
TUGboat, Volume 17 (1996), No. 3 319

A puzzling TEX macro

Peter Schmitt

What would you answer if I ask you to de�ne a con-
trol sequence whose replacement text is a single left
brace { ? You would answer (probably without hes-
itation) that such a control sequence does not exist.
How would you react if I insist, and still ask you
to generate such a control sequence? You probably
will produce the TEXbook, and point to a passage
which explicitly states that this is impossible, or you
might suspect some trick question and try to �nd a
double meaning in my question.

But I am stubborn and repeat my challenge
more precisely:

1 Problem

De�ne a macro which can be used to de�ne a control
sequence which expands to a single left brace { .

Or, more precisely:
After the application of the macro, say

\MakeBrace\brace, the replacement text of \brace
should consist of a single token, a character of cate-
gory 1.

The following remarks should disturb all doubts
about hidden meanings in the formulation of the
`puzzle':

(1) If the problem is correctly solved and if \cs is
a macro that takes a single (undelimited) argu-
ment,
then \expandafter\cs \brace hargumenti}
is equivalent to \cs {hargumenti}

320 TUGboat, Volume 17 (1996), No. 3

(2) If \def\Def{\def\cs}
then
\expandafter\Def \brace hmacro texti}
is equivalent to \def\cs {hmacro texti}

Moreover, I concede the following passage:

(3) According to the TEXbook (page 203), for macros
\all occurrences of { and } in the hreplacement

texti are properly nested."

And I stress:

(4) Of course, \def\MakeBrace {{\iffalse}\fi}

is not a solution of the problem.

Are you intrigued? Do you want to try to �nd
out by yourself? Then be warned: It is not a trick
question, but the solution is tricky, and it involves
a trick you might consider to be unfair. (Hint: Ob-
viously, re-reading the TEXbook is not likely to help
you!) For all the others who are just curious and
only want to check if (or where) I am cheating|
here is how to do it:

2 The Solution

The solution of the problem is based on an obser-
vation (over which I stumbled quite accidentally)
concerning the behaviour of the \read command.
\read stores \the contents of the next line" in a
control sequence \cs, but \additional lines are read,
if necessary, until an equal number of left and right
braces has been found." If the end of the �le is pre-
maturely reached, TEX complains and issues an er-
ror message (File ended within read). However,
quite surprisingly, the input read so far is available
in the control sequence \cs which therefore contains
an unmatched left brace { .

The de�nition of \MakeBrace takes advantage
of this behaviour. First it generates a �le contain-
ing a single brace { only. (Of course, this �le could
also be prepared manually.) Then the �le is opened
for input and (using \read to#1) it is read to the
control sequence to be de�ned. Before that, the
\endlinechar is set to -1, i.e., it is removed, since
otherwise an additional \par would be read. More-
over, in order to hide the error message, the macro
temporarily switches to \batchmode.

\def\MakeBrace #1{\bgroup \batchmode

% % supress error message

\immediate\openout1 brace

\escapechar-1

\immediate\write1{\string\{}

% % write a single {

\immediate\closeout1

\immediate\openin1 brace

\endlinechar-1 \global\read1 to #1

% % (incomplete) read of {

\immediate\closein1

\egroup \errorstopmode }

% % return to normal

% test:

\MakeBrace\brace \show\brace

\message{.\brace.}}

% % note second } !

3 Remark

Attempting to apply the same idea to a right brace
fails: When \read encounters an unmatched brace }
TEX does not even bother to stop but (silently!) dis-
cards the rest of the line, including the o�ending
brace. Consequently, only properly nested braces
are read, and the unmatched brace has the same
e�ect as a comment character.

4 Summary

Reading (by a \read command) from a �le which is
not balanced with respect to { and } causes TEX to
behave in a surprising way which is not documented
in the TEXbook. In one case, an unmatched } is
not reported, in the other case, an unmatched {

produces a macro which|according to the rules|
cannot exist. Does this constitute a bug or a feature
of TEX?

� Peter Schmitt

Institut f�ur Mathematik

Universit�at Wien

Strudlhofgasse 4

A-1090 Wien, Austria

schmitt@awirap.bitnet

schmitt@pap.univie.ac.at

