
40 TUGboat, Volume 15 (1994), No. 1

. . \tenrm t

. . \ tern h

..\hbox(O.O+O.O)xO.O0002, glue set - 0.59999fi1,
shifted -6.0

. . . \glue 0.0 plus l.Ofil minus l.Ofi1

. . \hbox(O.O+O.O)xO.O

. . . . \tensy 7

. . .\kern 1.2

. . . \glue 0.0 plus 1.Ofil minus l.Ofil

. .\tenrm e

.

. .\tenrm g

. .\tenrm .

..\penalty 10000

..\glue(\parfillskip) 0.0 plus 1.Ofil

..\glue(\rightskip) 0.0

.\glue 0.0 plus l.Ofill

! OK (see the transcript file).
<output> {\showbox 255

\shipout \box 255 \advancepageno)
\break ->\penalty -\OM

A summary and a wish

The methods described here have limitations and
disadvantages, so they cannot be used in every
situation. Method 2 still has a few unsolved
problems. As a result, the macros described here
cannot be canned and used 'as is'. They should be
carefully studied and understood, so that they could
be applied to practical problems. This means that
they are beyond the grasp of beginners but, because
of their power, they may provide the necessary
incentive to many beginners to become full fledged
wizards.

It would be so much easier to solve the three
problems discussed here if the \ lastbox command
could recognize characters of text, or if a new com-
mand, \ las tchar , were available for this purpose.
This is a private wish that I hope will be shared by
readers.

Finally, I would like to thank the many people
who have responded to the original OTR articles of
1990. I would like to think that I was able to help
some of them, and I know that their comments,
questions, and criticism have helped me become
more proficient in this fascinating field of OTR
techniques.

References

1. Salomon, D., Output Routines: Examples and
Techniques. Part 11, TUGboat 11 (2), pp. 212-236,
June 1990.
2. Haralambous, Y., Private communication.
3. Graham, R. L., et al., Concrete Mathematics,
Addison-Wesley, 1989.
4. Bell, E. T., Men of Mathematics, Simon and
Schuster, 1937.
5 . Knuth, D. E., Computers and Typesetting, vol.
E, Addison-Wesley, 1986.

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330-8281
dxsQsecs.csun.edu

Verbatim Copying and Listing

David Salomon

A general note: Square brackets are used through-
out this article to refer to The m b o o k . Thus 1391
refers to page 39. Also, the logo OTR stands for
'output routine', and MVL, for 'Main Vertical List'.

Introduction

Methods are developed, and macros listed, to solve
the following two problems. Verbatim copying is
the problem of writing a token string verbatim
on a file, then executing it. Verbatim listing
involves typesetting a token string verbatim, in
either horizontal or vertical mode.

We start with a short review of \edef. In
'\edef \abcC\xyz \kernlem)', the control sequence
\xyz is expanded immediately (at the time \abc is
defined), but the \kern command is only executed
later (when \abc is expanded).

The same thing happens when \abc is defined
by means of \def, and is then written on a file. Thus
'\write\auxC\abc)' writes the replacement text
that would have been created by \edef \abcC . . . 3.

Sometimes it is desirable to write the name
of a control sequence on a file, rather than
its expansion. This can be done either by
'\write\aux{\noexpand\abc)' or, similarly, by
'\write\aux{\string\abc)'. The former form

TUGboat, Volume 15 (1994), No. 1 4 1

writes a space following \abc, while the latter one
does not.

Verbatim copying

With this in mind we now consider the following
problem: given an arbitrary string, containing text,
control sequences, active characters, and special
characters (such as #%{I), first write it on a file
without expansion (verbatim), then expand it.

Before delving into the details, here are some
examples that show that this problem is practical:

1. When writing a textbook with exercises and
answers, the author would like to be able to say:

My usual disclaimer applies heavily to this
material and is therefore repeated: the macros
presented here are simple. Each has its limitations,
and can be used for certain applications only. The
macros should therefore not be copied and used
verbatim. They should be carefully studied and
fully understood by the reader, so that they could
be modified for specific applications.

Approach 1. We present a number of macros, all
based on catcode changes. The first two change the
catcodes of all the special characters. The other
three change the catcodes of just a few characters.
In between the two groups, we illustrate how the
macros can be modified to handle a specific problem,
namely, writing index items, with page numbers, on
a file.

\endanswer Basic verbatim copying: \VwriteA. To avoid

and have the answer written verbatim on a file. The
file can later be input, to typeset all the answers
in an appendix. However, while the book is being
written, the author may also want, for proofreading
purposes, to typeset the answer right following the
exercise. Note that an answer may contain many
control sequences, and may be long.

2. When writing a book on ?$J, the author
would like t o have an active character (say '-'),
such that '-{\baselineskip)=24pt1 would write
\basel ineskip on a file (perhaps with the page
number, for later preparation of an index) and also
execute ' \baselineskip=24pt1.

We develop two approaches to this problem.
The first one uses catcode changes to suppress the
special meanings of certain characters before the
string is read by ?QX. It is then easy to read the
string and write it verbatim on a file. However,
in order to also expand the string, all characters
should have their normal catcodes. This is done
by writing the string on another file and reading it
back immediately. This way, the string is parsed
into tokens that get their normal catcodes, and can
later be expanded.

In the second approach no catcodes are modi-
fied; the string is input as usual and tokens created.
The string is then scanned, token by token, to
identify the control sequence tokens. Expansion is
avoided either by placing a \noexpand in front of
each control sequence, or by temporarily redefining
each control sequence as \ re lax (which is non-
expandable). The string can then be written on
a file with nothing expanded. Following which, all
control sequences get back their original meanings,
and the string can be expanded in the usual way.

expansion we change the catcodes of the special
characters, such as '$', '#' and '\', to 12 (other).
This way, the '\' is no longer the escape character,
so TEX does not recognize any control sequences,
and there is nothing to expand. The catcode
changes should, of course, be done locally, in a
group. Macro \VwriteA below starts a group, does
the catcode changes, and expands \aux. Macro
\aux absorbs the argument, does the \wri te, and
closes the group.

The following is a representative expansion
'\VwriteA{te xt#$%&--\a\x f in) ' . The argu-
ment, which seems to belong to \VwriteA, is
actually absorbed by \aux. Also, since the actual
writing is done in the OTR, it is possible to write
the page number on the file, even in braces, as
above.

Any active characters that may appear in our
strings should, of course, also be sanitized. In the
example above the vertical bar ' I ' was sanitized,
since we declare it active and use it for verbatim
listings. The braces, on the other hand, were not
sanitized, which makes it possible to enclose the
argument in braces (but then the argument cannot - -
contain arbitrary braces, only balanced ones).

42 TUGboat, Volume 15 (1994), No. 1

Verbatim copying with braces. Macro \VwriteB expansion, is also typeset in the document. In the
below is a slightly different version that does sanitize case of index items, the user can write the control
the braces. The argument can now contain arbi- sequence twice, once outside the ' - ' to expand it,
trary braces, but it must be delimited by something and once inside the ' - ' to write its name on the file.
else (the string 'endP' in our case). Thus '\TeX^ [\TeXI 0'.

An example. As a practical example, we use
\VwriteA to illustrate the creation of a raw index
file. The following macros declare the ' - ' an active
character to write index items (with page numbers)
on a file. They also use \ fu tu re le t to allow silent
index items (items that should be written on the
file, but should not be typeset).

Typical uses are ̂ {kerning), [\kern1 0 and
- [B . -L . 1 {User}. Up to two arguments can be
specified, and are written on the index file as one
string (with the page number). However, only the
main argument (in braces) is typeset. The optional
argument, in brackets, is silent.

This example is simple and easy to understand,
but it is not completely general. The problem is
that an item such as '-\TeX1 is expanded when the
\f u t u r e l e t sees it (before sanitizing). Therefore,
its expansion, rather than its name, is written on
the file. When the item is enclosed in braces
'-C\TeX)', the \ fu tu re le t only sees the '(I, so the
item is not immediately expanded. After sanitizing,
its name is written on the file. However, because of
the sanitizing, the name of the item, rather than its

In general, a way is needed to write the contents
of any string, with no expansion, on a file, then
expand it. Unfortunately, sanitizing is done by
changing catcodes and, once a catcode is assigned
to a token, this assignment is permanent [39] and
cannot be changed. A solution exists, however, and
is developed below.

Verbatim copying with an auxiliary file. De-
veloping the solution is done in three steps. In step
1. a simple macro, \VwriteC, is developed that can
write strings on a file without expanding control
sequences. Its limitations are: (a) The macro san-
itizes certain characters so, after writing the string
on a file, it (the string) cannot always be expanded;
(b) A multi-line string is written on the file as one
line.

In step 2, limitation (a) above is removed.
Macro \VwriteD is a generalization of \VwriteC,
which does the following: The string is written on
the file as before, and is then written on another
file which is immediately \ input. When the string
is read back, all tokens get their normal catcodes,
and the string can be expanded as usual.

In step 3, macro \VwriteD is modified, & la
\e lp below, to scoop up one input line at a time.
The result is called \VwriteE. This way, a multi-
line string is written on a file line by line. The
string can also be long, since only one line need be
saved at a time.

Note that\VwriteE is a generalization of macro
\VwriteD which, in turn, has been developed from
\VwriteC. The reader is advised to carefully follow
the development of all three macros, however, since
each has different features and involves different
ideas that can be used for other problems, not just
verbatim copying.

Step 1: Verbatim copying with a toks register.
To write a string on a file without expansion, it is
placed in a toks register, and then written from the
register.

This works since the control sequence '\the1 creates
a string of tokens, all of catcode 12, except spaces.
Fortunately, ' \ the' can be applied to a \toks
register. Note that this illustrates an advantage of
\toks registers over macros, since '\the' cannot be
applied to a macro. Trying to say:

TUGboat, Volume 15 (1994), No. 1 43

would expand \aux and all the commands in it.
Things such as '\noexpand\aux' or ' \str ing\aux'
would simply write the name of the macro, not its
contents, on the file.

In practice, the string to be written on a file is
the argument of a macro, so the actual code is:

This works since \expandafter is a one-step ex-
pansion. It expands '#I' into individual tokens,
but does not expand the tokens further. Our first
version is thus:

Following which, the macro can be expanded
by, e.g.: '\VwriteC a$x\leO$\c C\vrule l\endP'
or '\VwriteC X\hskiplOpt\sum\endP'

Step 2: Verbatim copying with an auxiliary
file. The string written on a file cannot, in general,
be expanded by our macros, since the catcodes
of the characters '#%{)' (and of the space) were
changed. Trying to say, e.g.:

might produce wrong results, or an error message,
if the string contains a '#', an ' & I , or any braces.

Macro \VwriteD below solves this problem by
writing the string on a second file, and reading
it back immediately. Upon reading, the string is
parsed into tokens that get their normal catcodes.
The string can now be expanded. This is a general
(albeit slow) solution to the problem. 7&X is
coerced into scanning the same string twice, the
first time with special catcodes, and the second
time, under normal conditions.

Step 3: Verbatim copying of a multi-line
string. We start by developing a macro \e lp (short
for End Line Parameter), whose single parameter
is delimited by the end of the line. It is used
to pick up an entire input line at a time. We
cannot simply write \def \elp#IA-M{. . .) since the
- -M would terminate the current line and send Tl$
looking for the definition {. . .) on the next line.

So we try to change the catcode of the end-
of-line (carriage return) character. Initially we try
to change it to 13 (active). The first attempt is
'\def \elp#I--M{\catcode ' \^-M=13. . .)', but this
does not work since, when Tl$ finds the catcode
change, it has already scanned and determined
what the argument is. We have to change the
catcode before \e lp is expanded. The definitions
\catcodeC\--M=13 \def \elp#l^^M{. . .) work, but
this means that \e lp can only be used when the
catcode change is in effect (i.e., inside a group).

A similar solution defines \e lp in \obeylines
mode 13521 (in which - ^ M is active). Thus
'{\obeylines\gdef \elp#I--M{. . .). . . I1 . It has
the same disadvantage as above.

A better solution is to define \e lp without a pa-
rameter, change the catcode inside \e lp (by means
of \obeylines), and then expand another macro,
\getpar, that actually picks up the argument. The
result is:

Macro \e lp performs the catcode change, and
expands \getpar. Macro \getpar is thus always
expanded when is in \obeylines, but \getpar
is also defined inside an \obeylines. The fact that
its definition is on a separate line means that its
parameter, #I , is delimited by an end-of-line. The
\endgroup in \getpar terminates the effect of the
catcode change.

The next step is to realize that the catcode
of ^ ^ M can be changed simply to 12 (other), and
there is no need to bother with active characters.
Perhaps the best solution is:

44 TUGboat, Volume 15 (1994), No. 1

\def\elp(\begingroup% 2. Macro \aux is defined when the catcode of
\catcoder\--M=12 \elpAux) (return) is 12. Therefore, every line in the

(\catcoder\--M=12 \gdef \elpAux#l--M(% definition of \aux must be delimited by a '%'.
\message{'#l')\endgroup)) Otherwise the end of line would be typeset as

The catcode change is localized by means of
\begingroup and \endgroup. An auxiliary macro,
\elpAux is used to actually pick up the argument.
The macro can be used anywhere.

After this introduction, macro \VwriteE is
presented. It can read a long, multi-line, argument
and write it on a file line by line. The idea is to
have macro \aux scoop up one line of the source
string as its argument, write it on the file, then
expand \VwriteC recursively until a certain string
(\endP in our case) is found, that signals the end of
the argument.

The main difference between \VwriteE and
\VwriteC is the definition of \aux. The version of
\aux that's expanded by \VwriteE below is defined
in a group where the catcode of (return) is set to 12.
It uses the principles of \e lp to scoop up one line
of the argument, write it on the file, and expand
\VwriteE recursively.

A typical expansion now looks like:

Any t e x t . . . \VwriteESA{\bf abc) \B
I l \halign(#\crl\cr)\TeX
x$\yy@#%-&-?)\it C\c
\endP
. . .more t e x t

Notes:

1. The \endP must be on a line by itself, and must
start on column 1. The user may, of course,
change from '\endP' to any other string.

\charr015 in the current font. (The table on
[367] shows that '015 is the character code of
(return) .)

3. The temporary macro \next is defined by
'\gdef' instead of by ' \ le t ' , since it is defined
inside \aux and \aux is defined inside a group.

4. It seems that steps 2 and 3 can be com-
bined. It is suggested that the reader develop
a macro \VwriteF with the combined features
of \VwriteD and \VwriteE.

5. The three macros above write the value of
the toks register \str on the file. They
therefore cannot use a delayed \write, and
must use \immediate\write. Trying to say
' \wr i te\out(\ the\str) ' would delay all the
write operations to the OTR, where register
\str may contain the string from the most
recent write, or may even be undefined.

Approach 2. In this approach there are no catcode
changes (except that \obeyspaces is used locally,
during scanning). The string is input and is parsed
into tokens in the normal way. This way, our
macros can expand it by simply saying '#I,. The
first version, \VwriteM, scans the string of tokens
and inserts a \noexpand in front of every control
sequence token. The second version, \VwriteN,
does the same scanning, and changes the meaning
of every control sequence to \relax. The scanning
is done with macros \scan and \onestep, which
are based on the last example on [219].

Version 1: verbatim copying with \noexpand.
Macro \onestep receives the next token in the
string, checks to see if it is a control sequence (by
comparing its catcode to that of \ re lax) and, if
it is, inserts a \noexpand in front of it. The new
string is created, token by token, in the toks register
\ s t r . The only step that needs detailed explaining
is macro \temp. It is important to understand
why this macro is necessary (why not simply say
'\immediate\write\out(\the\str)'), and why the
use of \edef ?

Consider the expansion '\VwriteM(a\TeX)'.
When scanning is complete, the toks register
\str contains 'a\noexpand \TeX ' (including the
spaces). Now '\immediate\write\out(\the\str)'
would write that string (including the \noexpand)
on the file, as in approach 1 above. Defining
\temp by means of \def would make ' \ the \s t r l
the replacement text of \temp, so the command

TUGboat, Volume 15 (1994), No. 1 45

'\immediate\write\out{\temp)' expands \temp
and would be identical to writing ' \ the \s t r7 . The
\edef, however, creates 'a\noexpand \TeX ' as
the replacement text of \temp. During the write
operation \temp is expanded, which is when the
\noexpand does its job and prevents the expansion
of \TeX.

Note the following:

1. There is a (local) use of \obeyspaces. Without
it, spaces are skipped when TEX determines the
arguments of \scan.

2. Because no catcodes are changed, the four
characters '#I{) ' cannot appear in the argu-
ment of \VwriteM. A '#' in the argument will
become '##' when the argument is absorbed.
A '%' will send T)$ looking for the rest of
the argument on the next line. Unbalanced
braces will cause an error message when the
argument is absorbed. Balanced braces would
be absorbed, would be used to nest groups in
the argument, and will not appear on the file.
For this reason, the use of \VwriteM is limited
to cases where these characters do not appear
in the strings to be written on file.

3. The \noexpand command adds an extra space.
Thus '\,VwriteM{\?M)' writes ' \? M' on the file.
To suppress the space, use \ s t r i ng instead of
\noexpand in

This may look better, but may give wrong
results in some cases. A typical example is

the expansion '\VwriteM(\bf M)', that would
write '\bfM' on the file.

4. Our macros do not attempt to identify active
characters. If the string includes any active
characters, their expansions would be written
on the file. It is, however, relatively easy to test
for tokens of catcode 13 and insert a \noexpand
in front of them.

Version 2: verbatim copying with \relax.
A different way of avoiding expansion during file
output is to temporarily turn an expandable control
sequence into a non-expandable one. The simplest
way of achieving this is to \ l e t the control sequence
be equal to \relax. Thus

will write \abc on the file. Using this method we
illustrate a different solution to the same problem.
In this version, macro \onestep identifies all tokens
in the string that are control sequences, and sets
each equal to \relax.

After every control sequence in the string has
been changed in this way, the string is written on
a file. This version is similar to the previous one,
the most important difference being that the final
quantity being written on the file is '#I' and not
the replacement text of a macro or the contents
of a toks register. As a result, any braces in the
argument will be written on the file (but see below
for a subtle problem with braces).

The following points should be mentioned:

46 TUGboat, Volume 15 (1994), No. 1

1. Macro \VwriteN has an extra pair of braces,
so everything done in it is local. This way, the
setting of control sequences to \ re lax is only
temporary.

2. Imagine the string 'abc\let hjk\xl. The
control sequence \ l e t is first identified, and
is set to \relax. Later the control sequence
\x is identified, but saying \ le t \x=\ re lax
fails because \ l e t is now equal to \relax.
This is why the command ' \ le t \Let=\ le t l
has been added. Macro \onestep uses \Let
instead of \ l e t . Of course, a string such as
' . . . \Let. . . \xl would cause the same problem,
so this method cannot handle such strings.

Exercise: What about the string ' . . . \Let'?

Answer: If \Let is the last control sequence
(or the only one) in a string, our macros can
handle it.

3. The above considerations apply to other com-
mands used by \onestep, such as \ i f cat
and \noexpand. In principle, they should be
redefined.

4. The '#' and active characters still cannot appear
in the argument to \VwriteN, for the same
reason as above.

5. Braces in the argument still must be balanced,
but will be written on the file as mentioned
earlier. There is another, subtle, problem as-
sociated with braces. Consider the expansion
'\VwriteN{(\bf M))'. At a certain step dur-
ing the scanning, the argument of \onestep
becomes the group '\bf M'. The \noexpand#l
thus becomes '\noexpand\bf M' which type-
sets the 'M'. The '\Let#l=\relax' becomes
'\Let\bf M=\relaxl which lets \bf to 'M' and
typesets the '='. As a result, this version too,
should only be used in limited cases.

6. Macro \scan does not use tail recursion because
it has to expand either \onestep or itself with
different parameters. As a result, each recursive
expansion of \scan saves two \ f i 's in the
parameter stack, whose size is limited. A long
argument will thus exceed W ' s capacity. This
limitation is removed in the indexing example
below.

7. This method works for an \immediate\write
only. A non-immediate \wri te is executed in
the OTR, where the various control sequences
are no longer equal to \relax. This limitation,
too, is removed in the indexing example below.

Indexing example. We again use indexing as
an example to illustrate a general solution to the
problem of verbatim copying. The macros for index-
ing discussed below are general and sophisticated

but -in the opinion of the author-still readable.
Among other things, they show how to handle
general strings, and how to write the page number
with the string. The basic task of the macros is to
pick up certain items (flagged by a '-') and write
them on the . idx file, which is later processed by
MakeIndex (and, perhaps, other utilities) to create
the final index.

The circumflex '^' is defined, as usual, to be
the indexing character. It is declared active and is
defined to be macro \Caret. A valid index item for
the macros below must be one of the following:

- l abc l where abc may contain any special
characters (including unbalanced braces). The
string abc is typeset verbatim, and also written
verbatim on the . idx file.
- [abc] where abc is as before. This is a 'silent'
index item that's only written on the . idx file
but is not typeset.
^{xyz) where xyz may contain special charac-
ters (including a '-') but not a ' \ ' (since it is
sanitized during indexing), and not unbalanced
braces. The string xyz will be typeset and
written on the . idx file.

It is, however, invalid to say ^\abc because
the ' \ ' is sanitized during indexing (one should say
'^ [\abc] \abc' instead). Also the argument of a
macro cannot have index items, since all tokens in
the argument get their catcodes when the argument
is absorbed, and those catcodes cannot be changed
later.

Here are examples of valid index items (see
Refs. 1, 2 for the special meaning of the ' ! ', the 'Q'
and the parentheses).

- [character ! special] I \pop I
[verbat im!l ist ingl (1 ^ [cmsylOl
1 1 - [1 ^ I ! as an index] [nullQ<null>]

M I \ T e X ^{#$%-&I
-{page break) [\dvi\ f i l e l

Exercise: How can one index a left (or right)
brace?

Answer: I t is invalid to write '-CC)'. An item of
the form " [)I ' is fine, but it creates a record of the
form '\indexentry{I)<l)' on the . idx file, which
cannot be properly read later. The item '- I3 I ' is
fine but is not silent. A good choice is ' - [I3 I I '.
It is silent and it writes '\indexentry(1) 1)(13' on
the file. An even better choice is '- [I) I @ (l e f t
brace)] '. The part on the left of the 'Q' is the sort
key, and the part on the right will be typeset (the
print key).

If the '-' is used outside math mode, it becomes
macro \Caret, which expands \indexT, which, in

TUGboat, Volume 15 (1994), No. 1 47

turn, uses \ fu tu re le t to peek at the following
token. If that token is a ' I ' , macro \inxC is
expanded. If it is a ' [', macro \inxB is expanded;
otherwise, \inxA is expanded. Each of these macros,
in turn, expands \ f in idx which is responsible for
the rest of the job.

Macro \f in idx uses the primitive \meaning, so
a short review of \meaning is necessary. The control
sequence \meaning [213] creates a short explanation
of its argument (such as 'the letter', 'macro' or 'math
shift character'), followed by the tokens that make
up the argument, with catcode 12 attached (except
spaces, which get catcode 10). If the argument
is a macro (e.g., '\def \abc#l ; (A\B$#l-&\C-)'),
then the commands '(\tt\meaning\abc)' result
in 'macro : #l ; ->A\B $#le&\C -'. The unnecessary
tokens at the beginning can easily be stripped off
by using > as a delimiter. This is done by macro
'\def \str ip#l>{) ' .

Macro \ f in idx places the index item in a
macro (\idxitern) and uses \meaning to obtain
a string consisting of the individual tokens of
the index item, each with catcodes as shown above.
This string (together with other things) becomes the
replacement text of macro \INDEX when \f in idx
says:

A typical definition of \INDEX is thus:

\wite\inxC\string\indexentry(abc)%
(\noexpand\f ol io))

\INDEX is then immediately expanded. Its expan-
sion, however, is the \write command, which is
not immediate, and is therefore saved, as a whatsit,
in the MVL, to be executed in the OTR. Note
that macro \INDEX is no longer needed, and can
therefore be redefined when the next index entry is
encountered.

Here is the complete set of indexing macros:

\def\tmpC(\makeother\)\makeother\(\inxC)
% deact ivate braces during - [. . . 1 & - 1 . . . I
\def \tmpB(\makeother\)\makeother\(\inxB)
\def\inxA#l(\finidx(#1)#1)
\def \inxB [#I] (\f inidx(#l))
\def\inxCI#ll(\finidx(I#1I)l#ll~
\def \str ip#l>C)
\long\def\finidx#l(\def\idxitemC#l)%

\edef\INDEX(\write\inxC\string\indexentry%
{\expandafter\strip\meaning\idxitem)%
(\noexpand\folio)))%

\INDEX \endgroup)

A Warning. If a word is immediately followed by
an index item, and the word happens to be the last
one on the page, there is a chance that the item
would be written on the index file with the number
of the next page. The reason for this is that the
indexing macros generate a (delayed) write, which
becomes a whatsit in the MVL. Such a whatsit is
executed in the OTR. when the page is shipped out.
If the whatsit follows the last line of text on the
page, there is a chance that the page builder would
leave the whatsit in the MVL when preparing the
current page. In such a case, the whatsit would
become the first item on the next page.

A similar thing may happen if an index item
immediately precedes the first word of a page. The
item may end up being written on the index file
with the number of the previous page.

A typical example is ' . . . - Cabcl xyz. . . '. If
'xyz' happens to be the first word on page 2, index
item 'abc' may be written on the file with page
number 1. If the document is short, the user
may notice such a thing, and correct it by saying
' . . . \hbox(- [abc] xyz). . . '. This firmly attaches
the index item to 'its' word (but then the word can
no longer be hyphenated). If the word 'xyz' starts a
paragraph, the user should change the mode to hor-
izontal by ' . . . \leavevmode\hbox(- Cabcl xyz) . . . '

Verbatim listing

We now turn to the other aspect of verbatim
namely, verbatim listing. The problem is to typeset
verbatim any string of tokens, including spaces,
braces, backslashes, or any other special characters.
The problem is only important to people who write
about T&X. Most other texts can get away with
'\$' or '$\($' to typeset any occasional special
characters.

We start with a short review of interword
spaces. A space (between words) is glue whose
value is determined by the font designer. It is
usually flexible but, in a fixed-space font, it should

48 TUGboat, Volume 15 (1994), No. 1

be rigid (its value for font cmttl0, e.g., is 5.25pt).
The size of a space is affected by the space factor, so
that spaces following certain punctuation marks get
more stretch (and sometimes even greater natural
size). Naturally, this discussion applies to any
character with catcode 10 (space being the only
character assigned this catcode by INITEX [343]).

Consecutive spaces are treated as one space.
To defeat this, the p la in format offers macro
\obeyspaces. The format starts by defining 13511
' \ de f \~pace (~) ' . Thus \space is a macro whose
replacement text is a normal space (affected by
the space factor). Next, \obeyspaces is de-
fined as a macro that declares the space active
'\def \obeyspaces(\catcode '\,=13)', and p la in
says (on [352])
(\obeyspaces\global\let,=\space)
This means that when \obeyspaces is in effect
(when the space is an active character) the space is
defined as \space.

To get spaces that are not affected by the space
factor, one of the following methods can be used:

a Change the sf codes of the punctuation marks
to 1000 by means of \frenchspacing.

a Use a control space '\u'. Control space
[290] is a primitive that inserts glue equal
to the interword space of the current font,
regardless of the space factor. Defining the
space as a control space is done by saying
'~ \obeyspaces\gl~bal \ le t~=\~~' .

a Assign nonzero values to \spaceskip and
\xspaceskip.

Now we are ready for the verbatim macros.
Four macros are discussed here, all extensions of
macro \e lp above. The aim is to develop macros
that would typeset any given text, verbatim, in
font cmttl0. The main problem is that the text
may include special characters, such as '\' and
'#', so these have to be turned off temporarily.
Another problem is that the text has to be picked
up line by line, and each line typeset individually.
We shouldn't try to absorb the entire text as a
macro argument since there may be too much of
it. Other problems have to do with blank lines and
consecutive spaces.

We start with macro \san i t i ze that's used, as
usual, to change the catcodes of certain characters
to 12 (other). It is similar to \dospecials 13441.

Now comes the main macro \ttverbatim. We
tentatively start with the simple definition

but the final definition below also contains
'\def \par(\leavevmode\endgraf 1' (in addition to
a few other things). This is necessary because of
blank lines. A blank line becomes a \par in the
mouth, and \par has no effect in vertical mode. We
thus have to switch to horizontal mode and do an
\endgraf, which is the same as \par.

Macro \gobble gobbles up the end-of-line fol-
lowing the \ttverbatim, and expands \get l ine
to get the first line of verbatim text. Without
gobbling, \get l ine would read the end-of-line and
translate it into an empty line in the verbatim
listing.

Macro \ge t l ine gets one line of text (& la
\elp), typesets it, executes a \par, and expands
itself recursively. When it senses the end of the
verbatim text, it should simply say '\endgroup' to
revert to the original catcodes. The end of the text
is a line containing just '\endverbatiml (without
any preceding blanks), and the main problem facing
\get l ine is to identify this line. The identification
is done by means of \ i f x , which compares two
strings, stored in macros, character by character.
The point is that an \ i f x comparison is done
by character code and category code. When the
'\endverbatim' is read, sanitizing is in force, and
the ' \ ' has catcode 12 (the eleven letters have their
normal catcode, 11).

We thus cannot simply define a macro
'\def\endverb(\endverbatim)'
and then compare ' \ i f x\endverb\aux', because the
string in macro \endverb starts with ' \o ' instead of
' \12 ' . The solution is to define \endverb in a group
where the '\' has catcode 12. Thus

Now \get l ine can say \ i f x\endverb\aux.
One of the verbatim methods below uses the

vertical bar ' I ' to delimit small amounts of verbatim
text. This is done by declaring the ' I ' active. Since
we want to be able to include the ' I ' in verbatim
listings, we sanitize it in \ttverbatim by saying
'\makeother\ I '.

\def\makeother#l(\catcode'#l=12\relax) After using the macros for several years, I was
\def\sanitize{\makeother\%\makeother\#% surprised one day to see a ? listed as i. A closer

\makeother\-\makeother\\\makeother\)% look revealed that it was the pair ? ' that was listed
\makeother\(\makeother\&\makeother\$% as j,. It took a while to figure out that, in the cmtt
\makeother\-\makeother\-\makeother\--M% fonts, the combinations ? ' and ! ' are considered
\makeother\)

TUGboat, Volume 15 (1994), No. 1 49

ligatures and are replaced by i and i, respectively
(Ref. 3, p. 36).

The solution is to declare the left quote ac-
tive and to define it as macro \ lq. This is why
\ t t verba t i m and its relatives include the command
'\catcode'\ '=I3', and why the code
'{\catcode ' \ '=13\relax\gdef ' {\relax\lq))' is
also necessary (see also [381]).

The definitions of the two macros should now
be easy to understand.

Exercise: The verbatim text above contains
\endverbatim, but this string terminates verbatim
listings. How was the text produced?

Answer: The string \endverbatim is only assigned
its special meaning when it appears on a line by
itself, with no preceding spaces, so in our case there
was no problem. It is, however, possible to list an
\endverbatim anywhere using the ' I ' (see below).

Readers trying these macros will very quickly
discover that they typeset l u ' instead of spaces. This
is because the space (whose character code is '40)
has been sanitized (it is now a regular character, of
catcode 12) and font cmttlO has ',' in position '40.
This feature is sometimes desirable, but it is easy
to modify \ t tverbat im to get blank spaces in the
verbatim listing.

The new macro is called \verbatim, and the
main change is to say \obeyspaces instead of
sanitizing the space. In verbatim listings, of course,
we don't want the space to be affected by the space
factor, so L~\obeyspaces\global\letu=\u~'.

Macros \verbatim and \get l ine are defined by:

Exercise: why do we have to place
'{\obeyspaces\global\letu=\u)'
outside the macros? It seems more elegant to have
it included in the definition of \verbatim.

Answer: If we place it inside a macro, then the
space following \ l e t would get catcode 10 when
the macro is defined. When the macro is expanded
later, the \ l e t command would fail, because it is
followed by a catcode 10 token instead of by an
active character.

Note the two \medskip commands. They
create vertical spacing around the entire listing,
and the first one also makes sure that the listing
is done in vertical mode. They can be replaced,
of course, by any vertical skip (flexible or rigid),
depending on specific needs and personal taste.

Preventing line breaks. Each line of a verbatim
listing is typeset by saying (in \get l ine) '#l\par'.
The line becomes a paragraph and, if it is too wide,
it may be broken. If this is not desirable, then the
code above may be changed to \hbox{#l). Macro
\verbatim changes the mode to vertical, which
means: (1) the boxes will be stacked vertically; (2)
a wide box will not cause an 'overfull box' error.

Line numbers. The definition of \verbatim is
now generalized to also typeset line numbers with
the verbatim text. Macro \nunverbatim below
uses the same \san i t i ze as \verbatim, and a new
count register is declared, to hold the current line
number. The line numbers are typeset on the left
margin, by means of an \ l lap , but this is easy to
modify.

50 TUGboat, Volume 15 (1994), No. 1

Verbatim in horizontal mode. The macros
developed above are suitable for 'large' verbatim
listings, involving several, or even many, lines of
text. Such listings are normally done in vertical
mode, between paragraphs. The next approach
declares the vertical bar ' I ' active, and uses it
to delimit small amounts of text (normally up to
a line) that should be listed verbatim within a
paragraph. This is convenient notation, commonly
used, whose only disadvantage is that the ' I ' itself
cannot appear in the text to be listed.

The first step is not to sanitize the space and
the end-of-line:

Next, the ' I ' is declared active, and is defined
similar to \verbatim above. The main differences
are:

Macro \moreverb can pick up the entire text
as its argument, since there is not much text.
Instead of defining the space as a control space,
we preempt the space by assigning non-zero
values to \spaceskip and \xspaceskip.

(The value 5.25pt is the interword space
of font cmttl0. If a different font is used,
this value should be replaced by its interword
space. An alternative is to use .51em, which
gives good results in most sizes of cmtt.)

Exercise: Why is the \ re lax necessary after the
5.25pt?

Answer: To terminate the glue specification. With-
out the \ re lax, if #I happens to be one of the words
p lus or minus, 7Q$ would consider it to be part
of the glue assigned to \xspaceskip, and would
expect it t o be followed by a number.

The reader should note that ' I ' cannot be used
in the argument of a macro. If \abc is a macro,

we cannot say, e.g., '\abcI. . . I \xyzl . . .>'. The
reason is that all tokens in the argument get their
catcodes assigned when the argument is absorbed,
so ' I ' cannot change them later. Using ' I ' in a box,
however, is okay.

Exercise: Change the definition of ' I ' to typeset
',' instead of blank spaces.

Answer: Instead of using \obeyspaces, just sani-
tize the space (also the settings of \spaceskip and
\xspaceskip are no longer necessary).

A different approach. Incidentally, there is a
completely different approach to the problem of
verbatim listing, using the primitive \meaning. The
way this control sequence works has been reviewed
earlier. To use it for verbatim listing, we simply say
(compare with [382]):

Since a macro is a token list, we can get verba-
tim listing of tokens this way, but with the following
limitations: (1) extra spaces are automatically in-
serted by \meaning at certain points; (2) end of
lines become spaces in the verbatim listing; (3) a
single '#' cannot be included in the verbatim text
(unless it is sanitized).

Fancy verbatim

Sometimes it is necessary to typeset parts of a ver-
batim listing in a different font, or to mix verbatim
and non-verbatim text. Following are extensions
of the verbatim macros, that can read and exe-
cute commands before starting on their main job.
The commands are typically catcode changes but,
in principle, can be anything. The commands are
specified in two ways. Commands that should apply
to all verbatim listings of a document are placed
in the toks register \everyverbat im . Commands
that should apply to just certain listings are placed
between square brackets right following \verbatim,
thus '\verbatim [. . .] '.

Macro \verbatim uses \ fu tu re le t to sneak a
look at the token following the 'm'. If this is a left
bracket, the commands up to the right bracket are
executed. Sanitization is done before the commands
are executed, so the user can further modify the
catcodes of sanitized characters. However, since
the commands start with a '\I, sanitization of
this token should be deferred. The code below
shows how \verbatim places the next token into
\next c, how \opt ions expands \readopt ions if
this token is a '[', and how \readoptions scoops

TUGboat, Volume 15 (1994), No. 1

up all the commands and executes them. Macro
\preverbat im sanitizes the '\', and performs the
other last minute tasks, before expanding \gobble.

Note that the left quote is made active very
late (together with the sanitization of the '\').
This means that the optional commands can
use it in its original meaning, but they cannot
change its catcode. It is possible to say, e.g.,
'\verbatim [\catcode '*=Ill I, but something like
'\verbatim [\makebgroup\ ' 1 ' won't work because
the left quote will be made active at a later point.

Advanced readers may easily change the macros
such that the left quote would be made active early
(perhaps by \sanitize). In such a case, the effect
of

\verbatim [\catcode '*=Ill can be achieved by
defining
\def \makeletter#1(\catcode'#l=ll 3, then say-
ing
\verbatim [\makeletter*]

Similar remarks apply to the curly braces. Saying
'\verbatim [\everypar=(. . . 3.J ' is wrong because
the braces are sanitized early. The solution is
to define '\def \temp(\everypd. . .I}', then say
'\verbatim [\temp] '.

The simplest example is
'\verbatim[\parindent=Opt] ' which prevents in-
dentation in a specific listing. A more sophisticated
example introduces the concept of meta code. The
idea is that certain pieces of text in a verbatim list-
ing may have to be typeset in a different font (we
use cmrl0). Such text is identified by enclosing it,
e.g., in a pair of angle brackets '<>'. The following
simple code implements this idea:

And the test:

\verbatim [\enablemetacode]
\halip(<. . .preamble. . . >\cr \beginCont
<...lst line . . . >\cr
<. . .>

<...last line . . . >\endCont\cr)
\endverbat im
produces

\halip(...p reamble ... \cr \beginCont
... 1st line ... \cr
...
... last line ... \endCont\cr3

(It's easy to modify \enablemetacode to also type-
set the brackets.) Next we introduce fancy com-
ments. Suppose we want to typeset comments in a
verbatim listing in italics. A comment is anything
between a '%' and the end of line. Again, the
following simple code is all that's needed to achieve
this. It declares the '1' active (preempting the
action of \sanitize), and defines it as a macro that
typesets its argument in \it (the '%I itself can also
be in \it, if desired).

The test

\verbatim [\it comments]
line 1 %comment 1
line 2 % Comment #2
line 3 % Note \this
\endverbat im
results in

line I %comment 1
line 2 % Comment #2
line 3 % Note "this

The next example typesets selected parts of a
verbatim listing in \bf. The ' ! ' is declared a tem-
porary escape character, and the two parentheses,
as temporary braces. The result of:

\verbatim[\makeescape\!
\makebgroup\(\makeegroup\)l
(! bf while) \lineno>\totalines

\lineshiped:=\totalines
(!bf extract) \temp (!bf from) \Bsav
\totalines : =\totalines+\temp

(! bf end while) ;
\endverbat im
is

while \lineno>\totalines
\lineshiped:=\totalines
extract \temp from \Bsav

\totalines : =\totalines+\temp
end while;

Note that the fancy commands between the square
brackets should all fit on one line. They were broken

52 TUGboat, Volume 15 (1994), No. 1

over two lines in the example above because of the
narrow margin of TUGboat.

Sometimes, underlining is called for, to indicate
keywords in a computer program. This can be
achieved with:

\def\Q#I@(\underbarC#l))
\verbatim [\makeescape\ ! \catcode ' \$=3]
!@var@ x , y , X I , x2: r e a l ;
x :=x l ;
! @repeat@
y : =a*x+b ;
point (round(x) ,round(y)) ;
x:=x+O.OI;
! @unt ilQ x>x2 ;
\endverbatim

resulting in

var x , y , X I , x2: r e a l ;
x :=x l ;
repeat
y : =a*x+b ;
point (round(x) ,round(y)) ;
x:=x+O.OI;
u n t i l x>x2;

Sometimes a mixture of visible and blank spaces
is required in the same verbatim listing. Here are
two simple ways of doing this. The first one is:

resulting in

and the second one is:

resulting in

One more example, to convince the skeptics,
that shows how math expressions can be placed
inside a verbatim listing. We simply say:

\verbatim%
[\makeescape\ ! \catcode ' \$=3 \catcode ' \^=71
prolog $!sum x^2$ epi log

\endverbat i m
And the result is:

prolog C x2 epi log

The concept of optional commands is pow-
erful and can be extended to create verbatim
listings that are numbered or that show vis-
ible spaces. This way, macros \ t t ve rba t i m
and \nunverbatim are no longer necessary and
are replaced by \verbatim [\vispacetruel and
\verbatim [\numbered] , respectively.

The difference between macros \verbatim and
\ t tverbat im is that the former says '\obeyspaces',
whereas the latter says '\makeother\,'. We add a
boolean variable \ i f vispace that selects one of the
choices above.

Macro \nunverbatim says

We therefore define the two macros:

that can turn the numbering on and off. The final
version of \verbatim is shown below.

The following tests are especially interesting:

\everyverbat imC\numbered\vispacetrue)
\verbatim
abc 123 \x %-? ' ! '
@#$% -& *(1-
\endverbat i m

\verbatim [\vispacef a lse]
abc 123 \x %-? ' ! '

@#$% ̂ & * (1-
\endverbat i m

\verbatim [\notnumberedl
abc 123 \x I ^? ' ! '
a#$% ^& * (1-

TUGboat, Volume 15 (1994), No. 1 53

They result in:

1 abc 123 \x %-? ' ! '
2 @ # $ % - & * (1-

The vertical bar can also take optional ar-
guments. Below we show how to generalize the
definition of ' 1 ', so things like

will work.
The method is similar to the one used with

\verbatim, with one difference: the backslash must
be sanitized before \ fu tu re le t peeks at the next
token. Consider the simple example ' I \abc 1'. The
\ fu tu re le t will scoop up \abc as one (control
sequence) token. Later, when \moreverb typesets
its argument (when it says '#I1), there will be an
error, since \abc is undefined.

If the \ fu tu re le t reads a ' [', the backslash has
to be restored (by '\makeescape\\'), so that macro
\readoptions can read and execute the optional
commands. Following that, macro \preVerb ex-
pands \ las tasks to resanitize the backslash before
the rest of the verbatim argument is read.

Exercise: Why is the \ re lax necessary in macro
\readoptions and why isn't it necessary in the simi-
lar macro \readopt ions (expanded by \verbatim)?

Answer: \readopt ions is expanded in horizontal
mode, where spaces are sometimes significant, and
\readoptions, in vertical mode, where spaces are
ignored. The rule is that a space that's necessary
as a separator is not typeset (does not become

spurious). There is no strict need for a space after
the '#I' since the # can be followed by one digit
only (there can be at most nine parameters).

Exercise: Now that the ' [' is special, how can we
typeset it verbatim?

Answer: Easy, just turn it temporarily into a
letter (catcode 11). The following {\makeletter\ [
I [. . . 1) works nicely because the \ i f x [\nextc
compares \nextc to a left bracket with catcode 12.

Exercise: What is the effect, if any, of
I [\numbered] . . . I?

Answer: No effect, since \numbered only changes
\everypar, which is not used during vertical bar
verbatim listing anyway. Since the change is done
in a group, it is local.

Complete verbatim macros

Following is the complete code for all the verbatim
macros necessary to implement the concepts dis-
cussed here. Note the new macro \verbf i l e . It can
be used to list the contents of a given file verbatim.
The argument '#I' is the name of the file. This is a
simple modification of \verbatim, without optional
commands (but see exercise below).

\newtoks\everyverbatim
\newcount\verbline
\newif\ i fvispace \vispacefalse
\def\makeescape#l{\catcodel#l=O)
\def\makebgroup#l{\catcode'#l=l)
\def \makeegroup#l{\catcode '#l=2)
% can have similar \make.. macros
% f o r catcodes 3--10
\def\makeletter#l(\catcodel#l=ll
\def\makeother#l{\catcode1#1=12)
\def\makeactive#l{\catcode1#1=13 1
\def\makecomment#1{\catcode1#l=14)

TUGboat, Volume 15 (1994), No. 1

\makeactive\ l
\def~{\begingroup\tt\obeyspaces\sanitize%

\makeother\\\futurelet\nextc\Voptions)
\def\Voptions{\ifx[\nextc\makeescape\\%

\let\next=\readOptions
\else\let\next=\preVerb\fi\next)

\def \readopt ions [#I] {#l\relax\preVerb)
\def\preVerb{\lastasks\ifvispace%

\makeother\ \else\obeyspaces\fi%
\moreverb)

\def\moreverb#l~{\spaceskip=5.25pt
\xspaceskip=5.25pt\relax#l\endgroup)

Exercise: Why the \relax in
'\makeactive\'\relax\gdef . . . '
(normally a space is enough to terminate a number)?

Answer: Normally, a space following a number
is considered a terminator, and is not printed.
However, a t this point, because of the \obeyspaces,
the space is active (has catcode 13 instead of the
normal lo), and is defined as a control space. It
would therefore be typeset as a spurious space. This
is especially annoying if the verbatim macros are
part of a format file that is eventually dumped.
We don't want such a file to create any typeset
material.

Exercise: Extend the definition of
\verbfile#l {...I
to detect and execute optional commands.

Answer:

A typical expansion is
\verbf ile [\numbered\vispacetrue] test
where test is the name of the file (no space between
the 1 and the file name).

References

1. Lamport, L., MakeIndex: An Index Processor
for D m , (available from archives carrying LATEX
stuff).
2. Chen, P., et al, Index Preparation and Processing,
Software-Practice & Experience 18(#9), 1988, pp.
897-915.
3. Knuth, D. E., Computers and Typesetting, Vol
E, Computer Modern Typefaces, Addison-Wesley,
1986.

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330-8281
dxs@secs.csun.edu

