
Driver Support for Color in TEX: Proposal and Implementation 

Tomas Gerhard Rokicki 
Hewlett-Packard Laboratories 

1501 Page Mill Road 

Palo Alto, CA 94303 

Internet: rok ick i@cs .  s tan fo rd .  edu 

Abstract 

The advent of inexpensive medium-resolution color printing devices is creating 

an increasing demand for flexible and powerful color support in TEX. In this 

paper we discuss a new implementation of color support and propose an initial 

standard for color and color-like specials. We first discuss the difficulties that 

are presented to the driver writer in supporting color, and other features, by 

presenting a number of hard examples. Second, we present an implementation 

of a driver that provides a solution to many of the problems discussed. Best 

of all, this solution includes modular C code that is easily integrated into other 

drivers, automatically translating the hlgher-level special commands into existing 

low-level special commands. 

Introduction from each font need to be downloaded. T h s  type 

This paper has two parts: a collection of difficulties, 

and a proposed partial solution. The collection 

of difficulties is by far the easier part to write 

and to read; it is always easier to criticize than 

to originate. Nonetheless, it includes some subtle 

conclusions. The proposed solution does not come 

near to solving all of the problems raised in the 

first section, but it attempts to solve at least one, 

as one step towards a more general solution for the 

remaining ones. 

Our perspective is that of a dv i  driver writer. 

We care not for the user; let the macro programmers 

provide a convenient interface. Rather, we attempt 

to provide the primitive functionality from which 

specific effects can be accomplished. 

For driver writers, on the other hand, we have 

untold sympathy. We will even do much of the 

work for them, by providing a set of C routines that 

implement the new functionality. 

In order to understand why each problem is 

difficult, and what conclusions we can draw from 

each problem, we need to understand the limitations 

of TEX and of the various device drivers. Whle there 

is only one TEX, there are many different types of 

device dnvers, each with its own requirements and 

capabilities. We can divide the drivers into four 

categories according to their style of operation. 

The first lund is a driver that scans the entire 

d v i  file (or at least up to the last required page) 

before generating any output. This prescan phase 

usually determines what fonts and what characters 

of driver is typically necessary for laser printers. 

The second type of driver does not perform this 

prescan phase, usually because the output device 

does not support downloaded fonts; this is typically 

the case for dot-matrix printers or FAX machines. 

T h s  type of driver must render the entire page 

before shipping even the first row of pixels; it too 

buffers information, but at the page level instead of 

the document level. 

Both of these types of drivers typically process 

the pages in the order they are given in the dv i  

file. A previewer, our third type of driver, does 

no such thing; instead, the pages are processed in 

some random order, and quick access to each page 

is desired. 

The fourth and last type of driver we recognize 

is the driver that generates a d v i  file as output. 

These include programs that do pagination tricks, 

like d v i d v i  and dv ise lec t ,  and programs that 

expand virtual fonts, llke dv i  copy, and even the 

d v i  c o l  orsep program that does color separation. 

Because TEX does not support color directly, 

we conclude that any such support must come 

through specials. Thus, the task of the device 

driver writer is two-fold: to recognize and parse the 

specials that direct his rendering, and to perform 

the rendering appropriately. T h s  paper is primarily 

concerned with the first task. Color rendering and 

imaging is incredibly complex, so other than a few 

minor points, we shall not yet concern ourselves 

with these issues. Instead, we adopt the current 

TUGboar, Volume 15 (19941, No. 3 -Proceedings of the 1994 Annual Meeting 205 



Tomas Gerhard Rolucki 

solution, as described in Dr. Hafner's paper in these 

proceedings. 

Part One: The Problems 

Now we are ready to present some sample difficul- 

ties and draw some conclusions from each. 

Colored text and rules. Our first example is the 

most basic; we want to specify that some text or 

rules in our document be red. Because TEX does not 

allow us to attach color information directly to text 

or rules, t h s  must be implemented as a change of 

state for our abstract rendering engine. Since we are 

using specials to implement colors, this change of 

state must occur at the point in the dv i  file that the 

special is emitted. Therefore, specials that indicate 
state changes must be used to implement colors. 

Even at t h s  early stage, problems arise. It is 

not always obvious to the user where a special will 

be emitted. In general, it occurs in the same place 

in the linear stream of text that the user types, 

but occasionally t h s  is not the case. Consider, for 

example, LATEX 2.09's 1 i s t  environment. Placing a 

special imrnehately after an \i tern command causes 

the special to occur in the dvi  file before the bullet, 

coloring the bullet; this is not the intuitive result. 

(Technically, this happens because the special does 

not cause a switch to horizontal mode and is thus 

simply attached to the current vertical list; the 

bullet is inserted at the head of each paragraph, 

whch starts with the switch to horizontal mode.) 

On the other hand, this can be considered simply 

a side-effect of the way the list environment is 

implemented; adding a \l eavevmode command 

before the special command works around this 

difficulty. I&TEX~€ solves this particular problem 

using color nesting, but s~milar problems can arise 

in other situations and with other macro packages. 

If the state change occurs at the point at which 

the special occurs, then how shall we define the 

range of the color command? One alternative 

is to define the range to be that sequence of dv i  

commands enclosed between two specials. A second 

is to define it to be until the end of the enclosing 

TEX box. A third is to define it to be until the end 

of the enclosing TEX group. A fourth is to use some 

combination of these. 

Unfortunately, the box solution f d s  in a nurn- 
ber of ways. First, there is no real notion of boxes 

at the dv i  level. Indeed, this can make it difficult 

to color a paragraph red-that paragraph might be 

split across several pages, and thus several boxes, 

with no overall enclosing box. 

The first solution subsumes the third. Groups 

are not visible at the dv i  level, but TEX'S aftergroup 

command can be used to make specific groups 

visible. Therefore, the range of color commands 

must be from special to special. 

Nested colors. The next question is whether to nest 

colors. In other words, should we be able to color a 

word red, without having to figure out and restore 

the color of the enclosing paragraph? Somehow it 

seems more consistent with TEX to allow nesting of 

colors, and in many situations, nesting colors solves 

some important problems. For instance, nesting is 

used in the previous version of color support in 

dvi  ps and in the current version of ETEX~~ to allow 

headlines to work correctly. Certainly it is not hard 

to implement. Thus, we should allow the nesting of 

colors. 
Should the driver be responsible for maintain- 

ing the color stack, or should the TEX macros? 

Either is easily implemented, and since the color 

stack should never nest deeply, the resources con- 

sumed by either should be negligible. If we use 

TEX, we can always make the current color available 

to the user of the macro package, provided that 

we standardize on some representation. On the 

other hand, we might not want to require that the 

color stack be provided by the macro package-and 

implementing a color stack is easy enough that we 

might as well provide one at the dvi  driver level. 

Providing one at the driver level does not require 

the TEX macros to use it. In any case, backwards 

compatibility with the current color implementation 

requires a color stack. The driver should implement 

color stacking, and some macro packages might also 
maintain the color stack for their own purposes. 

Should we also include a command to set the 

current color, independent of state changes? If 

we are using a set of simple macros that just set 

the color and ignore the stacking capability of the 

driver, this might cause the stack to get increasingly 

deep. And just issuing a pop stack command before 

each color command fails with the first color. Since 

it is a pretty easy feature to provide, we might as 

well. The driver should implement non-stacked color 

changing. 

Colored text split across pages. Now imagine the 

word "example," in red, split across two pages. At 

the dv i  level, the "begin red" special wdl occur near 

the end of one page, and the "end red" special will 

occur near the beginning of the next. Thus, dv i  

drivers must maintain the color stack information 
across pages. 

206 TLTGboat, Volume 1 5  (1994), No. 3 -Proceedings of the 1994 Annual Meeting 



Driver Support for Color in TEX: Proposal and Implementation 

In the context of page reversal, page selection, of text. On the other hand, to provide just this 

and random page access, this requires that the dvi  functionality if it is desired, it is easy to provide a 

driver store the contents of the color stack for each global context that is always used for attributes not 

page it might need to revisit, and set up the output set in the current context. This global context will 

device state appropriately. Ths  is not hard to provide functionality backwards compatible with 

implement once the requirement is understood. the current FoilT~x color model, and it Milll allow 

Page break in colored region with black headline. 

There is a danger that a color region split across 

pages might also cause some headlines or footers 

to become contaminated with color. There is 

nothing in the dv i  file indicating that some text is 

a headhe or footline, so a straightforward nested 

color implementation wdl have this problem. The 

only real solution to t h s  is to have the output 

routine put that information in the dvi  file. Sirmlar 

problems arise with footnotes, figures, and marginal 

notes. The T a  output routine must indicate the 

origin of text in order for the color to be maintained 

correctly. 

Alternatively, the output routine can simply 

reset the color to black in regions such as headlines, 

footlines, marginal note, and floats; this is the 

solution currently adopted in fiT~X2~. 

Split footnote with colored regions. It might be 

desired to color headlines or marginal notes. Indeed, 

footnotes might have colored regions that are split 

across pages. A single page break might split 

both a pagebody colored region and a footnote 

colored region. Therefore, the driver should actually 

maintain separate and independent color contexts, 
each with its own color stack, and the output routine 

should issue the necessary commands to switch 

among them. 

In the case of marginal notes, it may not be 

clear what the enclosing color context is. A marginal 

note might occur inside of a float or inside of a 

normal pagebody paragraph. Therefore, the driver 

should maintain a stack o f  color contexts. 

Such contexts make it easy to do things like 

color all headers red; simply invoke the header 

context, push or set the color red, and then return 

to the previous context. 

It is not clear how many different sources of 

text there might be, so the color stacks should be 

dynamically allocated by name inside the driver. 

Footnotes within a colored region. Floats pose 

an interesting problem. If an entire section of a 

document is colored, should the included footnotes 

be colored as well? What happens if the floats move 

into the next section? As a logical consequence of 

the color context idea, they should (by default) not 

be colored, since they are from a different stream 

setting the color of entire regions of a document. On 

the other hand, it Mrlll not allow floats or foomotes 

that have portions on pages after the end of the 

color region to have the appropriate color; the color 
contexts must be used to obtain that effect. A 

special "global" color context should be used as a 

default for parameters not set in the current context. 
To summarize, all stack push and pop com- 

mands affect the context on the top of the context 

stack; this is the current context. Colors (and other 

items) are always searched for h s t  in the current 

context and then, if not found, in the global context. 

An alternative, and perhaps preferable, im- 

plementation is to search in the current context, 

and then in the next context on the context stack, 

etc. Ths  may be more natural, but it undoes the 

"defaulting" that we currently get if we set the 

pagebody to red and draw a marginal note. We be- 

lieve t h s  defaulting is more important, so we have 

implemented evaluation to only search the current 

and the global context, rather than all of the ones 

on the context stack. 

Everything we have described so far is easy to 

implement. At the beginning of each page, we have 

a particular stack of contexts, whlch we save away 

in case we ever need to render that page again. In 

order to generate that data structure for a particular 

page, we must scan the dvi  file from the front to 

that page. In other words, in the presence of color, 

it is no longer possible to read the dvi  postamble 

and skip backwards on the previous page pointers 

in order to quickly find a page. On the other hand, 

the processing required to skip pages is negligible. 

In order to properly render any page, all previous 

pages must be scanned. 
Because it is trivial to write out specials to set 

the stacks to any desired state, page reversal is also 

implementable. Indeed, it is easy to elinmate the 

stacks altogether using a dvi to dvi  translator, thus 

allowing the use of simpler drivers, or translating 

the specials to a form recognized by a particular 

driver. The only trick is to use a syntax that allows 

the dv i  to dv i  program to easily distinguish those 

specials it must manipulate from those that it must 

leave alone. 

Changebars. The color mechanism we have de- 

scribed will also help with tasks other than color. 

TUGboat, Volume 1 5  (1994), No. 3 --Proceedings of the 1994 Annual Meeting 



Tomas Gerhard Roluclu 

For instance, changebars are also complicated by 

the asynchronous nature of TEX'S output routine. 

Defimng changebar on and changebar off to be 

color-type commands gives us the full nesting and 

state saving capabilities we used for color. Indeed, 

we can use the context switching commands to give 

us a vertical reference position, and define some 

changebar parameter to give a horizontal offset 

from that position, allowing dual-column change- 

bars. This solves the problem of having changebars 

span inappropriate figures and not span appropriate 

ones. 

The current implementation does not yet sup- 

port changebars, but the author feels that the 

changes should be straightforward. Indeed, as with 

color, it is possible for a dvi  to dv i  program to 

convert a dv i  file that specifies changebars into one 

that uses explicit rules. Color and color context 

specials are appropriate for tasks other than color. 

Colored backgrounds. Another use of color, espe- 

cially for slides, is in setting the current background 

color. Instead of mohfying characters and rules 

between specials, this affects the entire page back- 

ground before anything is drawn. There is no 

reason not to allow this to nest just like other color 

commands do, even though the primitives are at a 

different level. Thus, we must be able to specify the 
background color. 

Colored background with headline on first page. 

Because of the way specials are sent out, headhne 

text is emitted before any specials attached to the 

page contents. Thus, if the first page has a headline, 

that headline will occur in the dv i  file before any 

page content such as specials. Therefore, the page 

global attribute values in effect at the beginning of 

a page, or before the first character or rule in the 

dv i  file, might not be what is intended. 

To solve this problem, we define that the 

page globals in effect at the end of the page are 

what define the values for the page background, 

orientation, or other page globals. T h s  has two 

effects. The simple one is that page globals must be 

syntactically distinguishable from non-page-global 

color information. Indeed, t h s  last requirement also 

allows us to distinguish a page-global rotation from 

a local rotation. Page globals must be syntactically 
different from local attributes. 

A more important effect is that either pages 

must be fully prescanned before rendering can 

begin, or the driver must be prepared to restart the 

rendering of a page if a page global is encountered 

with different values from those currently in effect. 

Currently, many drivers prescan anyway. For those 

that do not, they cannot send out the first row of 

pixels until the entire page has been scanned anyway 

(a character at the top of the page might be the last 

character rendered in the dvi  file), so rerendering 

when necessary is not terribly inconvenient. Thus, 

to support page globals, pages must be prescanned 

or possibly rerendered. 

Paper size specification. One important page global 

is the specification of the paper size. Indeed, the 

lack of a standard for this information makes the 

driver's job much more difficult; knowing the job is 

intended for A4 paper can allow the driver to either 

request the appropriate paper, or shift or scale the 

page to fit. Certainly paper size is a typesetting-level 

and not a print-level option. Paper size should be 

specified as a page global on the first page. The 
desired paper size should be specified in the dvi file. 

Imposition of pages with colored backgrounds 

or varying paper sizes. One function of dvi  to 

dv i  programs is page imposition-where pages are 

laid out in a specific order and orientation so that 

the folded signatures contain them in the proper 

order. When pages are imposed, the semantics 

of the page global options such as paper size and 

background color change slightly; this is simply 

a complexity that must be dealt with by the dv i  

to dv i  program. It is possible to approximate 

some of these combinations using the appropriate 

dv i  commands; for instance, page background 

commands can be converted into commands to 

draw a large background rule in the appropriate 

color. 

Envelope/media selection. Page globals, such as 

paper size, might change in a particular job. For 

instance, many modern printers include an envelope 

tray; it would be convenient to have a media- 

selection page global that would allow a standard 

letter style to properly print the envelope, or select 

a sheet of letterhead for the first page of a long 

letter. Drivers should support different paper sizes 
within a single document. 

Coloring the backgrounds of boxes. Occasionally 

a user might want to color the background of a 

particular TEX box. There are several problems with 

this. The first is that the box information simply is 

not available at the dvi  level. The second is that 

the box dimensions tightly enclose the contents; 

does the user really intend to have the italic "f" 

protruding from the colored region? Finally, t h s  is 

somethmg that is easy to do at the TEX macro level 

by simply drawing a rule of the appropriate size 

208 TUGboat, Volume 1 5  (1994), No. 3 -Proceedings of the 1994 Annual Meeting 



Driver Support for Color in TEX: Proposal and Implementation 

and color before setting the box. Many things still small text and other single-color highlights. It is 

should be implemented at the T g  level. important to be able to specify what colors are 

intended to be spot colors. We need a standard for 
Colored table backgrounds. One of the more corn- 

specifying and using spot colors. 
mon uses of color is to decorate the backgrounds 

For previewing or rendering on low-resolution 
of tables-each column gets a distinct shade or 

printers, it is often useful to disable dithering for 
color. This is quite difficult to implement, although 

small fonts in order to end up with somethg that 
Timothy Van Zandt has had success with his co l  - 

is readable. 
o r tab .  sty.  The primary difficulty is obtaining 

the column dimensions-height and width-before Fountains. Another comment request is fountains. 

rendering the text of the columns. Many common These are smooth graduations of color over an 

reauirements still defv easy solution. area. For instance, many slides are rendered with ., , 

Included graphics and other objects. It should also 

be possible to include graphics and do other ren- 

dering with specials, in the way they were intended. 

The main requirement is that these types o f  specials 

be syntactically different from the color specials, so 

that dvi  to dvi programs know which specials to 

manipulate and which to leave alone. 

As an aside, it is important that the mechanism 

for including graphics respect the dvi  magnification 

and any rotation and scaling commands, so that 

imposition and scaling work correctly. In addition, 

it would be convenient to be able to easily calculate 

the size of the enclosing rectangle from just the 

special arguments so that, if nothng else, an outline 

can be drawn. The dvi  magnification should be 

respected in scaling graphics, and some standard for 

sizing/scaling included objects should be defined. 

And while we are off the topic, there is no 

excuse for not rendering Postscript graphics and 

fonts with previewers and non-Postscript drivers. 

The fine freely-available programs Ghostscript and 

ps2pk do all the hard work of rendering for virtually 

any platform; a few dozen or hundred lines of 

interface code is usually all that is necessary for a 

fail-safe interface. If you can't fully use PostScript in 

your T g  environment, it is time to complain. 

White on black It is not necessary to wait for a 

color device to support color. Even black and whlte 

printers should support the two colors black and 

white, includmg being able to render white text on 

a black background. This is useful in itself and 

for color separations. Even black and white devices 

need "color" support. 

Dithered text. When approximating gray text on the 

screen or to a low-resolution printer using dither 

patterns, the resulting image is often impossible to 

read. This is because the dither pattern sacrifices 

the high resolution needed to render characters for 

the ability to approximate gray levels. 

In professional printing, spot colors, rather 

than four-color separations, are used to render 

a background that is deep blue at the bottom and 

lighter blue at the top. A rainbow can also be 

considered a fountain. Fountains are normally 

approximated by drawing hundreds or thousands 

of narrow rules, each of a color midway between 

its neighbors. Whatever color model is chosen for 

TEX, it would be extremely nice to be able to render 

fountains. 

There are many more examples, including clip- 

ping paths, character fountains, chokes, spreads, 

and the complexities of color vision, color render- 

ing, and color models, that we will not address 

here. 

Part Two: Some Solutions 

This second part proposes a solution and imple- 

mentation for some of the problems listed above. 

T h s  implementation is used in both dvips and 

dvi  dvi,  and the code is freely available to be used 

in any manner whatsoever. 

First we will discuss a categorization of specials. 

Next, we will define a syntax, and' finally, we will 

describe some keywords and what they mean. 

Before we delve into the technical de tds ,  let 

us dispose of one objection: why not just introduce 

a little language for specials? In essence, that is 
- - 

essentially what we are doing; some might ask why 

not give it variables, types, and control flow as 

well. Of course, TEX is already a language; any 

processing that can be done at the special level 

is probably better and more portably done using 

TEX. Also, we would rather people spend their 

time learning a more practical language, such as 

Postscript. Indeed, some may consider what we are 

proposing as already unnecessarily complex-and 

they may be right. 

With even a very simple language, implement- 

ing things such as change bars, colored table back- 

grounds, and much more would be straightforward. 

We are not ready yet to define such a language, 

but we see it as an extension of what we propose 

here. 

TUGboat, Volume 15  (1994), No. 3 -Proceedings of the 1994 Annual Meeting 



Tomas Gerhard Rokicki 

Syntax and parsing. Specials are case-sensitive. 

Words are defined as sequences of characters de- 

limited by any of tabs, spaces, commas, equal signs, 

or open or close parentheses. If one of the delunlt- 

ing characters is an equals sign, then the word on 

the left of the equals sign is associated with the 

word on the right. 

The first word of the special is the keyword. The 

remainder of the special are its optional arguments. 

If a double quote occurs, everythmg up until the 

next double quote is considered a single argument. 

If a left quote occurs, the following argument 

is treated as a string without the left quote. If such 

an argument is opened as a file name, the argument 

is treated as a command to be executed, and the 

output from that command is read as the input 

from the file. 

The types of words are string, number, and 

dimension. Strings or keywords are sequences 

of numbers, digits, or any character other than 

delimiters. Numbers consist of an optional negative 

sign followed by a sequence of digits, optional 

decimal point and additional sequence of digits. 

Dimensions are numbers, followed by an optional 

true,  followed by one of i n ,  p t ,  bp, dd, cm, or mm. 

They are interpreted exactly as in TEX. 

5. Objects are everythmg else, including snippets 

of Postscript code and included graphcs. 

psfi 1 e-foo . ps 11 x=72 11 y=72 

urx-452 ury=930 rwi=500 

With the above syntax, it is easy to syntactically 

identify the type of a special without needing to 

understand the specific instances. 

Interpretation. We have introduced the idea of a 

dvi color context that can be saved and restored 

in a non-nested fashion. We allocate contexts 

dynamically as they are encountered; a macro 

package might define one for each of footnotes, 

pagebody, figures, headers, marginal notes, and 

global. The output routine will then issue the 

appropriate 'switch context' commands at each 

~o in t .  

context push header 

<header s tu f f>  

context pop 

context push pagebody 

<pagebody> 

context push figure 

<figure> 

context pop 

<more pagebody> 

Categories of specials. We divide specials into 

five categories: context switches, foreground state 

changes, background state changes, document glob- 

als, and objects. 

1. Context switches push and pop contexts onto 

the context stack by name. If the context 

named does not exist, it is created. The default 

context at startup is global . 

context <push/pop> <name> 

2. Foreground state changes set, push, or pop a 

foreground state item, such as a color. 

a t t r i bu t e  <push/pop/set> <name> 

[<val ue>] * 

3. Background state changes set, push, or pop a 

background state item, such as a background 

color or paper type. 

a t t r i bu t e  <push/pop/set> page 

<name> [ival ue>] * 

4. Document globals set some resource require- 

ment or provide some other mformation. These 

specials must always occur somewhere on the 

first page. 

context push margin-note 

<margin note> 

context pop 

<more pagebody> 

context pop 

Default values for attributes are more trouble- 

some. Consider a document that, on page ten, 

sets a specific special attribute woomp to the value 

there-it-is, and this value remains set for the rest 

of the document. If this document is reversed, the 

set would then occur at the beginning of the new 

document-but something must be done to undo 

the special at the place where page ten now occurs. 

The solution is straightforward. If a context 

stack does not have an entry for a particular 

attribute when a set occurs, the set is interpreted 

as a push; otherwise, the set is interpreted as a pop 

followed by a push. Thus, for a flat sequence of 

sets, the first wdl allocate an entry on the context 

stack for the attribute, and all others wdl modify 

that attribute. If it becomes necessary to reset an 

attribute to its default value, a pop will suffice. 

The following implementation effectively flat- 

tens all contexts into a s im~le  seauence of set 
attr ibute <push/pOp/set> attributes and pops. Pops ar; only issued to reset 

<name> [<value>] * 

TUGboat, Volume 15  (1994), No. 3 -Proceedings of the 1994 Annual Meeting 



Driver Support for Color in TEX: Proposal and Implementation 

attributes to their defaults; there are no correspond- should consider rerendering the page from the 

ing pushes except the implicit ones introduced by beginning after performing ( h s h i n g )  a prescan. 

the sets. If the driver has not yet rendered any characters 

Thus, with the provided C code, it is trivial to or rules, or if the driver is scanning rather than 

integrate color contexts into an existing driver. rendering, this return code can be ignored. 

Implementation. Implementing these specials is 

straightforward. The key idea is that we need to 

maintain the stack states for each page and restore 

them appropriately. In addition, an implementation 

can choose between always prescanning the first 

time a page is encountered, either on a page 

or document basis, or possibly re-rendering the 

page if it should turn out to be necessary. Our 

implementation supports both possibilities. 

Essentially, the code provided flattens all con- 

text specials and attribute settings to a simple 

sequence of attribute sets and pops. All page spe- 

cials are moved to the very beginning of a page, 

and all document specials are moved to the very 

beginning of a document. The dvi dvi program pro- 

vided does t h s  from the provided dvi file; for all 

other drivers, this special translation and movement 

happens dynamically. 

When a new dvi file is started, the driver is 

responsible for calling i n i  t c o n t e x t s o  to initialize 

the various data structures. At the beginning and 

end of each page, the driver should call bopcon- 

t e x t s  () and eopcontexts (). These need not come 

in matched pairs; if page rendering is interrupted 

for any reason (such as the user selecting the next 

page before rendering is completed) the driver must 

not call eopcontexts() but should instead simply 

call bopcontexts() for the next page. 

The exception to this, of course, is that each 

page must be fully scanned at least once, and 

eopcontexts () called, before any subsequent page 

can be rendered. 

The driver must provide the subroutine dospe- 

c i  a1 () that is responsible for parsing and under- 

standing specials in the normal manner. Typically 

this already exists in almost all drivers. But rather 

than calling this subroutine every time a special 

is encountered, the driver should instead call the 

supplied routine contextspeci a1 0. T h s  subrou- 

tine will check if the special is one of the context 

specials described here, and if so, translate it to the 

appropriate flat specials, calling dospeci a1 () for 

each one. If the special is not a context special, then 

the driver's dospeci a1 () routine is invoked. 

If the special was a page special or a document 

special, and t h s  is the first time this page has been 

encountered, contextspeci a1 () wdl return the 

special value RERENDER indicating that the driver 

To identify pages, the driver should also pro- 

vide a routine called dvi 1 oc () that returns a long 

value indicating the byte position in the dvi file. 

The call to bopcontexts() at the beginning 

of a page may cause the dnver's dospecial () 

routine to be invoked many times, once for every 

outstanding page attribute and local attribute. 

To handle document global specials, the entire 

first page must always be fully prescanned. 

The way the code works is as follows. At 

the beginning of each page that has not been 

previously encountered, the full stack contents of 

each context are saved and associated with the dvi 

file location for that page. If the page has been 

encountered, then the stack contents are restored, 

issuing any necessary set attribute specials for 

current attributes in the global context. In addition, 

any page attribute values are set. The context stack 

is set to hold just the global context. 

When a push context special is encountered, 

the context associated with that name is found. If 

none exists, one is allocated. If the context stack has 

more than just the global context, then the attribute 

values from the context on top of the context stack 

are hidden. In any case, the attribute values for the 

context being pushed are made visible. 

Attribute values are hidden by searching for the 

same attribute in the global context. If one exists, 

then its value is emitted with a flat set attribute 

special. Otherwise, the value is reset with a pop 

attribute special. 

Attribute values are made visible by simply 

executing a flat set attribute special for each value. 

When a pop context special is encountered, 

the context stack is checked to make sure it has 

at least two entries. If not, an error routine is 

called. Otherwise, the top context is popped, and 

all attribute values in that context are hidden. If 

the resulting context stack has more than just one 

context, then the attributes in that context are made 

visible. 

When an attribute push special is encountered, 

then the attribute name and value pair are added 

to the current context, and the new value is made 

visible. 

When an attribute set special is encountered, 

if the context on top of the context stack has such 

an attribute, than that attribute is changed and the 

new value made visible. Otherwise, the set attribute 

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 



Tomas Gerhard Rolucki 

special is treated precisely as though it were a push the code, is available in both dvi ps and dvi dvi on 

attribute special. l abrea .  s tanford.edu.  

When an attribute pop special is encountered, 

the context on top of the context stack is searched 

for that attribute. If the context has no such 

attribute, an error is reported. Otherwise, the 

attribute is hidden, and the attribute/value pair is 

popped from the context. If the same attribute 

exists in the current context (further down on the 

stack), then that attribute value is made visible. 

Note that attributes do not need to nest "cor- 

rectly"; the following sequence is legal: 

a t t r i b u t e  

<text>  

a t t r i b u t e  

<text>  

push color  red 

push changebar on 

a t t r i b u t e  pop color  

< text>  

a t t r i b u t e  pop changebar 

In addition, pushng and popping contexts 

simply makes them visible and hidden; it does not 

affect their values. Thus, assuming that the global 

context is on the context stack, after the following 

sequence, the color in the global context will be 

green: 

a t t r i b u t e  push color  red 

context  push header 

context  push global 

a t t r i b u t e  s e t  color  green 

context  pop 

context  pop 

Backwards compatibility. For backwards compati- 

bility, existing dvi ps specials are fully supported. 

Most specials fall into the object category and 

are automatically passed through to dospeci a1 0. 

These specials include those for EPSF inclusion and 

literal Postscript code. 

The existing color macros are trivially sup- 

ported by translation. The existing color macros 

never change contexts (they always use the implicit 

global context), so the semantics are unchanged 

with one exception. The explicit color set macro 

is now legal even when there are colors on the 

color stack; only the topmost entry on the stack is 

affected. 

The four specials header, papersi ze, 1 and- 

scape, and ! are document global specials and are 

translated as such. The next release of dvi ps will 

also allow papersize and landscape specials to 

apply on a page basis. 

The code implementing these color specials, 

along with documentation describing how to use 

Future work. We plan to continue the development 

of special capabilities using this form of interface. 

In particular, we hope to add support for colored 

box backgrounds, changebars, and s d a r  things 

through a simple language. As we or others 

enhance the released code, any drivers that use this 

will automatically get the new capabilities. And, the 

dvi dvi program will provide full support for these 

specials for those drivers that don't use the code. 

Acknowledgments. The ideas in this paper are pri- 

marily derived from discussions with James Hafner, 

David Carlisle, Leslie Lamport, Frank Mittelbach, 

Sebastian Rahtz, and Tim Van Zandt. The confusion 

and complexity is attributable to me. I can only 

hope that this code wdl evolve quickly and stabilize 

into a useful and powerful base for using color in 

TEX. 

212 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 


