
make it possible to switch the definition of \- back and forth
when changing environments. This is necessary, because \- is
already a control symbol (in fact, it’s a primitive), whereas -

has \catcode 12 in the \plain environment, commentaries,
and math mode. Therefore, the active character - can
be defined globally. When the environment is switched, it
suffices to change the \catcode of -.

25 Incidentally, you might be wondering why I’m talking
about “〈return〉s”. I use a computer running UNIX where
the end-of-line character is 〈newline〉, ASCII 10, and not

〈return〉, ASCII 13. The reason is that TEX converts the
external coding scheme of the input file to its own internal
coding (The TEXbook, p. 43), so UNIX’ 〈newline〉s are
converted to TEX’s 〈return〉s.

<to be read again>

\par

The first time \abc was invoked, it skipped the
first ^^M, which had been converted to a space, and
found the “d” in the next line. The second time it
was invoked, \abc skipped the first ^^M, but found
the second one, which had been converted to a par

token (The TEXbook, p. 47). A normal macro can’t
accept arguments that contain \pars, so an error
was signalled. Here’s another version.

\long\def\abc#1{\show#1}

\abc

d

=⇒

> \par=\par.

<argument> \par

\abc #1->\show #1

A macro defined using \long\def won’t signal an
error if a \par occurs in its arguments, but the first
^^M is still skipped. So simply reading in arguments
is useless for discovering whether a macro or an
active character is followed by a ^^M. In addition,
\abc\parwill produce the same screen output as the
last example, since TEX can’t distinguish between
an explicit \par and one that was converted from a
^^M.

The same behavior can be demonstrated using
\futurelet:

\def\abc{\futurelet\next\subabc}

\def\subabc{\show\next}

\abc

a

=⇒

> \next=the letter a.

and

\abc

a

=⇒

> \next=\par.

In order to check whether the character follow-
ing a control sequence or an active character is a
^^M, it is necessary to change the \catcode of ^^M.
One possibility is to change it to \active. I do
this locally within the definitions of - and \-, so
that ^^M otherwise behaves normally. However, in
order that the ^^Ms within the actual definitions of
- and \- are handled correctly while they’re being

TUGboat, Volume 19 (1998), No. 4 385

read into TEX’s memory, it is necessary that \cat-
code‘\^^M=\active and that ^^M is set globally to
\empty (line 11–12). It could also have been set to
\relax.

Serendipitously, setting ^^M to \empty makes it
unnecessary to use % at the end of lines that end in {

or }, such as lines 14, 21–22, etc. However, % is still
necessary in the \message command in lines 19–20,
otherwise there would be no space between “\-.”
and “Don’t” in the message, i.e., any trailing spaces
before the ^^M would be swallowed up. A % is also
necessary in the \futurelet construction in line
29, otherwise \next would be set to \bEathyphens,
the token following the ^^M, which is expanded.

The way TEX handles ^^M at ordinary times,
i.e., when \catcode‘\^^M=5, causes the global
definition of ^^M as a macro to be reset to \par.
Therefore it’s necessary to set it globally in line 12,
so that it expands to \empty in - and \-. Setting
\catcode‘\^^M=\active in line 11 is only in effect
inside the group that ends on line 50; when -

or \- is invoked, it must begin a group and
reset \catcode‘\^^M to \active. However, this
being done, the \global\let^^M=\empty is in effect
while - or \- is expanding. It doesn’t work to
get rid of the \global\let‘\^^M=\empty and put
\let‘\^^M=\empty in the definitions of - and \-.
I’m afraid I don’t understand why not, but it is
apparently connected with peculiarities of category
code 5.

Since the definitions of - and \invisible-
hyphen are inside of a group, they must be \gdefs
(global definitions), or they wouldn’t be available
outside the group. The same applies to \-, which
is \let globally to \invisiblehyphen. The defini-
tions inside - and \invisiblehyphen, however, are
local to the groups begun in these macros.

� Another possibility is to set
\catcode‘\^^M=\active and \let^^M=\empty

globally (i.e., get rid of the group begun in
line 10 and ended in line 50, change \gdef and
\global\let to ordinary \def and \let, and reset
\catcode‘\^^M=5 after the definitions.

If - were defined like this:

\gdef-#1#2{. . .}

i.e., with arguments, it wouldn’t be possible to check
whether the tokens following - in the input file were
^^M or not, because the arguments would have been
read in and expanded before - had had a chance
to change ^^M’s \catcode. Once a token has been
read in as an argument this is no longer possible. So
- and \invisiblehyphen change the \catcode of

^^M, peek at the following token using \futurelet,
and turn over control to \subhyphen. Both -

and \invisiblehyphen have their own version of
\subhyphen.

In \invisiblehyphen, \next contains the to-
ken following the \- in the input file. This token is
examined by \subhyphen. If \next is ^^M, \sub-
hyphen inserts \\ to break the line. If it’s \\,
\subhyphen does nothing (\-\\ is redundant but
permitted in the input files). If it’s anything else,
\subhyphen issues a warning that \- shouldn’t be
used in the middle of a line. Then \subhyphen ends
the group begun by \invisiblehyphen in line 15.

The active character - functions in a similar,
but more complicated way. It too uses \futurelet
and \next to examine the following token.

I If \next is ^^M, \subhyphen inserts a hyphen
with \hyphen (defined in line 4), a \\ to break the
line, and \lets the control word \eathyphens to
\endgroup, to end the group begun in line 27.
I Else, if \next is not -, \subhyphen adds a
\hyphen to the current list, but no \\, and \eathy-

phens is \let to \endgroup.
I Else, if \next is -, \subhyphen \lets \eat-
hyphens to \aEathyphens.

Now, \eathyphens takes over control. In the
first two cases, i.e., \next was ^^M or anything else
other than -, \eathyphens merely ends the group
begun in line 27. However, if next was -, matters
are more complicated.

If - is followed by -, this could be --, which
should be replaced with an en-dash, or ---, which
should be replaced with an em-dash. In neither of
these cases should the line be broken. Therefore,
it’s necessary to peek at the token following the
second -, but first we have to dispose of the second
-, because it’s not possible to peek at the next
token but one, and the second - is still to be
read by TEX’s parser. The macro \aEathyphens

takes one argument, which disposes of the second -,
then peeks at the following token using \futurelet

and \next, and passes control to \bEathyphens.
This macro examines \next. If it’s not - (in
the \else construction), \bEathyphens inserts a
\dash into the current list, and ends the group
begun in line 27. However, if \next is -, it
inserts a \Dash into the current list and calls
\cEathyphens. The \expandafter is necessary to
prevent \cEathyphens from reading in \else as its
argument. Instead, it reads in and thereby disposes
of the third -. It could just end the group now, but
it doesn’t. It peeks at the token following the third
- using \futurelet and \next yet again. This has

386 TUGboat, Volume 19 (1998), No. 4

the effect that -- or --- at the end of a line is not
followed by a blank space.

Normally, in plain TEX, or when using the
\plain environment in ConcTEX, -- or --- at the
end of a line is followed by a blank space.

... in lines 299--

547 ...

There was a sudden crash---

then silence.

=⇒

. . . in lines 299– 547 . . .

There was a sudden crash— then silence.

However, in the \trans environment, the spaces
disappear.

. . . in lines 299–547 . . .

There was a sudden crash—then silence.

This is nice, since one doesn’t want spaces following
en- or em-dashes. If you do want them, it’s easy
enough to redefine \bEathyphens and \cEathy-

phens so they’re added before ^^M, or you can
type

... in lines 299--\space 547 ...

There was a sudden crash---\space

then silence.

However, you may be puzzled as to why they
disappear. If \cEathyphens just eats the third -

and ends the group, a following ^^M will cause a
space to be inserted into the current list, so it’s the
\futurelet that causes the space to disappear.26

When \futurelet peeks at a token, it fixes its
\catcode even though it doesn’t expand it.27 When
the group ends and - is finished, TEX’s parser reads
the ^^M that follows the second or third -. The
\catcode of this ^^M was fixed at 13, so it expands
to \empty, its expansion within - rather than
a blank space.

Changing the category code of - to \active has
some minor, unpleasant side effects in the \trans

environment. It is no longer possible to use -, --
and --- in the arguments to some macros, such
as \beginchapter and \beginsection, which are
defined in conctex.tex, and code like \vskip-2pt

will cause an error, because - must have \catcode

12 (other) for this to work. The control words
\hyphen, \dash and \Dash can be used in macro

26 In the case of --, it’s the \futurelet in \aEathyphens

that causes the space to disappear.
27 The TEXbook, p. 381: “. . . TEX stamps the category on

each character when that character is first read from a file.”

arguments instead; other cases should be put into
a commentary or the \plain environment, where -

has \catcode=12, e.g., *\vskip-12pt*.

� If certain macros that use -, --, or --- are used
frequently in the \trans environment, and you

don’t want to put them in commentaries or the
\plain environment, you can redefine them using a
similar technique to that used in the definitions of
- and \invisiblehyphen.

\begingroup

\catcode‘\-=12

\gdef\mymacro{\begingroup

\catcode‘\-=12

\def\submymacro##1##2##3{%

...\endgroup}}

\endgroup

The macro \putontop is defined like this. It
doesn’t work if you try to redefine \vskip,

though.

Homograph identifiers. Homographs are
words that are spelled the same, but belong to
different lemmata. They must be indicated ex-
plicitly in the input file. In order to do this, I
have defined the characters “<” and “>” to delimit
homograph-identifiers in the \trans environment.
For instance, in Old Icelandic, the word “á” can be
a noun, meaning “river” or a preposition, meaning
“at, on,” etc. In the input file, I can distinguish be-
tween them by typing the preposition as {\’a}<p>

and the noun “á” as plain {\’a} or {\’a}<n>.
TEX handles them in different ways, depending on
the value of \ifdraft. For rough drafts, it will
be useful to see the homograph-identifiers, whereas
they should not appear in the final draft.

To accomplish this, the \catcode of < has been
changed to \active. The definition of < depends
on the value of \ifdraft:

\catcode‘\<=\active

\def\eatit#1{\ifx#1>\else

\expandafter\eatit\fi}

\def\donteatit{$\{$%

\def\subdonteatit##1{%

\ifx##1>$\}$\else##1%

\expandafter\subdonteatit\fi}%

\subdonteatit}

\ifeathomoids

\let<=\eatit

\else

\let<=\donteatit\fi

TUGboat, Volume 19 (1998), No. 4 387

The macro \eatit simply reads an argument, tests
to see if it’s “>” and if it isn’t, calls itself again.
The arguments it reads are discarded, hence the
name. The macro \donteatit functions in a similar
way, but has the added complication that the “{”
should only be put into the current list once, so the
main work of not eating the string is taken over
by \subdonteatit. When \draftfalse, < is \let

to \eatit. When \drafttrue, the homograph-
identifiers shouldn’t be eaten, so < is \let to
\donteatit, which puts the text between < and >

inside curly braces, e.g., “á{p}”.

� Homograph identifiers can be as long as you
want, because \eatit and \donteatit pro-

cess the tokens (or groups) within the angle braces
one-by-one. This prevents a long argument from
burdening TEX’s memory. When \eatit or \sub-

donteatit calls itself recursively within the condi-
tional construction, the \expandafter allows the
conditional, and hence the current invocation of
\eatit or \subdonteatit, to complete execution
before the recursive call is expanded. Therefore,
only one invocation of \eatit or \subdonteatit is
active at any time. This is called “tail recursion”
(cf. The TEXbook, p. 219). It would also be possible
to define \eatit and \donteatit like this:

\def\eatit#1>{\relax}

\def\donteatit#1>{$\{$#1$\}$}

In this case, extremely long homograph identi-
fiers will burden TEX’s memory, but in practice,

it would be just as good, since it’s unlikely that
anyone would want to type in extremely long ho-
mograph identifiers.

The Lisp program conctex.lsp

The Lisp program conctex.lsp consists of several
parts:

1. A lemmatization dictionary.

2. A parser that reads the input files, discards ex-
traneous material, and passes the transcription
lines on for further processing.

3. A routine for extracting information from the
transcription lines, accessing Lisp symbols, and
storing the information in data structures.

4. An output routine that writes the TEX file
containing the concordance.

ConcTEX does not use the page numbering
information generated by TEX’s output routine,
so it doesn’t require a preliminary pass. The
concordance shows the position of individual words
in the original manuscript, not the page numbers
of the printed transcription. This makes it possible

to generate the concordance directly from the TEX
input file without running TEX at all.

� Making a concordance using the page numbers
generated by TEX’s page breaking routine is

a more difficult matter. If the input files contain
explicit commands for page breaking, i.e., \eject,
\supereject, and/or macros that call one or the
other of these macros, ConcTEX can be used with
only trivial modifications. However, it will not work
if TEX is supposed to break pages automatically.
One way around this problem would be to let
TEX break the pages automatically, and insert
code for conctex.lsp in the final version, at the
page breaks TEX found, so conctex.lsp knows
to increment a page counter. This would not be
entirely satisfactory, however.

� If explicit page breaks are used, or code is
entered in the input file indicating where pages

are broken, then explicit line breaks (using \break

and/or \par, or macros using one or the other of
these commands) would make it possible to generate
a concordance using line numbering information
referring to the lines in the output. If TEX does
the line and page breaking automatically, however,
and page breaks are not explicitly indicated, then
conctex.lsp won’t know when to increment the
page counter and reset the line counter to 1. There

is no way to generate line numbering information

without explicitly breaking the lines.

� It is therefore not possible to use ConcTEX
for making a concordance using line and page

numbers that result from TEX’s line and page
breaking routines, i.e., without explicit line and
page breaking commands. But it might be possible
to design a concordance program that could do this
by having it process the dvi file instead of the
input file. However, if this sort of concordance were
desired, a better approach would be to write a new
version of TEX that incorporates the features of
ConcTEX in the WEB program itself, thus making it
unnecessary to use an auxiliary program. However,
since conctex.lsp uses several features peculiar to
Lisp, an entirely different program structure would
be necessary.

Lemmatization. The most difficult problem in
generating a concordance is lemmatization. There
are three cases that need to be accounted for:

1. Homographs. Words that are spelled the same,
but belong to different lemmata, like the word
“spring”, which can be one of several nouns or
a verb.

388 TUGboat, Volume 19 (1998), No. 4

2. Subsidiary forms. Distinct words that belong
to the same lemma, like “man”, “man’s” and
“men” in English.

3. Variants. Words that are spelled differently,
but are really the same, and should appear un-
der the same heading, like “color” and “colour”
in English.

A lemma in the context of generating a con-
cordance is a set of one or more distinct words
which belong together, like the various forms in a
morphological paradigm, e.g., the nominative, geni-
tive, dative, and accusative; singular and plural, of
“drotning” (Engl. “queen”).

Sg. Pl.
Nom. drotning drotningar
Gen. drotningar drotninga
Dat. drotningo drotningom
Acc. drotning drotningar

One of these words is denoted the main form of the
lemma; with nouns, it’s usually the nominative sin-
gular, with verbs, the infinitive, etc. The subsidiary

forms should appear in the concordance below
the main form, indented, with their occurrences,
arranged according to grammatical criteria.

drotning (2) 1va 12, 3rb 14.
drotningo (2) 2rb 25, 12va 30–31.
drotninga (1) 13ra 16.

Homographs must be distinguished in the con-
cordance. Sometimes, they can belong to the same
lemma, like the three forms of “drotning” that are
spelled “drotningar”: the genitive singular and the
nominative and accusative plural. Sometimes they
can belong to different lemmata, like the noun “á”
and the preposition “á” in Old Icelandic.

Lemmatization must also account for variants.
Where there are variants, all of the occurrences
are assigned to a single form, which appears in the
concordance. One way variants can arise is from the
use of interchangeable letter forms in a manuscript.
The manuscript transcription might use a macro
or a font change to indicate the use of an alterna-
tive letter. For example, the word “prestr” may
sometimes appear in the transcription as “prestr”
−→ “prestr” and sometimes as “prest{\r}” −→
“prestr”, depending on the form of “r” used in
that passage in the manuscript, so “prestr” may
be termed a variant of “prestr” (or vice versa).
Only one of them, say “prestr”, should appear in
the concordance, and the occurrences of “prestr”
should be listed under “prestr”. Subsidiary forms
can also have variants.

Lemmatization is the process of sorting indi-
vidual words, so that each one is put into its proper

lemma. There are several possible solutions to this
problem. The one described here is a lemmatization

dictionary, which must account for all subsidiary
forms and variants.

� Running conctex.lsp without loading a lem-
matization dictionary produces a complete list

of all the words in the transcription, with their
occurrences, but each entry is considered a main
form, and only those variants are accounted for
which replace-items or process-line catch automati-
cally. For a concordance this is clearly inadequate,
but it might be useful for some other purpose.

If concordances are to be generated for normal-
ized transcriptions, or for a group of manuscripts
whose orthographic conventions are very similar, a
master lemmatization dictionary can be used. In
most cases, however, the orthography and the form
of the language of a given manuscript will diverge
enough from that of others that it will be necessary
to create a special lemmatization dictionary for that
particular manuscript.

One of the first things that conctex.lsp does
is to load the lemmatization dictionary. This is one
or more files of Lisp code with invocations of the
functions generate-entry, harmless, and add-variants.
These functions cause data to be stored in word
structures.

The data for the entries in the concordance are
stored in structures of type word, defined like this:

(defstruct word
main-form
occurrences-mariu-a
occurrences-mariu-s
sort-string
tex-string
forms
root
variants
)

More slots can be added for other applications;
in particular, occurrences slots can be added for
additional manuscripts.

The function generate-entry. The basic
function for generating a lemmatization dictionary
is generate-entry. It’s invoked like this:

(generate-entry "David")

or like this:

(generate-entry "David" noun)

The string, which is the first, required argument to
generate-entry, is used, perhaps with some modifi-
cations, as the name of a symbol which is bound
to a word-structure. The original string is stored

TUGboat, Volume 19 (1998), No. 4 389

in the main-form slot of the word structure. In this
example, the string “David” is surrounded by ||,
and the symbol is accessed with read-from-string.28

(set (read-from-string "|David|")
(make-word :main-form "David"))

Surrounding a string with || has the effect of
escaping all the characters within the string. This
makes it possible to have symbol names with
lowercase letters and other characters, which are
normally not allowed in symbol names in Lisp.
Evaluating

(read-from-string "David")

without || returns a symbol named DAVID, because
Lisp converts lowercase to uppercase letters in
symbol names unless they are escaped using \ or
||.

The second, optional argument to generate-
entry, noun in the example above, is discarded by
generate-entry. It is allowed for compatibility with
another program that uses the same dictionary files
for a different purpose.29

Alphabetization. The first argument to gene-
rate-entry always refers to the main form of a
lemma. It is treated as a heading in the concor-
dance. Lemmata are sorted in the concordance in
alphabetical order of the main forms. ConcTEX
includes a special sorting routine.30 It makes
it possible to sort arbitrary special characters in
a user-defined order by replacing ordinary char-
acters and special character macros with 0 or
more characters from Lisp’s code table, which is
based on the ASCII code table. In its current
form, it allows up to 256 positions; however the
actual number of special characters that can be
sorted is much greater. This is because some
characters occupy no position at all, others share
a position with another character, and still oth-

28 What generate-entry really does is a bit more compli-
cated, but the effect is the same.

29 This other program is called LexTEX and I plan to
document it in a subsequent article. It’s for generating
dictionaries, vocabulary flashcards and similar things from
files of Lisp code.

30 The alphabetization routine for ConcTEX is essentially
identical to the one in my Spindex package. For a more
complete discussion of the alphabetization routine, see my
previous article “Spindex —Indexing with Special Charac-
ters”, TUGboat 18(4)/1998, pp. 255–273. Since ConcTEX,
unlike Spindex, does not require a preliminary TEX run in

order to generate page numbering information by means of
TEX’s output routine, and therefore uses no \write com-
mands, special character macros in the input file can be
coded in the normal way (but with obligatory braces).

ers use the positions of more than one other
character.

The string “David” is passed to the function
generate-info, which passes each letter or special
character coding to letter-function in order to gen-
erate a sort-string. Each letter or special character
in the string is used to create a new string using
characters from Lisp’s code table. The sort-string
generated for “David” might be "^D^A^[^K^D",
depending on the way the alphabetization routine is
set up.31 The sort-string is put into the car of a cons
cell, with the symbol bound to the word structure in
the cdr.

("^D^A^[^K^D" . |David|)

This cons cell is then put into an association list
(or alist) called var-alist. This alist will contain a
cons cell for each of the word structures created by
generate-entry in the lemmatization dictionary. If
this is the lemmatization dictionary:

(generate-entry "David")
(generate-entry "eiga")
(generate-entry "eptir")

var-alist will look like this:

(("^D^A^[^K^D" . |David|)
("^F^K^H^A" . |eiga|)
("^F^U^Y^K^W" . |eptir|))

� Formatting commands like \it, \bf, \sc,
etc. are ignored when the sort-string is gen-

erated, otherwise, they would cause an error in
letter-function.

Words in the lemmatization dictionary can
contain special characters.

(generate-entry "dyr{\\dh}ligr")

Note that two backslashes are necessary for the
{\\dh} in generate-entry’s argument. The result-
ing symbol that is bound to the word structure
is |dyr{dh}ligr| (Engl. “glorious”), and the back-
slashes disappear in the symbol name.

� The braces surrounding special character mac-
ros are needed so generate-info knows where

they begin and end. TEX’s parser is cleverer than
generate-info. When TEX finds an escape character,
it reads the following tokens and uses them to make
the longest control sequence possible. The function
generate-info, on the other hand, needs delimiters

31 Each project will have its own requirements with respect

to alphabetization, so this must be customized by the user.
The documentation supplied with ConcTEX explains in detail
how to do this. The string "^D^A^[^K^D" consists of non-
printing characters in Lisp’s printed representation.

390 TUGboat, Volume 19 (1998), No. 4

for control sequences within words so it can pass
them as a whole to letter-function.

Subsidiary forms. The function generate-
entry can also have keyword arguments.

(generate-entry "dyr{\\dh}ligr"
:forms "dyr{\\dh}lig")

The :forms argument tells generate-entry that “dyrð-
lig” is a subsidiary form of “dyrðligr” (in fact,
it’s the feminine singular nominative and neuter
plural nominative and accusative form). The
string "dyr{\\dh}lig" is used to access a symbol,
|dyr{dh}lig|, which is bound to another word struc-
ture. The symbol |dyr{dh}lig| is added to the list in
the forms slot of the word structure |dyr{dh}ligr|,32

and the symbol |dyr{dh}ligr| is put into the root
slot of the word structure |dyr{dh}lig|. The function
generate-info is used to generate a sort-string for
|dyr{dh}lig|, and the cons cells

("^D^^^W^E^P^K^H^W" . |dyr{dh}ligr|)

and

("^D^^^W^E^P^K^H" . |dyr{dh}lig|)

are added to var-alist. All of the word structures are
added to var-alist, not just the ones for main forms
of lemmata.

The :forms argument to generate-entry needn’t
be a single string. It can also be a list of strings.

(generate-entry "dyr{\\dh}ligr"
:forms ’("dyr{\\dh}ligs" "dyr{\\dh}ligum"

"dyr{\\dh}ligan"))

In this case, the subsidiary forms listed are
the masculine singular genitive, dative, and ac-
cusative strong forms “dyrðligs”, “dyrðligum”, and
“dyrðligan”. Each of the forms is used to access a
symbol and bound to a new word structure. The
symbol |dyr{dh}ligr| is put in the root slot of each
of these word structures, and the symbols for the
subsidiary forms are put into the list in the forms
slot of |dyr{dh}ligr|.

(|dyr{dh}ligs| |dyr{dh}ligum| |dyr{dh}ligan|)

The forms are stored in the order in which they
appear in the invocation of generate-entry. They will
appear in this order in the concordance. They are
not sorted alphabetically, because subsidiary forms
should be arranged in the concordance according to
grammatical criteria.

Variants. Some words in a manuscript may
differ from the standard form that should appear in
the concordance. For example, the word for “king”

32 In Lisp, nil is the same as the empty list (), so it’s
possible to add an element to the list nil.

in Old Icelandic is “konungr”, but sometimes the
form “kongr” is used (cf. Modern Danish “konge”).
If a manuscript uses both forms, “konungr” and
“kongr”, but only “konungr” should appear in the
concordance, generate-entry can be called using the
:variants keyword argument.

(generate-entry "konungr" :variants "kongr")

The string "kongr" is used to access a symbol,
|kongr|, but this symbol is not bound to a word
structure; instead, it’s bound to the symbol |ko-
nungr|, i.e.,

(setq |kongr| ’|konungr|)
(symbol-value ’|kongr|) −→ |konungr|

(Again, what generate-entry really does is more
complicated, but this is the effect.) The occurrences
of the word “kongr” in the transcription, if any, will
appear under “konungr” in the concordance.

The :variants keyword argument to generate-
entry may also be a list of strings.

(generate-entry "konungr"
:variants ’("kongr" "ko{\\n}gr"
"kvnvngr" "konongr"))

In this case, all of the strings in the list are used to
access symbols which are bound to |konungr|.

The symbols that are made from the string or
strings in the :forms keyword argument to generate-
entry can also have variants.

(generate-entry "eiga" :variants "ei{\\g}a"
:forms ’("{\\’a}"
("attv" :variants ’("a{\\t}v" "atto"))))

Here, there are two forms, “á” and “attv”, and
the latter has two variants, “atv” and “atto”.
The :forms argument can be a list comprising a
combination of simple strings and/or lists such as
("attv" :variants ’("a{\\t}v" "atto")).

(generate-entry "eiga" :variants "ei{\\g}a"
:forms ’("eigir"

("eigi" :variants "ei{\\g}i")
"eigom"

("attv" :variants
’("a{\\t}v" "atto"))))

� The function generate-entry takes lists like
("eigi" :variants "ei{\\g}i") in its :forms ar-

TUGboat, Volume 19 (1998), No. 4 391

gument and conses33 (or puts) the symbol sub-
generate-entry onto the front so it looks like this:

(sub-generate-entry "eigi"
:variants "ei{\\g}i")

Then it appends the list

(:root "eiga" :recursive t)

to the end of it, resulting in

(sub-generate-entry "eigi"
:variants "ei{\\g}i"
:root "eiga" :recursive t)

and evaluates this list.34

� The lists in generate-entry’s :forms argument
can also have :forms arguments.

(generate-entry "abc"
:forms ’("def" :forms "ghi"))

This is meaningless in the context of a concor-
dance, since nesting in grammatical paradigms

only has two levels. It might be useful, if vari-
ants were to appear in the concordance. Then
they could be indented to the value of \parindent,
and their forms could be indented to the value of
\parindent\parindent. It might also be useful for
some purpose other than a concordance. Changes
to process-line and export-entry would be necessary
to make deeper nesting work.

Homograph identifiers can be assigned to a
word structure in two different ways: by using the
<string> syntax, as in the input file,

(generate-entry "afl<nsg>")

or by using the :homograph-identifier keyword argu-
ment.

(generate-entry "afl"
:homograph-identifier "nsg")

The string “nsg” stands for “neuter, singular”.
In the concordance, this word will appear as “afl
[nsg]”. If you want “afl [n. sg.]” or “afl [neut. sing.]”
to appear in the concordance instead, you can write

(generate-entry "afl<n.~sg.>")

or

33 In Lisp, a list is a chain of cons cells. Cons cells contain
two elements, the car and the cdr, in that order. In the list
(a b c d), the first cons cell has the symbol a in its car and a
pointer to the following cons cell in its cdr. This in turn has
the symbol b in its car and a pointer to the next cons cell in
its cdr. The last cons cell in the list has d in its car and nil in
its cdr: (d . nil). So the list (a b c d) is really (a . (b . (c .

(d . nil)))).
34 Since the original invocation of generate-entry called

sub-generate-entry, as explained below, the latter is called
recursively for subsidiary forms.

(generate-entry "afl"
:homograph-identifier "n.~sg.")

or

(generate-entry "afl<neut.~sing.>")

or

(generate-entry "afl"
:homograph-identifier "neut.~sing.")

instead. But “afl<nsg>” is more convenient to
type in the input file than “afl<neut.~sing.>”, so
it’s possible to use a cons cell as the :homograph-
identifier argument to generate-entry.

(generate-entry "afl"
:homograph-identifier
’("nsg" . "neut.~sing."))

This way, you can type “afl<nsg>” in the input
file, but “afl [neut. sing.]” will appear in the
concordance.

� If you use both the <string> syntax and an
explicit :homograph-identifier argument,

(generate-entry "afl<n.~sg.>"
:homograph-identifier
’("nsg" . "neut.~sing."))

the explicit :homograph-identifier argument takes
precedence, and the homograph-identifier using the
<string> syntax is discarded. It doesn’t matter
whether it’s a simple string or a cons cell in the
:homograph-identifier argument.

� When you use a homograph-identifier, no mat-
ter how you create it, the name of the symbol

bound to the word structure includes the homograph-
identifier. For instance, in the last example, the
word structure is bound to the symbol |afl<nsg>|,
its main-form is "afl", its tex-string is "afl [{\\it
neut.~sing.\\/}]", and its homograph-identifier
(i.e., the object stored in its homograph-identifier
slot) is "nsg".

When the main form of a lemma is a homograph
and has subsidiary forms, the latter may or may not
also need homograph-identifiers. In Old Icelandic,
there are two words spelled “afl”, a masculine noun
meaning “an ironsmith’s forge” and a neuter noun
meaning “physical strength”. If generate-entry is
called like this:

(generate-entry "afl<nsg>"
:forms ’("afls" "afli"))

the genitive and dative singular forms, “afls” and
“afli”, may appear in the input file with no
homograph-identifier, and they will appear in the
concordance as subsidiary forms of the neuter noun

392 TUGboat, Volume 19 (1998), No. 4

“afl”. This is not very satisfactory, however, be-
cause the genitive and dative singular forms of the
masculine “afl” are identical to the genitive and
dative singular of the neuter “afl”. So it’s necessary
to type in

(generate-entry "afl<nsg>"
:forms ’("afls<nsg>" "afli<nsg>"))

or

(generate-entry "afl"
:homograph-identifier "nsg"
:forms ’("afls<nsg>" "afli<nsg>"))

or

(generate-entry "afl"
:homograph-identifier "nsg"
:forms ’(("afls"

:homograph-identifier "nsg")
"afli<nsg>"))

or one of the other possible alternatives. Note
that the various possibilities of formulating the
arguments are always allowed.

If no homograph-identifier is indicated for a
subsidiary form of a lemma whose main form has
one, the subsidiary form may be typed in the
input file with no homograph-identifier. However,
generate-entry automatically creates a variant using
the homograph-identifier of the main form.

(generate-entry "afl<m>" :forms "aflar")

This results in a symbol |aflar| which is bound to
a word structure, and a symbol |aflar<m>| which
is bound to the symbol |aflar|. The word “aflar”,
masculine plural nominative, is unambiguous and
needs no homograph-identifier, since no other form
of “afl” (masculine) or “afl” (neuter) is spelled the
same way.

Another problem is that words in the same
lemma sometimes have identical forms. The nom-
inative and accusative, singular and plural of the
neuter noun “afl” are all spelled “afl”. If it’s de-
sirable to keep the morphological forms of lemmata
separate in the concordance, it’s necessary to have
different homograph-identifiers for the forms that
are spelled the same.

(generate-entry "afl<nsg>"
:forms ’("afls<nsg>" "afli<nsg>"

"afl<nsga>" "afl<npln>"
"afl<npla>"))

Most of the time, the homograph-identifiers of sub-
sidiary forms are not printed to the concordance.
Since the homograph-identifier of the main form is
printed to the concordance, indicating for instance
that “afl” is a neuter noun, it’s not necessary to

indicate this fact for the subsidiary forms that ap-
pear below it. Sometimes, though, it’s desirable
to print something. The homograph-identifiers for
subsidiary forms are printed to the concordance only
when an explicit :homograph-identifier argument is
used, not when the <string> syntax is used. The
homograph-identifiers for main forms of lemmata
are always printed to the concordance.

(generate-entry "afl<neut.>"
:forms ’("afls<nsg>" "afli<nsg>"
’("afl"

:homograph-identifier
’("nsga" . "sg.~acc."))

’("afl"
:homograph-identifier
’("npln" . "pl.~nom."))

’("afl"
:homograph-identifier
’("npla" . "pl.~acc."))))

=⇒

afl [neut.]
afls
afli
afl [sg. acc.]
afl [pl. nom.]
afl [pl. acc.]

Note that not all the information that’s necessary
for the homograph-identifier in the input file must
be printed. The string “afl<npln>” in the input
file indicates this form of “afl” unambiguously, i.e.,
neuter, plural, nominative. But only “pl. nom.”
need be printed to the concordance, because it’s
obvious it’s the neuter noun.

The tex-string is what is written to the
concordance. It is usually determined by a com-
bination of generate-entry’s first argument and the
homograph-identifier, if any. It is possible to over-
ride this by using the :tex-string keyword argument
to generate-entry.

(generate-entry "abc" :tex-string "xyz")

This causes a symbol |abc| to be created and bound
to a word structure, but “xyz” will be printed to
the concordance. Occurrences of “abc” in the input
file will appear under the heading “xyz”, and the
sort-string will be ^X^Y^Z (depending on the values
assigned by letter-function), i.e., based on the string
“xyz” and not on “abc”.

A tex-string can also be set by using a cons cell
for the first argument to generate-entry.

(generate-entry ’("eiga" . "agie"))

is equivalent to

(generate-entry "eiga" :tex-string "agie")

TUGboat, Volume 19 (1998), No. 4 393

However, if you type

(generate-entry ’("eiga" . "igea")
:tex-string "agie")

the explicit tex-string keyword argument takes prece-
dence over the tex-string in the cdr of the cons cell,
which is discarded. I’m not sure whether the
tex-string feature will prove to be useful, but it’s
available if needed.

� The function generate-entry allows the use of
other keyword arguments. It doesn’t matter

what they are, generate-entry simply ignores them.
This is for compatibility with the program LexTEX,
which uses the lemmatization dictionary files for an-
other purpose (see page 389), or for other programs
that might be written. For instance,

(generate-entry "nema" verb
:forms ’("nam" "n{\\ohook}mum"

’("nvmenn" :variants "nomenn"))
:class ’strong-4 :definition-english "take")

contains the keyword arguments :class and
:definition-english, and their values. They are

irrelevant to the function generate-entry in ConcTEX,
which ignores them, but are used by the function
called generate-entry in LexTEX.

� ConcTEX could be extended to do more than
just produce a concordance. One possibility is

to sort the words into a file of TEX code according to
grammatical criteria. For instance, the words could
be written to an output file nouns first, then adjec-
tives, pronouns, verbs, adverbs, etc. Within these
categories, the words could be sorted according to
class. In order to accomplish this, more information
must be entered in the lemmatization dictionary,
i.e., generate-entry must be modified to process ad-
ditional arguments. Alternatively, the homograph-
identifiers could be used for this purpose.

� Actually, generate-entry isn’t really a function
at all. It’s a macro, defined with defmacro. One

reason for this is that a macro doesn’t evaluate the
arguments that are passed to it. If generate-entry
were defined like this,

(defun generate-entry
(main-form &optional word-type forms
. . .) . . .)

then this would cause an error:

(generate-entry "{\ae}tt" noun
:forms "{\ae}ttar")

because Lisp would try to evaluate the symbol
noun, which is unbound. Since generate-entry

is a macro,

(defmacro generate-entry (&rest arg) . . .)

it’s possible to manipulate its arguments before
they’re passed to the real function, which

is called sub-generate-entry. Another reason for
defining generate-entry as a macro is to make it
easier to extend ConcTEX, or change the way it
behaves. The arguments can be manipulated and
passed to other functions, instead of or in addition
to sub-generate-entry.

The functions harmless and add-variants

are two other functions that can be used in the
lemmatization dictionary. These are merely con-
venience functions, you can accomplish the same
results using generate-entry.

The function harmless is for cases where none
of generate-entry’s keyword arguments are needed.
Some words, like prepositions and conjunctions (in
the Germanic languages, at least) have no inflected
forms, and some words may have no variants in a
particular manuscript. (So far, I’ve never needed a
tex-string.)

(harmless "{\\’a}<p>" "af"
"{\\’\\i}" "ok" "yfir")

is equivalent to

(generate-entry "{\\’a}<p>")
(generate-entry "af")
(generate-entry "{\\’\\i}")
(generate-entry "ok")
(generate-entry "yfir")

The function harmless takes one or more strings
as its arguments, and calls (generate-entry 〈string〉)
for each of the strings. Note that a homograph-
identifier is permitted, using the <〈string〉> syntax,
as for {\\’a}<p>.

Calling generate-entry with a lot of forms and
variants can be confusing,

(generate-entry "dyr{\\dh}ligr" adjective
:forms ’(("dyr{\\dh}lig"
:variants "dyrdlig")

("dyr{\\dh}ligi" :variants "dyrdligi")
))

so the function add-variants can be used instead.
This is equivalent to the previous example:

(generate-entry "dyr{\\dh}ligr" adjective
:forms ’("dyr{\\dh}lig" "dyr{\\dh}ligi"))

(add-variants "dyr{\\dh}lig" "dyrdlig")
(add-variants "dyr{\\dh}ligi" "dyrdligi")

All of the arguments to add-variants are strings.
The first is used to access a symbol. This symbol
might be bound to a word structure, which would be

394 TUGboat, Volume 19 (1998), No. 4

fine. If, however, it’s unbound, then a word structure
is created, using the string as the only argument
to generate-entry. Otherwise, if it’s bound and not
a word structure, add-variants issues a warning, and
exits. Assuming the symbol is now a word structure,
the other strings are used to access symbols which
are set to the symbol derived from the first string,
just as generate-entry sets variants (as described on
page 390f).35

The order of the subsidiary forms is important.
It will usually not be desirable to have them sorted
in alphabetical order in the concordance, although
it’s possible; usually, the order of the subsidiary
forms will be determined by the conventional order
of the forms within the paradigm, e.g., singular
nominative, genitive, dative, accusative, then plural
nominative, genitive, dative, accusative for nouns in
Old Icelandic. If you prefer the order nominative,
accusative, genitive, dative, just type the forms in
this order.

The parser. After the lemmatization dictionary
has been loaded, conctex.lsp opens the input file
and the function main reads it line-by-line. Entirely
blank lines, and lines that begin with % or \ are
discarded (except for lines beginning with \lineno,
\putontop, \overstroke, or other exceptions, if
any). Lines that begin with @ are Lisp code, the @ is
discarded, and the rest of the line, which must be a
balanced expression (sexp), is evaluated. Other lines
are text lines, and passed to the function process-
line. This function strips off leading and trailing
blanks, discards line numbers and punctuation from
the beginning of the line, discards certain macros
and perhaps some or all of their arguments, discards
unattached math mode material, and replaces some
strings with others. If a @ or % appears in the middle
of a line, process-line discards it together with the
rest of the line. It also tests to see whether the end of
the input line corresponds to the end of a transcript
line. If the input line ends with \\, -, or \-, or
if the following line is blank, process-line treats the
end of the current line as the end of a transcript line
and increments the line counter (called line-counter)
when it’s done with the current line. (Advancing
the leaf, side or column requires an explicit call to
set-position, as does advancing more than one line at
a time, which is sometimes necessary, as when part
of a leaf is missing or unreadable.) Then process-line
passes the line to the function read-word. This func-
tion strips characters off the line until it has stripped
off a whole word. Then it returns the word, current-

35 Actually, generate-entry uses add-variants to set variants.

word, and the rest of the line to process-line. Now
the routine for access and data storage takes over.

Access and data storage. The function read-
word returns current-word as a string. The function
process-line appends | to the beginning and end of
the string, so that, for example, "{\\ae}tt" becomes
"|{\\ae}tt|".36 Now the string is used to access
a symbol (or variable) using read-from-string, and
the symbol current-var is set to this symbol, e.g.,
|{ae}tt|. (In C, you’d say “current-var is a pointer
to |{ae}tt|”.)

This is one reason why unmotivated braces
are not permitted in the input file. The braces
are needed to delimit the special characters for
generate-info and to distinguish between special
character codings and ordinary characters in the
symbol names.37 The vertical strokes surrounding
the symbol name act to escape all of the other char-
acters, which causes \ to disappear when the string
"|{\\ae}tt|" is converted to the symbol |{ae}tt|.
If the input file contained the string “{\ae}tt”
−→ “ætt” and “{ae}tt” −→ “aett” (using “a e”
instead of the ligature), and unmotivated braces
were permitted, they would both map to the same
symbol, namely {ae}tt, and they would not be
kept separate in the concordance.

Now process-line checks to see if the value of
current-var (the symbol |{ae}tt|, in our example) is
already bound. If it is, this means either that the
word “ætt” is accounted for in the lemmatization
dictionary, or that it’s occurred previously in the
input file. If |{ae}tt| is unbound, process-line checks
whether the symbol |{Ae}tt| is bound. If it is,
current-var is set to |{Ae}tt|, otherwise process-line
checks whether the symbol {AE}TT is bound.38 If
it is, current-var is set to {AE}TT.39

36 Backslashes in strings read in from a file are automati-
cally escaped.

37 By uncommenting two lines in letter-function, it’s possi-
ble to allow unmotivated braces. I believe it’s safer to make
them signal an error, because it’s a good way of discovering
mistakes in the input file. Any cases where braces are
required can be accounted for in conctex.lsp.

38 No vertical strokes are needed around {AE}TT because
{, }, and capital letters don’t need to be escaped.

39 Manuscripts are often orthographically inconsistent,
and transcriptions often use uppercase and lowercase letters
to represent different letter forms, although the original
letters do not really correspond to our upper- and lowercase.
If the editor wants a particular word to be represented in
the concordance in lowercase, capitalized or all capitals,

and the first occurrence of this word in the transcription
does not have the desired form, then the word must be
entered in this form into the lemmatization dictionary. Of
course, capitalized, upper- and lowercase strings which map

TUGboat, Volume 19 (1998), No. 4 395

� Actually, the functions string-downcase, string-
capitalize and string-upcase are applied to

(symbol-name current-var). The symbol current-var is
evaluated once to get the symbol |aett|. If I wanted
to examine the symbol-name of |aett| directly, I
would have to type (symbol-name ’|{ae}tt|) to pre-
vent evaluation of |{ae}tt|. Note that applying
string-capitalize to a symbol name beginning with a
coding like {ae} fails, because the capitalized string
would need to be {AE}. It is, of course, possible
to have \Ae expand to “Æ” in TEX, so that {Ae}

would yield the correct result, but it seems hardly
worthwhile, since words should be accounted for in
the lemmatization dictionary anyway.

Unbound symbols. If |{ae}tt|, |{Ae}tt|,
and {AE}TT are unbound, a word structure is
created, and |{ae}tt| is bound to it. A sort-string
is generated and stored in |{ae}tt|’s sort-string slot,
and a tex-string is stored in its tex-string slot, just
as for word structures created by the lemmatization
dictionary. If the word read in from the file includes
the symbols < and >, the string they enclose is
considered to be the homograph-identifier, which is
stored in the homograph-identifier slot, and affects
the form of the tex-string.

After a word structure has been created for the
symbol |{ae}tt|, the symbol itself is put into the
cdr of a cons cell, while its sort-string is put into the
car, e.g.,

("^A^F^X^X" . |{ae}tt|)

This cons cell is now appended to the association
list (or alist) word-alist, not var-alist, as are the
word structures from the lemmatization dictionary.
The alist word-alist is used to store all of the en-
tries that are main forms of lemmata, i.e., not
subsidiary forms or variants, that actually occur in
the transcription. They will appear as top-level
entries in the concordance. Whenever a word in
the input file maps to a symbol that is unbound,
i.e., if it’s the first occurrence in the input file and
not in the lemmatization dictionary, this word is
considered to be the main form of a lemma, so
all lemmata with subsidiary forms and most vari-
ants must be accounted for in the lemmatization
dictionary. Variants that differ only in the use of
capitalization and upper- and lowercase letters, or
where certain special character macros are replaced,
are handled automatically (as above).

Positions and occurrences The word struc-
ture has an occurrences slot, where manuscript po-
sitions are stored. It might even have multiple

to different word structures are also possible, if they’re bound
in the lemmatization dictionary.

occurrences slots, if ConcTEX is being used for more
than one manuscript. When a word structure is cre-
ated in the lemmatization dictionary, there are no
occurrences to be stored yet. When an entry is cre-
ated for a word in the input file, the position-string is
stored as a string in a list in the proper occurrences
slot, e.g., ("28va˜7"), using access-occurrences.

The current position in the transcription (and
the manuscript) will have been generated by the
function set-position, which is used in the input file,
and process-line’s line counting routine. In addition,
process-line can tell whether a particular word is
the first or last word in the transcription line. It
can sometimes be useful to indicate that a word is
at the beginning or end of a line in a manuscript,
because the use of unusual forms is often explainable
because of the position. For instance, words at the
beginning of lines may have fancy initials, and
words at the end may be abbreviated in order that
they may be squeezed into the remaining space on
the line. If a word occurs at the beginning or end
of a line, this may be indicated in the concordance,
if the book designer wishes. For example, if this is
a line at leaf 1, verso, column a:

\lineno{15} seg_{ir} e{\n} gaufgi

ken_{n}i~{\m}_{a{\dh}r} [ok enn]\\

=⇒

15: segir en gaufgi kenni maðr [ok enn]

then one of the positions for “segir” will be “1va 15b”
and one of the positions for “enn” will be “1va 15e”.

The program conctex.lsp doesn’t print b

and e explicitly to the concordance file. In-
stead, it uses the token lists \linebeginstring and
\lineendstring,

\newtoks\linebeginstring

\newtoks\lineendstring

\linebeginstring={b}

\lineendstring={e}

and prints \the\linebeginstring and \the\line-
endstring to the concordance file. To suppress “b”
and “e” in the concordance, all that’s necessary is
to redefine the token lists \linebeginstring and
\lineendstring.

\linebeginstring={}

\lineendstring={}

This feature will probably be turned off, because it
is not customary for concordances to indicate the
position of words in a line.

A concordance should only be generated for one
manuscript at a time. This is merely the way I’ve
set things up; it’s not hard-wired into the program.
The definition of the Lisp macro access-occurrences

396 TUGboat, Volume 19 (1998), No. 4

depends on the value of the variable manuscript. It
is used to access the appropriate occurrences slot for
setf.40

� Multiple occurrence slots are useful if you want
to use the information generated by conc-

tex.lsp in another program. The word structures
can be written to a file using Lisp’s read syntax.
Another Lisp program can load this file, provided
structures of type word are defined, and the data
produced by the last run of conctex.lsp will be
available. This could be useful for dictionaries or
linguistic studies involving multiple sources.

Bound symbols. If the symbol pointed to by
current-var (|{ae}tt| in our example) is bound, this
means it was either bound in the lemmatization
dictionary, or that the word “ætt” has already
occurred in the input file, or both.41 If it has already
occurred in the input file, and it’s a main form, word-
alist already contains the cons cell ("^A^F^X^X" .

|{ae}tt|), but if it’s only bound because it appears
in the lemmatization dictionary, or it’s a subsidiary
form or a variant, this cons cell will not be in
word-alist. So, process-line checks to see whether a
cons cell containing |{ae}tt| is in word-alist, using:

(rassoc current-var word-alist)

which searches for a cons cell in word-alist using the
cdr as the search key. If it’s there, it means that
“ætt” has already occurred in the input file.

The situation is more complicated if the symbol
is not already in word-alist. There are three
possibilities: it could be the main form of a lemma,
a subsidiary form, or a variant.

I If the symbol is a word-structure, it is either a
main form or a subsidiary form.

I If the root slot of the word-structure is nil,
then it’s a main form. In this case, the cons
cell containing the symbol and its sort-string is
copied from var-alist into word-alist.

I Else, if the root slot of the word structure is
non-nil, the symbol is a subsidiary form. In
this case, its root slot is accessed in order to get
its main form, which is another symbol bound
to a word-structure. If the cons cell containing

40 It’s worth looking at the way access-occurrences is
defined, because it illustrates a limitation of Lisp’s setf access
function.

41 Or there’s been a terrible mistake. It is unlikely that
a symbol derived from a word in the transcription would

conflict with a symbol that’s already defined by conctex.lsp

or the Lisp interpreter itself. However, if this problem arises,
it would be easy enough to write safety routines to catch the
problem symbols.

this symbol and its sort string is not already in
word-alist, it’s copied to it from var-alist.

I If the symbol evaluates to another symbol, it’s a
variant. In this case, the symbol is replaced by
this other symbol, and this process is repeated for
the latter.

The Lisp macro access-occurrences then appends the
position-string for the new position, e.g., "28ra˜15"
to the appropriate occurrences slot in the appropri-
ate word-structure.
Exporting the concordance. After every line in
the input file has been processed, the loop in main
returns nil. If you are generating a concordance
using multiple input files, the first input file is
closed, the next one is opened and processed in
the same way. When all of the input files have
been processed and closed, the alists word-alist and
var-alist are sorted.

(setq word-alist
(sort word-alist #’string< :key #’car))

(setq var-alist
(sort var-alist #’string< :key #’car))

This puts the cons cells in word-alist and var-alist in
alphabetical order according to their cars, i.e., their
sort-strings. Now the sort-strings are now longer
needed, so new lists are generated by popping off
the cons cells and putting the cdrs, i.e., the symbols,
into new lists, word-list and var-list. Only main forms
of lemmata are members of word-list, and only of
those lemmata, in which at least one form (which
can be a variant) occurs in the transcription. Other
main forms may be bound from the lemmatization
dictionary, but they will not be in word-list. The list
word-list is now passed to the function export-words,
which writes the TEX file for the concordance.
Exactly what export-words writes is a matter for
the editor and the book designer, so this part of
ConcTEX can be changed easily.

The function export-words pops the symbols
off of the front of word-list one-by-one. The tex-
string is written to the concordance file (here called
concordance.tex, but any name within reason
can be chosen), not indented. If there are no
occurrences of the main form, the tex-string is
enclosed in parentheses. If there are occurrences,
the number of occurrences is printed after the
tex-string, enclosed in parentheses, followed by the
occurrences. Subsidiary forms are printed to the
concordance if and only if there are occurrences for
them.

If there are no occurrences and no subsidiary
forms with occurrences, something is terribly wrong
and conctex.lsp will signal an error. The way

TUGboat, Volume 19 (1998), No. 4 397

conctex.lsp is set up, occurrences at the beginning
and end of a line are indicated with a superscript,
e.g., “27ra 31b” and “34vb 12e”. On the other hand,
if a word occurs multiple times within a line, not at
the beginning or end and not broken, the position
string is only printed out once, and the number
of occurrences is indicated within parentheses, e.g.,
“51ra 5 (2)”. If the word is broken, what is
printed depends on whether it’s broken across a line,
column, side or leaf. In the extremely unlikely event
that the word occurs at the beginning or end of
a line, or broken, and multiple times within the
line, the different cases are listed separately, e.g.,
“11ra 5b, 11ra 5 (2), 11ra 5–6”.

When a symbol is popped off of word-list,
export-words checks whether forms are present in
the word structure’s forms slot. The forms should
be in the order in which they should be listed
in the concordance. The function export-words
accesses the symbol for each form, and checks the
appropriate occurrences slot. If it’s non-nil, the tex-
string for that form is written to concordance.tex,
with its occurrences, as above, but indented. If
a form has no occurrences, nothing is printed to
concordance.tex. The Lisp program currently
does not print out variants in any way. This
would require some additional programming, but it
is possible.

� The program conctex.lsp can be extended to
extract grammatical information from manu-

script transcriptions. One way of doing this would
be to use standardized homograph-identifiers. An-
other would be to add one or more slots to the word
structure. Then, export-words could be modified to
write files for the various grammatical categories,
which could then be concatenated. After word-
list has been generated, word-alist and var-alist are
no longer needed, and var-list is never needed by
conctex.lsp. They are kept or generated only for
debugging purposes.

Other data. When conctex.lsp is run, it gener-
ates some data in addition to the concordance. It
counts the number of lines and words in each input
file, the total number of lines, the total number of
words, the total number of distinct words and the
total number of lemmata. It prints this information
to the TEX file count_info.tex.

� The number of lines in an input file is simply
the value of line-counter at the end of the file.

The number of words in an input file is the number
of times read-word returns a non-empty string while
that file is begin read. The total number of distinct
words is the number of times export-occurrences

is called and the total number of lemmata is the
length of word-list.

Hints on using ConcTEX. Trying to generate a
concordance from an entire manuscript transcrip-
tion all at once is a recipe for disaster. I recommend
testing the program with one column or side at
first, gradually increasing the amount of text. In
this way, the user can discover which lemmata are
needed, which subsidiary forms need to be assigned
to a lemma, which variants need to be accounted
for, and so on.

The program conctex.lspwrites an additional
TEX file containing only the words that are not

included in the lemmatization dictionary, and their
occurrences. This makes it easy to see which words
should be lemmatized or declared harmless, so the
lemmatization dictionary can be built up gradually,
as longer and longer portions of the transcription
are read by conctex.lsp.

A format for a manuscript transcription is likely
to be rather complex and the user will probably dis-
cover places where new special characters, fonts and
macros are needed. Every new control sequence de-
fined in conctex.tex and used in transcription lines
will require some alteration to the Lisp program, ei-
ther in process-line, read-word and/or letter-function.
I’ve intentionally programmed conctex.lsp in such
a way as to allow changes to reflect different book
designs, so it may be necessary to change export-
words, too. The best way to proceed is to take small
parts and run TEX and conctex.lsp on the input
file to make sure that everything is working properly.
When you’ve got it running smoothly, and you’ve
built up a complete lemmatization dictionary, then
you can try running TEX and conctex.lsp on the
whole manuscript.

Running TEX on the concordance. Since
ConcTEX generates the concordance from the TEX
input file without running TEX, it’s no problem to
include concordance.tex (the TEX file output by
conctex.lsp which contains the concordance) in
the input file itself:

\input concordance

But it’s safer to include it like this:

\newread\concordance

\openin\concordance=concordance

\ifeof\concordance

\message{concordance.tex doesn’t exist.

Not inputting it.}\else

\closein\concordance

\input concordance

\fi

398 TUGboat, Volume 19 (1998), No. 4

If you use UNIX, you can ensure that the con-
cordance is always up-to-date by using a shell script.

This runs the concordance program.

gcl<conctex.lsp

Now I run tex on my input file.

tex transcription

This executes the file "warnings"

It prints the warning messages

from conclsp.lsp to standard output.

sh warnings

It’s a good idea to use a shell script anyway, or
the equivalent in your operating system, if you’re
using two-pass features, i.e., for an index, table of
contents, page references, etc.

A special case

Manuscripts often have peculiarities that are diffi-
cult to represent in set type. Often, these peculiari-
ties occur too rarely for it to be worthwhile writing
TEX macros and/or Lisp functions to cope with
them, but it is often possible to invent an ad hoc

solution. For instance, Holm perg 11 4o has words
that are written vertically, and are therefore, so to
speak, broken over several lines. This problem can
be solved in the following way:

\newskip\tempskip

\newskip\normalbaselineskip

\tempskip=.75\baselineskip

\normalbaselineskip=\baselineskip

\font\enormous=cmr17 scaled 7500

\baselineskip=\tempskip

\setbox0=\hbox{{\enormous D}}%

* \lineno{1\dash 7}\copy0

\vskip-\ht0\vskip-2pt

\dimen0=\wd0\advance\dimen0 by 18pt

\hangindent\dimen0\hangafter-7

r\break o\break t \break n \break i

\break n \break g\par

\baselineskip=\normalbaselineskip *

\vskip.667\baselineskip

@ (add-occurrences "drotning" "1va~1--7")

\lineno{8} himins _{ok}

iar{\dh}ar.~s{\ae}l {ok} dyr{\dh}\-

\lineno{9} lig m{\o}r Maria.~mo{\dh}ir

d_{ro}tti_{n}s\\

Produces the following output:

1 – 7:D
r
o
t
n
i
n
g

8: himins ok iarðar. sæl ok dyrð
9: lig mør Maria. moðir drottins

Since process-line ignores all lines within a com-
mentary, the complex construction for the word
“Drotning” isn’t read by process-line, so this occur-
rence needs to be set explicitly.

@ (add-occurrences |drotning| "1va~1–7")

The function add-occurrences uses access-occurrences
to access the appropriate occurrences slot of the word
structure bound to the symbol in its first argument,
and appends its second argument, a string, to
the list in the occurrences slot. It can be any
string, so access-occurrences can be used to make
non-standard occurrences by hand. An occurrence
like “1va 1–7” cannot be created by conctex.lsp’s
ordinary routines.
Final remarks

ConcTEX demonstrates the power of Lisp and
TEX in combination. Designing and typesetting
a manuscript transcription, usually as part of a
facsimile edition, is a challenge under the best
of circumstances, and generating a concordance is
always a time-consuming task. I do not promise
miracles with ConcTEX, but I do believe that it can
make both of these tasks easier, and indeed possible
for non-professionals.

ConcTEX’s most significant advantages are:
1. It makes it possible to take advantage of the

typographic capabilities of TEX and META-
FONT.

2. It uses the very same file for typesetting and
generating the concordance.

3. It performs alphabetical sorting on arbitrary
special characters

ConcTEX is designed to be extendable. It
would be possible to adapt it for use with other
languages. For languages that are written left-to-
right, it will only be necessary to cope with the
usual difficulties with fonts and character encoding.
For right-to-left text or a mixture of left-to-right
and right-to-left text, the difficulties are greater,
but it should be possible to solve them. Many of
its features are of general utility and could be used
for other kinds of programs that extract data from
TEX input files.

However, there is one significant problem from
the point of view of book design. The virtues of

TUGboat, Volume 19 (1998), No. 4 399

Computer Modern and its offspring notwithstand-
ing, there simply aren’t enough METAFONT fonts
in the public domain suitable for use in fine printed
books. Understandably, most of the other fonts
available either contain special symbols or alpha-
bets for non-Western languages, and are generally
designed to be compatible with Computer Modern.
But even if the Computer Modern fonts were the
most beautiful fonts in the world, not every book
should be printed in them. I admire Knuth’s ac-
complishment and I like Computer Modern, but
Monotype Modern 8A, on which it is based, is
not universally admired.42 It is possible to use
PostScript fonts with TEX, but it’s inconvenient,
and although they are well-designed, they have
the serious defect that most sizes are produced by
simple magnification or reduction. I consider it an
important desideratum that more METAFONT fonts
are created and made available, but I don’t see how
this goal can be accomplished by amateur program-
mers writing free software. But until such fonts
are available, books typeset without the financial
and technical backing of a publisher will continue
to suffer from a poverty of fonts.

I am far from being an authority on the subject,
but I doubt very much that any photolithographic
printing technique will ever be able to equal the
quality of impression of lead type. My dream is to
use METAFONT for designing lead type for use on
a TEX-driven, Linotype-like linecasting machine. I
say a linecasting machine only because I think that
it would be easier to implement glue on a linecast-
ing machine. It might, however, be an interest-
ing exercise to design a TEX-driven Monotype-like
typesetting machine, or even a typesetting machine
based on a different principle, such as casting an
entire page at once. Perhaps with such machines,
we can finally equal and perhaps even surpass the
great typographic achievements of the past.

Sample texts and concordances

Concordances become long very quickly, so this
section contains three mini-concordances and the
texts from which they were generated.

The first text is the beginning of the transcrip-
tion of Holm perg 11 4o, prepared by Dr. Wilhelm
Heizmann. It illustrates the use of line footnotes .
These are footnotes which refer to lines in the

42 Williamson, in reference to the English Monotype
Corporation’s Modern Extended series 7: “Not particularly

distinguished in letter form, the face has become familiar to
readers of scientific works; for some years, this was one of the
few series equipped with a full range of mathematical and
other special sorts.” (p. 130)

transcription. Unlike ordinary footnotes, there is no
indication in the running text, such as an asterisk,
a dagger, or a superscripted numeral, but the line
number or numbers appear in the footnote where
the footnote indicator usually goes.

Note that a different definition of \ustroke

is used here than in the foregoing article. The
emendations are in italics and underlined, but not
enclosed in brackets.

Holm perg 11 4o

1va
prologus

1 – 7:D
r
o
t
n
i
n
g

8: himins ok iarðar. sæl ok dyrð
9: lig mør Maria. moðir drottins

10: Iesus Xristz. blomi hreinlifis.
11: herbergi heilags anda. øllvm
12: helgum mønnum æðri. helgari
13: ok haleitari. er komin at kyn
14: ferðj af kongligri ætt eptir þvi sem
15: segir en gaufgi kenni maðr [ok enn]

Concordance to Holm perg 11 4o

æðri (1): 1va 12.
ætt (1): 1va 14.
af (1): 1va 14.
(allr)

øllvm (1): 1va 11e.
(andi)

anda (1): 1va 11.
at (1): 1va 13.
blomi (1): 1va 10.
drotning (1): 1va 1-7.
(drottinn)

drottins (1): 1va 9e.
(dyrðligr)

dyrðlig (1): 1va 8 – 9.
enn (2): 1va 15, 15e.
eptir (1): 1va 14.
er (1): 1va 13.
(gøfugr)

1–7 Drotning, bis auf das initiale D sind die Buchstaben
untereinander angeordnet.

8/9 dyrðlig, dafür in Ausg. zumeist dýrlig.

10 Iesus, 233 Jesu, Ausg. für den Genitiv immer Jesu;
Xristz, 233 cristi, Ausg. für Xrist- fast immer Crist-, einige
Male auch Krist-.

400 TUGboat, Volume 19 (1998), No. 4

gaufgi (1): 1va 15.
(haleitr)

haleitari (1): 1va 13.
(heilagr)

heilags (1): 1va 11.
helgari (1): 1va 12e.
helgum (1): 1va 12b.

herbergi (1): 1va 11.
(himinn)

himins (1): 1va 8.
(hreinlifi)

hreinlifis (1): 1va 10e.
Iesus (1): 1va 10b.
(io�rðr)

iarðar (1): 1va 8.
kennimaðr (1): 1va 15.
(koma)

komin (1): 1va 13.
(kongligr)

kongligri (1): 1va 14.
(kynferð)

kynferðj (1): 1va 13 – 14.
(maðr)

mønnum (1): 1va 12.
Maria (1): 1va 9.
moðir (1): 1va 9.
mør (1): 1va 9.
ok (4): 1va 8 (2), 13b, 15.
(sæll)

sæl (1): 1va 8.
(segja)

segir (1): 1va 15b.
sem (1): 1va 14e.
(Xrist)

Xristz (1): 1va 10.
þvi (1): 1va 14.

The Bible

Genesis

1. In the beginning God created the heavens and
the earth. 2. The earth was without form and void,
and darkness was upon the face of the deep; and
the Spirit of God was moving over the face of the
waters. 3. And God said, “Let there be light”; and
there was light. 4. And God saw that the light
was good; and God separated the light from the
darkness. 5. God called the light Day, and the
darkness he called Night. And there was evening
and there was morning, one day.

Concordance to the Bible

and (11): Gen. 1:1, 2 (3), 3 (2), 4 (2), 5 (3).

be (1): Gen. 1:3.
was (7): Gen. 1:2 (3), 3, 4, 5 (2).

beginning (1): Gen. 1:1.
(call)

called (2): Gen. 1:5 (2).
(create)

created (1): Gen. 1:1.
darkness (3): Gen. 1:2, 4, 5.
day (2): Gen. 1:5 (2).
deep (1): Gen. 1:2.
earth (2): Gen. 1:1, 2.
evening (1): Gen. 1:5.
face (2): Gen. 1:2 (2).
form (1): Gen. 1:2.
from (1): Gen. 1:4.
God (6): Gen. 1:1, 2, 3, 4 (2), 5.
good (1): Gen. 1:4.
he (1): Gen. 1:5.
(heaven)

heavens (1): Gen. 1:1.
in (1): Gen. 1:1.
let (1): Gen. 1:3.
light (5): Gen. 1:3 (2), 4 (2), 5.
morning (1): Gen. 1:5.
(move)

moving (1): Gen. 1:2.
night (1): Gen. 1:5.
of (3): Gen. 1:2 (3).
one (1): Gen. 1:5.
over (1): Gen. 1:2.
(say)

said (1): Gen. 1:3.
(see)

saw (1): Gen. 1:4.
(separate)

separated (1): Gen. 1:4.
spirit (1): Gen. 1:2.
that (1): Gen. 1:4.
the (14): Gen. 1:1 (3), 2 (6), 4 (3), 5 (2).
there (4): Gen. 1:3 (2), 5 (2).
upon (1): Gen. 1:2.
void (1): Gen. 1:2.
(water)

waters (1): Gen. 1:2.
without (1): Gen. 1:2.

Die Bibel

Das 1. Buch Mose (Genesis)

(With homograph identifiers.)
1. Am Anfang schuf Gott Himmel und Erde.
2. Und die{fsn} Erde war wüst und leer, und es
war finster auf der{fds} Tiefe; und der{mns} Geist
Gottes schwebte auf dem{nds} Wasser. 3. Und Gott

TUGboat, Volume 19 (1998), No. 4 401

sprach: Es werde Licht! Und es ward Licht. 4. Und
Gott sah, daß das{nas} Licht gut war. Da schied
Gott das{nas} Licht von der{fds} Finsternis 5. Und
nannte das{nas} Licht Tag und die{fas} Finsternis
Nacht. Da ward aus Abend und Morgen der{mns}
erste Tag.

Die Bibel

Das 1. Buch Mose (Genesis)

(Without homograph identifiers.)
1. Am Anfang schuf Gott Himmel und Erde.
2. Und die Erde war wüst und leer, und es war
finster auf der Tiefe; und der Geist Gottes schwebte
auf dem Wasser. 3. Und Gott sprach: Es werde
Licht! Und es ward Licht. 4. Und Gott sah, daß
das Licht gut war. Da schied Gott das Licht von
der Finsternis 5. Und nannte das Licht Tag und die
Finsternis Nacht. Da ward aus Abend und Morgen
der erste Tag.

Konkordanz zur Bibel

Abend (1): Gen. 1:5.
(an)

am (1): Gen. 1:1.
Anfang (1): Gen. 1:1.
auf (2): Gen. 1:2 (2).
aus (1): Gen. 1:5.
da (1): Gen. 1:5.
(das [n.])

das [akk. sg.] (2): Gen. 1:4, 5.
dem [dat. sg.] (1): Gen. 1:2.

der [m.] (2): Gen. 1:2, 5.
die [f.] (1): Gen. 1:2.

die [akk. sg.] (1): Gen. 1:5.
der [dat. sg.] (2): Gen. 1:2, 4.

Erde (2): Gen. 1:1, 2.
(erst)

erste (1): Gen. 1:5.
es (3): Gen. 1:2, 3 (2).
finster (1): Gen. 1:2.
Finsternis (2): Gen. 1:4, 5.
Geist (1): Gen. 1:2.
Gott (2): Gen. 1:1, 3.

Gottes (1): Gen. 1:2.
Himmel (1): Gen. 1:1.
leer (1): Gen. 1:2.
Licht (4): Gen. 1:3 (2), 4, 5.
Morgen (1): Gen. 1:5.
Nacht (1): Gen. 1:5.
(nennen)

nannte (1): Gen. 1:5.
(schaffen)

schuf (1): Gen. 1:1.
(schweben)

schwebte (1): Gen. 1:2.
(sein [verb])

war (2): Gen. 1:2 (2).
(sprechen)

sprach (1): Gen. 1:3.
Tag (2): Gen. 1:5 (2).
Tiefe (1): Gen. 1:2.
und (10): Gen. 1:1, 2 (4), 3 (2), 5 (3).
von (1): Gen. 1:4.
Wasser (1): Gen. 1:2.
(werden)

werde (1): Gen. 1:3.
ward (2): Gen. 1:3, 5.

wüst (1): Gen. 1:2.

Category code list

• \catcode‘\<=\active. For homograph identi-
fiers. Reset to 12 (other) in math mode.

• \catcode‘\@=14 (Comment). Treated as a
comment by TEX, equivalent to %. If @

is the first non-blank character in an input
line, the Lisp interpreter evaluates the rest
of the line, which should contain a balanced
expression (sexp). Otherwise, if it’s in a text
line, conctex.lsp discards it and the rest of
the line following it.

• \catcode‘\¥=9 (Ignored). The character ¥
(decimal 165, octal 245, hexadecimal A5) is
ignored by TEX and treated as a word separator

by Lisp.

• \catcode‘*=9 or \active. Used for com-
mentaries. Reset to \catcode 12 in math
mode.

• \catcode‘_=\active. The underline charac-
ter is \let to \ustroke. Reset to 8 (subscript)
in the \plain environment, so _ can appear
in the names of files loaded using \input, and
math mode, so it can be used for subscripts.

• \catcode‘\-=\active. The hyphen character
- is used for line ends where words are bro-
ken. Reset to 12 (other) in commentaries, the
\plain environment, and math mode.

• \catcode‘\^^M=\active. This change is local
to the expansions of the active character - and
the redefined control symbol \-, where ^^M is
\let to \empty. Otherwise, it has its normal
\catcode of 5 (end of line).

• \catcode‘\ c©=\active. The copyright symbol
(decimal 169, octal 251, hexadecimal A9) is
\let to \- before the latter is redefined, so it

402 TUGboat, Volume 19 (1998), No. 4

can be used for discretionary hyphens within
transcription lines, if necessary.

Glossary

Braces, unmotivated: Braces that delimit unnec-
essary groups in the input file. Not permitted in
transcription lines.

Comment: Comments can be normal TEX com-
ments that follow a %. Usually, however, “comment”
refers to invocations of the macros \begincomment

and \endcomment.

\begincomment{This is a comment.}

\endcomment

Comments appear in the output only if \drafttrue.
Comments are ignored by conctex.lsp.

Commentary: A commentary contains text which
should appear within the transcription lines in the
output, but which should not be used for generating
the concordance. Commentaries can be coded in
several ways.

* This is a commentary. *

\begincommentary This is also

a commentary.\endcommentary

\plain Yet another commentary.

\endplain

Evaluated lines: Lines in the input file, where
@ is the first non-blank character. Such lines
must contain a balanced Lisp expression, which is
evaluated by the Lisp interpreter. TEX ignores lines
beginning with @.

Homograph identifiers: In TEX, strings of the
form “<〈string〉>”. Used for indicating homographs
in the input file. Printed out or not, depending
on the value of \ifdraft. For the Lisp program,
homograph-identifiers can be set in various ways in
the lemmatization dictionary.

Ignored lines: Lines in the input file that are
ignored by TEX, conctex.lsp, or both. Completely
blank lines are ignored by conctex.lsp and treated
normally by TEX. Lines beginning with % are
ignored both by TEX and conctex.lsp. If a line
contains a % in any other position, the rest of the
line is discarded by both TEX and conctex.lsp.
The character @ is equivalent to % in TEX. If a
line contains an @ that’s not the first non-blank
character in the line, conctex.lsp discards the rest
of the line.

Input file: A file containing text to be typeset for
a book containing a facsimile of a manuscript, or

something similar. The input file or files are also
used for generating a concordance.

Lemmatization dictionary: A file of Lisp code
used for lemmatizing the words in the transcription.
The file can contain invocations of the functions
generate-entry, add-variants, and/or harmless.

Macro, delimited: A macro within braces, like
{\%}, {\rm ...}, or {\dh}

Macro, undelimited: A macro with no enclosing
braces, like \%, \rm or \indexentry{nouns}{}{x}%
{verbs}{}{}.

Output: The typeset result of running TEX on the
input file or files. Technically, the result of running
TEX is a dvi file, however I usually mean either
the paper printout or a display on the computer
terminal in a program like xdvi or Ghostview.

Text lines: Lines in the input file which are
processed by TEX. They may be transcription lines

or commentaries.

Transcription lines: Lines in the input file con-
taining the transcription of the manuscript. They
should correspond, for the most part, to the actual
lines in the manuscript; however, they may also
contain commentaries, which may affect the length
and hence the line breaking in the output.

Word element: A character which conctex.lsp

considers to be part of a word. Includes all letters
(characters whose \catcode is 11), some characters
of type “other” (\catcode 12), and special character
macros.

Word separator: Characters that cannot be part
of a word. Currently these are blanks, punctuation,
and the character which is represented as ¥ on my
terminal (decimal 165, octal 245, hexadecimal A5).

References

The Bible. Containing the Old and New Testa-

ments. Revised Standard Version. American
Bible Society. New York: 1952.

Die Bibel. Mit Apokryphen. Nach der Übersetzung
Martin Luthers neubearbeitet. Deutsche Bibel-
gesellschaft. Stuttgart: 1985.

Knuth, Donald E. The TEXbook. Addison-Wesley
Publishing Company. Reading, Mass.: 1986.

Steele, Guy L., Common Lisp. The Language. 2nd

ed. Digital Press. 1990.

Cleasby, Richard and Gudbrand Vigfusson. An

Icelandic-English Dictionary. 2nd ed. The
Clarendon Press. Oxford: 1957.

TUGboat, Volume 19 (1998), No. 4 403

Williamson, Hugh. Methods of Book Design. The

Practice of an Industrial Craft. 3rd ed. Yale
University Press. New Haven: 1983.

Winston, Patrick Henry and Berthold Klaus Paul
Horn. LISP. 3rd ed. Addison-Wesley Publish-
ing Company. Reading, Mass.: 1989.

⋄ Laurence Finston

Skandinavisches Seminar

Georg-August-Universität

Humboldtallee 13

D-37073 Göttingen, Germany

lfinsto1@gwdg.de

