
TUGboat, Volume 14 (1993), NO. 4

identified two such projects, these being (1) the

specification of a canonical TEX kit, and (2) the
implementation of an extended TEX (to be known as

e - m) based on the present WEB implementation.

It was also agreed that Marek RyCko & Boguslaw

Jackowski would be asked if they were willing to
co-ordinate the first of these activities, and that

Peter Breitenlohner would co-ordinate the second.

The ideas behind the two proposals are as
follows.
(1) The canonical m kit: at the moment, the

most that can be assumed of any site offering
TEX is (a) i n i w ; (b) plain w; (c) LAW:

and (d) at least sixteen Computer Modern
fonts. Whilst these are adequate for a restricted

range of purposes, it is highly desirable when
transferring documents from another site to be

able to assume the existence of a far wider

range of utilities. For example, it may be
necessary to rely on BIB^, or on MakeIndex;

it may be useful to be able to assume the
existence of BM2FONT; and so on. Rather

than simply say "all of these can be found on

the nearest CTAN archive", it would be better
if all implementations contained a standard

subset of the available tools. It is therefore
the aim of this project to identify what the

elements of this subset should be. and then

to liaise with developers and implementors to
ensure that this subset is available for, and

distributed with, each T)$ implementation.
(2) Extended w (e - m) : whilst the test bed and

production system approach is philosophically

very sound, the reality at the moment is that
the group lacks the resources to bring it to

fruition. None the less. there are many areas in
which a large group of existing m users be-

lieve that improvements could be made within

the philosophical constraints of the existing
implementation. E - w is an attempt to

satisfy their needs which could be accomplished

without a major investment of resources, and
which can pursued without the need for addi-

tional paid labour.

Finally the group agreed to individually undertake

particular responsibilities; these are to be:

Peter Breitenlohner: Remove any existing in-

compatibilities between w-rn and 7$jX, with

the idea of basing further e - w developments on

W-w; liaise with Chris Thompson concerning
portability of the code; produce a catalogue of

proposed extensions to e-TJ$.

Joachim Lammarsch: liaise with vendors and

publishers in an attempt to raise money for the

implementation of NTS proper; arrange a further

meeting of interested parties; liaise with Eberhard
Mattes concerning the present constraints on the

unbundling of e m w ; negotiate with leading aca-

demics concerning possible academic involvement in

the project.
Mariusz Olko: take responsibility for the multi-

lingual aspects of e - m and NTS; discuss the

possibility of siting the NTS programming team in

Poland; discuss the possibility of academic involve-
ment with leading Polish academics.

Bernd Raichle: endeavour to get m - X @
integrated into the standard UNIX distribution;

prepare a list of proposed extensions to e - w ; lead

discussions on NTS-L.
Friedhelm Sowa: primary responsibility for

finance; prepare proposals for a unified user interface
and for unification of the integration of graphics;

liaise with the Czech/Slovak groups concerning

possible siting of the NTS programming team in
the Czech Republic or Slovakia; discuss possible

academic involvement with leading academics.
Philip Taylor: Overall technical responsibility

for all aspects of the project; liaise with other

potential NTS core group members; prepare and
circulate a summary of the decisions of this and

future meetings.

o Philip Taylor
The Computer Centre, RHBNC
University of London, U.K.
<P.TaylorOVax.Rhbnc.Ac.Uk>

Software & Tools

Two Extensions to GNU Emacs that Are
Useful when Editing QjX Documents

Thomas Becker

Introduction

One of the most outstanding features of the GNU
Emacs editor is the fact that it is customizable in

the best and widest sense of the word. In this
note, we present two extensions to GNU Emacs
that are particularly useful when editing or

LAW documents; these extensions were written

by the author while typesetting a 574 page book

TUGboat, Volume 14 (1993), No. 4 383

in I P The first package actually consists of
a single function that provides an intelligent way

of automatically blinking matching opening dollars

each time a dollar sign is inserted. The second one

improves an existing general feature of GNU Emacs,

namely, keyboard macros. These are particularly

but not exclusively interesting for mathematical
typesetting with and LATEX.

As a GNU Emacs user, you know that when you

insert a closing delimiter such as in a buffer.

Emacs will blink the matching opening delimiter

for one second or until new input arrives. In

fact, you can declare any character to be a closing
delimiter and tell Emacs what the matching opening

delimiter is supposed to be. Emacs also knows

that there is at least one self-matching delimiter

known to humankind, namely, W ' s dollar sign.
Emacs' regular tex-mode makes the dollar sign

a self-matching delimiter. The effect of this is

that each time a dollar is inserted, the preceding
dollar will blink. This blinking will skip a dollar

that immediately precedes the one that is being

inserted. This behavior is undoubtedly helpful

when editing 'I)$ or LAW documents. I have also
seen tex-modes for GNU Emacs that tried to be

more intelligent about the dollar sign. However,

everything that I have seen thus far along these

lines has been, in one way or another, incomplete
or outright annoying.

The function super-tex-dollar tries to provide a

clean, safe, and intelligent way of dealing with the

dollar sign when editing TEX or LAW documents.
The function is to be bound to the $-key whenever a

. t e x file is being visited, so that it is invoked every

time a dollar is inserted. (The mini-manual that
comes with super-tex-dollar explains how to achieve

this.) This is of course the kind of software that

should not and does not require studying a manual

before it can be used. You install it, continue to

work as usual, and see if you like what is happening

on your screen. The following short description of
super-tex-dollar is meant to help you decide if you

want to try this at all.

7l&X requires that all open dollars be closed at
the end of a paragraph. Therefore, super-tex-dollar's

basic strategy is to investigate the dollar situation

between the beginning of the current paragraph

and the current cursor position (point in Emacs
terminology) and then decide what to do about

the dollar that is being inserted. Now there are
quite a few ways to start a paragraph in T&$ or

LAW, many of them unpredictable, so super-tex-

dollar simply assumes that there is always at least

one blank line between paragraphs. In order to

get meaningful results and good performance, you

must therefore make sure that a command like
\chapter in LAW is always preceded or followed

by a blank line. This is certainly not a bad idea

anyway, but if you are not comfortable with it, then

super-tex-dollar is not for you.

If super-tex-dollar finds that all opening dollars
have been closed in the present paragraph up to

the cursor position. then it will simply insert a

dollar. When you type the closing dollar after
having inserted your math formula, a dollar will

be inserted and the opening dollar will blink for

one second or until you continue typing. The next

opening dollar will once again be inserted plainly. It
should be clear that this behaviour gives you a lot

more information than Emacs' default blinking as

described above; in particular, if you have created a
mess by deleting things in previously written text,

you can locate the trouble by erasing and reinserting

dollars.
Before we discuss super-tex-dollar's handling of

$$'s. a few comments about displayed formulas in

LAW are in order. If you are a I P ' user, then

you probably use

\beginidisplaymath)

(formula)

\endidisplaymath}

or \ [(formula)\] to create displayed formulas. It is
true that \beghimath) (formula) \end(math} and

\((formula)\) are both equivalent to $(formula)$,

while

\beginidisplaymath)

(formula)

\end(displaymath)

and \[(formula)\] are not exactly the same as
$$ (fornula) $$. There are sometimes minuscule

differences in vertical spacing, but I do not know
of a situation where the double dollar produces

something unwanted. The only real difference I can

see is that the double dollar is more convenient to

type and offers more flexibility because of the \eqno

feature.

If you type an opening dollar and then another
one immediately following it, then super-tex-dollar

will insert this second one without any blinking:

you have created an opening $$. a y i n g to insert

a third dollar following the double dollar will have

no effect whatsoever. When you type a dollar after

having inserted your displayed formula, this dollar

will automatically be doubled and the (first of the)

384 TUGboat, Volume 14 (1993)) No. 4

opening double dollars will blink. Trying to insert

a third dollar after the closing double dollar will

blink the opening one but not insert anything. In

particular, if, out of habit, you close the opening

double dollar by typing two dollars in succession,
this will have the same effect as typing a single

dollar.

If you have typed $(formula) and then decide

that you really want this to be a displayed formula,

then you can achieve this by typing two dollars
at this point. The first one will of course be

interpreted as the closing one for the opening dollar

at the beginning of the formula. The second one.

however, will cause that opening dollar to blink

and be doubled automatically, so that you are now

looking at $$(formula)$$. Again, trying to insert a
third dollar will do nothing but blink the opening

double dollar.

There is one situation in connection with double
dollars for which there does not seem to be a perfect

solution. Suppose you want to type

$$

y = \cases(x & if\quad $x>O$\cr
0 & otherwise. \c r)

$$

The first two dollars, i.e., the opening $$, will be

inserted plainly. The third dollar will be seen by

super-tex-dollar as an attempt to close the double

dollar: it will be automatically doubled, and the

opening double dollar will blink. To get what you

want, you must now delete a character backwards.

From then on, however, super-tex-dollar will once
again know what is going on. The fourth dollar

will be interpreted correctly as the closing for the

preceding one. The attempt to insert another dollar
immediately following the fourth one will be denied,

and you will get the message "Dangling $$. Closing
it now would leave an uneven number of $'s in

between." When the fifth dollar is inserted, this

will again be interpreted as an attempt to close
the opening double dollar and handled accordingly

by automatic doubling and blinking. Deleting one

character backwards will enable you to insert more
pairs of single dollars, with the same behavior as

in the case of the first pair. Instead of deleting a

dollar backwards, you may of course always enforce

plain insertion of single dollars by typing C-q $.

How does super-tex-dollar cope with garbage

encountered when checking the dollars in the cur-

rent paragraph? When super-tex-dollar encounters a
triple dollar, it concludes that no meaningful conclu-

sions are possible. It assumes that all $'s and $$'s
have been closed at this point, continues its regular
operation based on that assumption, and displays

an appropriate warning including the number of the

line that contains the triple dollar. I do not know of

a situation where the sequence $xxx$$ -with the
first dollar being an opening one - is meaningful in

m. When super-tex-dollar encounters it, it will
implicitly assume that the opening dollar has been

closed before the double dollar. It will also display

a warning that informs you of the problem and the

number of the line where it occurs.
The handling of %, \%, and \$ is as follows. If

the cursor position is preceded by a % on the same

line, then a $ is inserted like an ordinary character.

When super-tex-dollar encounters a % earlier in the
paragraph, it ignores the rest of that line. Moreover,

it fully recognizes the fact that a \ quotes a $ as

well as a %. However, it will see \ \$ and \\% as

quoted $ and % as well.

The time that it takes super-tex-dollar to decide
what to do increases linearly with the length of

the region from the beginning of the paragraph to

the cursor position, and with the number of dollars

therein. A delay is not noticeable under normal

circumstances, and it is negligible under all circum-
stances that are anywhere close to normal (i.e., on

today's personal computers and workstations, and

assuming that you do not write ridiculously long
paragraphs with absurdly many dollar signs). As

with Emacs' blinking of matching opening delim-

i t e r~ , the blinking is always interrupted when the

user continues to type. The byte-compiled code of

super-tex-dollar takes up 2.5 kB when loaded into

Emacs. The space consumption of the program at

runtime is always negligible: the position of each

encountered opening $ or $$ will be forgotten as
soon as it has been closed.

For information on how to obtain super-tex-

dollar, see Section "Availability" below.

Emacros

When T@ is being criticized for not providing

WYSIWYG, buffs like to retort by saying that

WYSIWYG is for wimps. I tend to agree. On the

other hand, I have had some weak moments when I

got tired of typing

$$

\begin(array)(rccc)

: & & \longrightarrow & \\
& & \longmapsto &

\end(array)

$ $

for the umpteenth time just to get something like

f : [O? 11 - [O l l l

x - x2.

TUGboat, Volume 14 (1993), No. 4 385

Even something like

gets to be a drag after a while. There is of

course the possibility of using TFJ macros - with

parameters if necessary -in this situation. On the

other hand, there are very good reasons not to

define a macro every time you find yourself

typing something more than three times. I was soon

led to the conclusion that the appropriate solution

in this situation is the use of keyboard macros on the
editor level, where you issue some short, mnemonic

command to insert a long and complicated string,

with the cursor moving to a particular position if

appropriate.
GNU Emacs provides keyboard macros.' How-

ever, I soon found out that Emacs' keyboard macros

are the only feature that is somewhat underdevel-
oped in an otherwise perfect editor. I have therefore

written a package called Emacros that adds a

number of conveniences such as easy saving and

reloading of macros and help with remembering

macronames. A detailed manual comes with the
package; in the sequel, we give a short general

description of its capabilities.

Emacros' way of saving macro definitions to
files is based on the idea that macro definitions

should be separated by major modes to which they

pertain. The macros used when editing a w - f i l e ,

for example, will not be needed when working on
a C-program. Moreover, within each mode. there

will be macros that should be available whenever

Emacs is in that mode, and others that are relevant
for specific projects only. Consequently, each mode

should allow one global macro file and several

local ones in different directories as needed. This

arrangement saves time and space and makes it

easy to keep track of existing macro definitions.

A keyboard macro really consists of two com-

ponents: the (complicated) string which is to be

inserted and the (short) command which invokes

this insertion. Here, we will refer to the string as the

macro, and to the command as its name. In GNU

Emacs, the key sequence C-x (starts the definition

of a macro: the keystrokes following the command

have the usual effect on the current buffer, while

they are at the same time memorized to be inserted

Using an editor like GNU Emacs to the full
extent of its capabilities does of course require some

effort and a certain computer maturity; but then.

we are not wimps like the rest of them, remember?

automatically as a macro later on. The key se-

quence C-x) ends this process; the macro can now

be inserted before the cursor by typing C-x e. Note
that a macro may not only contain self-insert com-

mands, i.e., ordinary text, but arbitrary keyboard
input. You can, for example, define a macro that

creates

on the screen, with the cursor, represented by the
underscore, at the beginning of the blank line.

To be able to use the macro after defining

another one, it must be given a name. This can

be done by means of the Emacs function name-last-

kbd-macro. This function is adequate if the macro

is to be used in the current session only and if,
moreover, there are very few macros around so that

one can easily memorize them all. Otherwise, this

is where Emacros comes in. The macro can now

be named using the new function ernacros-name-

last-kbd-macro-add. This function first prompts the

user for a name, enforcing appropriate restrictions.

Next, the function saves the macro definition to a
file named mode-mac . e l , where mode is the current

major mode, for reloading in future sessions. This

file can be in the directory for global macros, in

which case the macro will be available whenever

mode is the major mode, or it can be in the current

directory, in which case the macro will be locally

available whenever mode is the major mode and
the file that is being visited is from this directory.

The function will ask you to choose between 1 for

local and g for global. When the function is called

with prefix argument, then you will be prompted to
explicitly enter the name of a file to save the macro

to.

Once a macro macro has a name macroname,
this name is in fact a command which causes the

macro to be inserted before the cursor: typing
M-x macroname RET inserts macro. This has the

disadvantage that completion takes into account all

command names rather than just macro names.
Emacros therefore provides a function specifically

for executing keyboard macros. As a further con-

venience for the impatient (which was motivated

by the attempt to make macro insertion no more

tedious than using a macro), there is a func-

tion called emacros-auto-execute-named-macro. This
function will prompt for the name of a macro in

the minibuffer. The cursor will stay at its position

in the current buffer. As soon as the sequence that
you have entered matches the name of a macro, this

386 TUGboat, Volume 14 (1993), No. 4

macro is inserted and regular editing is resumed

without the need to type a RET.

Every time you read a file into Emacs, Emacros

invokes a function that will load those macros that

have been saved to files named mode-mac . e l in the

current directory and in the directory for global

macros. Here, mode is the major mode which
Emacs has chosen for the visited file. Macro

files that have been loaded before during the same

session will be disregarded. If you have been editing

a file and then read another one with a different
mode and/or from a different directory, then the

macros pertaining to the new file will be loaded, and
all others that were loaded previously will remain

active as well. If there are not too many macros

around, this is probably what you want. In the

long run, however, especially when you are one of

those users that never leave Emacs, you would end
up with all macros being loaded, thus rendering

the separation into different files pointless. The
function emacros-refresh-macros takes care of this

problem. It will erase all previously loaded macros

and load the ones pertaining to the current buffer,
thus creating the same situation as if you had just

started Emacs and read in the file that the current

buffer is visiting.

There are three functions that allow you to
manipulate macro definitions that have already been

saved. The function emacros-rename-macro assigns
a new name to a previously named macro, making

the change effective in the current session and in the

local or global macro file pertaining to the current
buffer, as appropriate. The function emacros-move-

macro moves macro definitions between the local

and global file pertaining to the current buffer.
Finally, the function emacros-remove-macro deletes

macros from the current macro files and disables

them in the current session.

Three functions provide help with keyboard
macros. (The manual tells you how to make these

available as help options.) The first of these will
display in Emacs' help window a list of all currently

defined macronames and the corresponding macros.

The second one prompts you for a macro and

then tells you its name. The third one acts like
the second one, except that it also inserts the
macro whose name you were asking for after the

point in the current buffer, assuming that you were

asking because you wanted to use the macro. The

possibility to complete when entering the macro
makes this an attractive way to insert, making it

worthwhile using macros even if you never ever
remember the name of one.

When I wrote Emacros, I made a strong effort

to conform with Emacs' general style, both in

terms of source code and in terms of look-and-
feel. Completion is supported whenever an existing

macro or macroname is to be entered, defaults

are offered whenever there is the remotest chance

of anticipating what the user wants to do next,
and messages appear whenever the user tries to do

something meaningless or dangerous. The byte-

compiled code takes up 16 kB; otherwise, the space

consumption is only a trifle more than what is
needed to store your macros and their names.

Super-tex-dollar and Emacros Combined

There are two things that need to be said about
using super-tex-dollar and Emacros together. When

a dollar sign occurs in a keyboard macro, it should

always be inserted as C-q $ when defining the

macro. That way, you do not get the blinking
and, possibly, doubling of dollars when the macro

is being executed. With this in mind, you will find
that the unwanted doubling when placing single

dollars between a pair of double dollars (see Section

"Super-tex-dollar" above) becomes a rather rare

occurrence. For example, I have a macro named

cas. so that-with the function emacros-auto-

execute-named-macro bound to M-\-I can type
M-\ cas, and voila, I have

on the screen, with the cursor in the position

indicated by the underscore. All I have to do now
is to fill in things and perhaps delete or copy the

middle line. The whole thing is most likely to be in

a displayed formula; the double dollars will now be
handled correctly by super-tex-dollar.

Availability

Both the Superdollar package and the Emacros

package are available via ftp from

where they are to be found in the directory
pub/emacs-contrib. The Emacros package will

also be made part of the GNU Emacs distribu-

tion in the near future. Both packages come with

manuals explaining installation and usage.

o Thomas Becker
Fakultat fiir Mathematik und Informatik
Universitat Passau
94030 Passau
Germany
becker@alice.fmi,uni-passau.de

