
k e Communications of the 'J$jX Users Group I

Volume 13, Number 3, October 1992
1992 TUG Conference Proceedings

Users Group

Memberships and Subscriptions
TUGboat (ISSN 0896-3207) is published four times
a year plus one supplement by the TEX Users
Group, 653 North Main Street, P. 0. Box 9506,
Providence, FU 02940, U.S.A.

1992 dues for individual members are as follows:
Ordinary members: $60
Students: $50

Second-class postage paid at Providence, RI, and
additional mailing offices. Postmaster: Send address
changes t o the TFJ Users Group, P. 0 . Box 9506,
Providence, FU 02940, U. S. A.

Membership in the TFJ Users Group is for
the calendar year, and includes all issues of TUG-
boat and l'&Z & TUG News for the year in which
membership begins or is renewed. Individual mem-
bership is open only to named individuals, and
carries with it such rights and responsibilities as
voting in the annual election.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: North America $60 a year; all other countries,
delivery by surface mail $60, by air mail $80.

Institutional Membership
Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office.

TUGboat @ Copyright 1992, Users Group
Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this
publication provided the copyright notice and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified
versions of this publication or of individual items from
this publication under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-
tions of this publication or of individual items from this
publication into another language, under the above condi-
tions for modified versions, except that this permission notice
may be included in translations approved by the Users
Group instead of in the original English.

Some individual authors may wish to retain traditional
copyright rights to their own articles. Such articles can be
identified by the presence of a copyright notice thereon.

Board of Directors

Donald Knuth, Grand Wizard of W - a r c a n a t
Malcolm Clark, President*
Ken Dreyhaupt*, Vice President
Bill Woolf * , Treasurer
Peter Flynn* , Secretary
Peter Abbott, Vice-President for U K m U G
Bernard Gaulle, Vice-President for GUTenberg
Roswitha Graham, Vice-president for

the Nordic countries
Kees van der Laan, Vice-President for NTG
Joachim Lammarsch, Vice-president for DANTE
Barbara Beeton
Luzia Dietsche
Michael Ferguson
Raymond Goucher, Founding Executive Directort
Yannis Haralambous
Doug Henderson
Alan Hoenig
Anita Hoover
Mimi Jett
David Kellerman
Nico Poppelier
Jon Radel
Christina Thiele
Hermann Zapf, Wizard of Fontst
*member of executzve committee
t honorary

Addresses
General correspondence:
TEX Users Group
P. 0. Box 9506
Providence, RI 02940

Payments:
TEX Users Group
P. 0 . Box 594
Providence, RI 02901

Parcel post,
delivery services:

TFJ Users Group
653 North Main Street
Providence, RI 02904

Telephone
401-751-7760

Fax
401-751-1071

Electronic Mail (Internet)
General correspondence:
TUGQMath . AMS . o r g

Submissions to TUGboat:
T U G b o a t O M a t h . AMS . org

TFJ is a trademark of the American Mathematical
Society.

1992 Annual Meeting Proceedings
TEX Users Group

Thirteenth Annual Meeting
Portland, Oregon, July 27-30, 1992

COMMUNICATIONS OF THE USERS GROUP
TUGBOAT EDITOR BARBARA BEETON
PROCEEDINGS EDITOR MIMI BURBANK

OCTOBER 1992
RHODE ISLAND U.S.A.

Product ion Notes Other Conference Proceedings

Many thanks are given to the editorial team which
tackled proof-reading and copy-editing for these
Proceedings. In addition to Proceedings Editor
Mimi Burbank, this team consisted of Anita Hoover
and Christina Thiele.

The QX source code for each article in this
issue of TUGboat was transmitted via network or
DOS floppy diskette to the editors who then used
Northlake Software's QX running under VMS or
Unix QjX to generate dvi files. All \spec ia l
commands were converted to appropriate form for
Radical Eye Software's dvips, and proof output was
printed on an Apple Laserwriter NTX. Although
color Postscript was supplied by at least one author,
such files could not be handled by the editors
(apparently) because file record lengths were too
long.

dvi and Postscript graphics files were FTP'd
to the American Mathematical Society, and final
copy was produced on the Society's APS p-5 and
Agfa-Compugraphic 9600. The density of type
produced on these two machines was not identical,
and this was the source of some mismatches of
"color" readers may see on the printed pages.

No figures were cut into pages; all were pro-
duced by incorporating 300dpi images into Post-
Script files.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
APS p5 is a trademark of Autologic, Inc.
DOS and MS/DOS are trademarks of Microsoft

Corporation
LaserJet, PCL, and DeskJet are trademarks of

Hewlett-Packard, Inc.
METAFONT is a trademark of Addison-Wesley Inc.
PC 'I)$ is a registered trademark of Personal QX,

Inc.
Postscript is a trademark of Adobe Systems, Inc.
W and A M - Q X are trademarks of the American

Mathematical Society.
UNIX is a trademark of AT&T Bell Laboratories.

Europe

Proceedings of the First European Conference on
w for Scientific Documentation. Dario
Lucarella, ed. Reading, Mass.: Addison-
Wesley, 1985. [16-17 May 1985, Como, Italy.]

Proceedings of the Second European Conference on
Q X for Scientific Documentation. Jacques
DCsarmCnien, ed. Berlin: Springer-Verlag,
1986. [19-21 June 1986, Strasbourg, France.]

m88 Conference Proceedings. Malcolm Clark,
ed. Chichester, England: Ellis Horwood, 1990.
[18-20 July 1988, Exeter University, Exeter,
England.]

W 9 0 Conference Proceedings. Mary Guenther,
ed. TUGboat 12, no. 1. Providence,
Rhode Island: QX Users Group, 1991.
[lo-1 3 September 1990, University College,
Cork, Ireland.]

Nor th America

Conference Proceedings: l&X Users Group Eighth
Annual Meeting. Dean Guenther, ed.
w n i q u e s No. 5. Providence, Rhode Island:
TEX Users Group, 1988. [24-26 August 1987,
University of Washington, Seattle,
Washington.]

Conference Proceedings: l&X Users Group Ninth
Annual Meeting. Christina Thiele, ed.
T&Tniques No. 7. Providence, Rhode Island:
W Users Group, 1988. [22-24 August 1988,
McGill University, MontrCal, Canada.]

Conference Proceedings: l&X Users Group Tenth
Annual Meeting. Christina Thiele, ed.
TUGboat 10, no. 4. Providence,
Rhode Island: QX Users Group, 1989.
[20-23 August 1989, Stanford University,
Stanford, California.]

1990 Annual Meeting Proceedings: m Users
Group Eleventh Annual Meeting. Lincoln
Durst, ed. TUGboat 11, no. 3. Providence,
Rhode Island: Q X Users Group, 1990.
[18-20 June 1990, Texas A&M University,
College Station, Texas.]

1991 Annual Meeting Proceedings: l&X Users
Group Twelfth Annual Meeting. Hope
Hamilton, ed. TUGboat 12, nos. 3 & 4.
Providence, Rhode Island: 'I)$ Users Group,
1991. [15-18 July 1991, Dedham,
Massachusetts.]

TUGboat, Volume 13 (1992), No. 3

Introduction

Malcolm Clark

After the Annual Meeting there is the illusion that it is possible to sit back and let events
unfold, secure in the warm and fuzzy glow of a successful event. Needless to say, this is indeed
an illusion, and there is much still to do before my period of office ends.

The Portland Conference seemed to go well. It mostly ran to time and there was
something for everyone. Yes, there were flaws, but any human activity will have flaws. A
minor mistake was to forget to ask attendees to tell us what they thought of the conference.
Please feel free to say what you liked and disliked about the meeting. If you didn't come, you
might like to tell us why you didn't. Is it too expensive, too esoteric, too far away, too long,
dull, uninteresting. . . ?

One interesting activity pursued at the meeting was to encourage people to put themselves
forward as candidates for the post of Executive Director. The search seems to be progressing
well (perhaps the post will be filled by the time you read this), and we on the search
committee have every confidence TUG will be in the capable hands of a new ED very soon.
The candidates we talked to at Portland were excellent (as you would expect from the
community!).

I won't dwell on all the individual papers at the conference, but I will commend T V
Raman's talk to you: 'An Audio View of TEX Documents'. He is pushing 'JJ$ in a direction
which was rather unanticipated. Besides being of great direct practical importance, almost
as a by product his work explores aspects of document structure which we have hardly
considered before. It was for this reason that we decided to award him a special prize, in
recognition of his remarkable and unique work.

The main theme of the conference was graphics. This was well supported by a large
number of papers, and naturally a large number of illustrations. There was plenty else there
too. If you wanted to get down to the nitty gritty of M68000 assembler code, you could listen
to Barry Smith; if you wanted to program at a rather higher level, Bart Childs was there
to help you with WEB; and lots of standards were lurking - Postscript, X-windows, SGML
(and (I 4) m) . The Panels were lively (and I would single out Art Ogawa's contribution);
the workshops I attended were very informative and productive. The vendors exhibition also
made a real and useful contribution to the conference. And at last I had the chance to see an
implementation of Japanese TEX, thanks to Harumi Fujiura. Excellent.

But what about the social events? We all know that the function of a conference is to
bring people together, and that the talks, workshops and all the rest are merely convenient
hooks. The real life is in the informal events: I can't single out one single event, they all
had some special sparkle, but the Lucky 13 Dinner Party gave us a remarkable panorama of
Portland (from the 41st floor of the US Bancorp Tower), and the I 4 W 3 bowling fundraiser
had the twin advantages of an excellent evening and raising over $700 for the project. And
in the background we were never far from one of Portland's gifts to west coast culture,
micro-breweries. Somehow we never made it to the other advantage of Portland, hot tubs.

One of the great joys of being President is handing out prizes and honours. One of
my tasks was to announce the award of a framed Bibby cartoon to a number of the Board
members who retired last year, as a small token of appreciation for the work and effort that
they had contributed to the organisation. These former Board members are:

Nelson Beebe Allen Dyer Dean Guenther David Kratzer
Lance Carnes David Fuchs Hope Hamilton Pierre MacKay
Bart Childs Regina Girouard Patrick Ion Craig Platt
John Crawford

TUGboat, Volume 13 (1992), No. 3

In a more light hearted vein, Doug Henderson donated a number of prizes for the IpT~i33
fundraiser, and allowed me the pleasure of presenting them. The other set of thanks goes to
all those who helped to organise the Conference locally. The staff at ETP Services aided us
enormously (and we single out Mimi Jett, Dena Kaufrnan and Dan Olson); as did the staff at
Blue Sky Research (especially Doug Henderson, Becky Kaluza and Warren Leach). Pat Rau
of Northlake Software assembled a complete and informative dining guide for the city with
more restaurants per capita than any other in the US. And, of course, the TUG office (Karen
Butler, Cliff Alper, Teresa Pires and Kathy Sheely) provided a good deal of support as well.
In addition a number of meeting participants volunteered to help wherever they could and
their efforts were much appreciated.

Next year's annual conference will be at Aston University in Birmingham, UK. I hope
they can find a bowling alley.

o Malcolm Clark
Information Resource Services
University of Westminster
115 New Cavendish Street
London W1M 8JS, UK
malcolmcOsun.pcl.ac.uk

KEYNOTE ADDRESS:
Portable Graphics in TEX

Malcolm Clark
Information Resource Services
Polytechnic of Central London
115 New Cavendish Street
London W1M 8JS England
Phone: 44 - 71 - 269 - 3555 x3567
Internet: malcolmc@nole. pcl . ac .uk

To a very large extent, w was designed
for the placement of characters on a page. It
was implicitly assumed that the characters were
probably alphabetic or mathematical. everth he less,
Knuth notes

If you enjoy fooling around making pic-
tures, instead of typesetting ordinary text,
TEX will be a source of endless frustra-
tion/amusement for you, because almost
anything is possible. . .
While it is well able to draw horizontal and

vertical lines, or even to plot dots more or less
at random (see, for example, Knuth, 1986, p.389,
and Figure I) , most people expect a little more
from their graphics. There is also an architectural
limitation: although w could easily simulate an
arbitrary continuous curve by placing a very large
number of small dots (or rules) on the page (or
screen), T@ was only granted a finite memory. You
quickly run out of memory. This is all the more
distressing since there now exist versions of w
with small and large amounts of memory (basically
related to the addressing ability: 64-bit on a
Cray has potentially much more memory than 16-bit
T@ on a pc: w - i n - U N I X is generally somewhere
in between). Sadly, this has had the effect of
making T@ documents less portable, and seriously
undermines W ' s claim to universality. 7&X is
universal, but the documents may be restricted to
certain versions-and you won't necessarily know
until you try to process them (and run out of
memory, or not).

This article is reprinted from Chapter 17 of
A Plain Primer, by Malcolm Clark, Oxford
University Press, 480pp, November, 1992.

Figure 1. Simple graphics within

All sorts of diagrams have been created using
w. References to some of these are given in the
bibliography.

There are three major ways in which graphics
may be made part of TEX documents. For simplicity
and brevity, 'graphics' is restricted principally to
line graphics, but most of what is covered can
be generalized. As with most things, the more
limited the capabilities, the closer they may be to
universality. High degrees of sophistication usually
mean greater restrictions are present. Attention is
directed here to techniques which have some claim
to generality: the 'running on my Sun workstation
using proprietary software' solution is ignored as far
as possible. The vain hope is that someone working
on their Macintosh will be able to exchange TEX
documents with someone working on an IBM pc, an
Amiga, an Atari, a NeXT, a Vax under VMS, and
so on up the scale until we reach the supercomputer
league. We do not wish to present solutions which
only work on specific boxes. UNIX may be the de
facto operating system, just as Postscript is the
de facto page description language. But there are
more non-UNIX boxes out in the world than there

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Malcolm Clark

are UNIX boxes. Similarly, there are more non-
Postscript output devices than there are Postscript
outputs. If everybody were to standardize on the
same computing box many problems of interchange
would go away, but this is unlikely to happen.

Special Fonts
This first approach is limited, but very general-
it will work with m and any of its drivers. It
is possible to use special fonts to build pictures.
Again there are three main ways to do this: the first
is through simple font elements (that is, straight
line segments, or curves) which can be assembled
to give (fairly simple) pictures. The second is
through METAFONT. Here, we use METAFONT to
create a single character which is our graph (or
whatever). This seems intimidating, but need not
be. And lastly, we can create special fonts without
METAFONT.

Simple font elements. So, start with the simple
font elements. Knuth gives an example in The
m b o o k , pages 389-391, but the font he uses is
not generally available. Alternatively, LAW already
does this, in its picture environment (cf. Lamport,
1986, pp.101- 111). Unfortunately Lamport did not
develop this to the same extent as the rest of MT&$,
and it has a distinctly 'squared graph paper' feel.
But it is certainly possible to create quite attractive
graphs. Any vertical and horizontal elements are
just standard rules, while rounded corners and
circles can be made from the LAW circle fonts-
'\ \ J f (Figure 2). A small range of diagonals is
possible through other special line fonts - - / / / / / / I .

The LAW picture environment is amazingly
modular. In other words you can rip it out of
LAW and run it in plain m, using the same
basic commands which are documented in the
LAW book. Although creating pictures this way is
time consuming, it can give quite pleasing quality
(at least on the laser printer). Quite acceptable
bar charts may be created, as Nagy (1989) shows
(Figure 3). It is possible to tackle chemistry through
the use of these fonts, as Figure 4 demonstrates. In
this case some of the tedium is removed by creating
the ring structure only once, storing it in a box, and
then copying that box when it is needed. Besides
making the procedure less long winded, it cuts down
on the effort needed by 'l$J itself, since copying a
box requires no new manipulations.

The creation of diagrams like this can be
amazingly tedious, but the approach still achieves a
generality and portability which cannot be ignored.

Interactive

Maths & text type-

setting language

Word Processor Illustrations

. e.g.

ChtmDraw Gino-F

via DL
e.g. Po tScript t

rinted page it-
Figure 2. Using the LAW fonts, from
Norris and Oakley (1990)

Jan

Feb

Mar

A P ~

May

Jun

Computing Costs
0 10 20 30 40 50 60 70 80 90 190

n geoid - Super '88

CI Chapman Conf

Figure 3. Bar chart, from Nagy (1989)

Figure 4. Simple chemistry with LAW
fonts, from de Bruin et al. (1988)

Because of this generality, there are some pre-

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

KEYNOTE ADDRESS: Portable Graphics in w

Figure 5. BQzier curves and control
points, from Beebe (1989)

processor programs which will allow you to create
something interactively which is then transformed
into LAW commands. If you have access to
a UNIX system, gnutex can assist. On an Ms-
DOS system, part of the e m w package does just
this (although it adds a few extra features of its
own). The key drawbacks of the special
font approach are centered around the limited fonts
which are available, both in the slope of lines and
their thicknesses, and the limited range of curves.
These very limited resources can be encouraged to
generate quite an amazing range of possibilities.
But an enormous amount of time and effort is
also required. Having said this, traditionally a
tremendous amount of effort had to be expended
to create diagrams like these anyway. In this way
we have a single document, and the opportunity to
revise.

An advantage of course is that everything is
in (LA)w , so that we can ensure that the relative
weights of lines, the font sizes, the symbols, blend
in well with the rest of the document. This is a
feature which we should not ignore.

A further advantage is the ability to preview
the diagram on the screen. Since the METRFONT
descriptions of the fonts are available, the screen
fonts may also be generated.

The use of the rules might indicate that you
could build the most complex curves out of small
rectangular boxes: make them small enough and
it will not be possible to see the join. In fact,
an extension to LATEX picture environment is the
bezier style, which allows a bQzier curve to be
plotted (see Figure 5). Make too many of them and
w runs out of memory.

The parabola y = x2/4 After rotation about the
before rotation focus F by 15'

Figure 6. PICTFJ graphics, from
Wichura (1987)

Resolution becomes an issue if we try to create
continuous curves from small elements. If w
memory fills up quickly at 300dpi, it will fill up
even more quickly at 1270 dpi. It is difficult to claim
device independence when we must take resolution
into account. We can of course ignore the resolution
problem, but on those times when we want to pro-
duce high-quality graphs, we may be disappointed
by the faithful rendition of those 300dpi blobs, and
the angular 'staircasing' which is all too obvious at
the higher resolution.

The creation of bQzier curves is a remarkable
achievement, given !&X's limited arithmetic capa-
bility. Adding two numbers together is awkward
enough, and when we realize that TpX will only use
integers in a rather limited range, the results are all
the more surprising.

Since the picture environment is rather crude,
one or two people have put higher-level commands
around them. The two best known are and
epic. (Wichura, 1987) can be run with
both and LAW (Figure 6).

The commands for are distributed
freely, but the 85 page manual is essential in order
to use it sensibly. This article has already loaded
quite a few picture-drawing commands and many
of the allocation registers are becoming filled up.
While it is no real problem to stick to (say) the
picture environment, once we start mixing in extra
commands the limitation to 256 counters, boxes,
dimensions, and token strings starts to hurt.

The syntax of the commands required by
QCQX seems quite reasonable, if quirky at times.
It is no worse than many commercial plotting pack-
ages like SAS or SPSS. But even if we have enough
room for allocation of the registers, running with
PI(Z&X and M w , on a 32-bit w, it is still
possible (but not easy) to exhaust the available
memory. And given the amount of arithmetic going
on in the background, these diagrams tend to be
slow.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Malcolm Clark

Figure 7. Reciprocal magnetic suscepti-
bility, from Ramek (1990)

Olivier (1989) describes an amalgam between S,
the UNIX statistical package, and m. Clearly
this is restricted to UNIX in the first instance,
although the PJCTEX would be portable.

Although epic (Podar, 1986) was targeted for
L A W it can also be used in W. It lacks the
generality of PJCTEX, but is a useful extension.
Podar added some higher-level commands in order
to provide a 'friendlier and more powerful users
interface'. In particular he managed to reduce
the amount of manual calculation required. For
example, he introduced a \drawline command
which allows specified points to be connected. In
order to avoid the problem of slope segments outside
LAW'S ability, he uses the closest slope available.
This can lead to rather jagged lines. If the lines are
dashed, this problem appears less acute.

There are several collections of commands
which draw all sorts of rather nice graphs. My
favourites are those of Michael Ramek (Ramek,
1990). Figure 7 is taken from his paper and
helps illustrate the scope that is possible. Besides
the 'normal' graph requirements, he provided some
other commands to draw chemical structures as
shown in Figure 8.

Other fonts. So far we have been discussing the
use of special fonts. Of course, we can also generate
our own. There are two different directions here.
On the one hand we can use some suite of other
fonts; on the other we could generate METAFONT
descriptions somehow and use those descriptions.
In both cases there is appreciable generality. In the
final analysis, METAFONT is as portable as m,
and once the descriptions are made available we are

Figure 8. Caffeine

as free to use those as we would be to use (M) W
commands.

Knuth (1987) introduced some halftone fonts
which allow greyscale 'pictures' to be typeset in a
completely device independent way. Adrian Clark
(1987) also made some contribution t o this, and
Hoenig (1989) shows some interesting examples.
Since the descriptions are available, anyone may
'borrow' them quite easily. Adrian used a FORTRAN
program as a pre-processor. This is fair, since
for all sorts of reasons we would normally expect
the data to be provided in a digital form from
some other source. There are problems of l$jX
memory here again. Even with a 'big' version,
may only handle one 512 x 512 picture (or four
256 x 256 pictures). Knuth's paper discusses some
manipulation techniques which would allow greater
clarity from lower-resolution pictures. This is a
fairly general and well-understood aspect of image
processing which need not concern us here. The
point is that it is quite possible and represents no
new addition of hardware or software.

An alternative use of METAFONT is to view it
as a means of describing an arbitrary picture, not
a typeface. All the tools are there to do it, and in
fact it is really a lot simpler than creating fonts. Of
course, you do not really do it in METRFONT; you
do it in something else, which is then translated to
METAFONT. The something else at the moment is
one of several programs by Rick Simpson (Simpson,
1990), which works on the IBM RT (running AIX,
a' UNIX lookalike), or Metaplot (Pat Wilcox, 1989).
This latter was written in C, and is available in a
number of forms. There is at least a pc version, an
Amiga version, and lots of UNIX versions.

In both cases, what comes out at the far end
is a single (very large) character (or even a set of
characters which are 'tiled' together), which you
plot wherever you want. The disadvantage is that
scaling the picture is tedious (just like scaling a
'normal' character), and editing it requires a re-run

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

KEYNOTE ADDRESS: Portable Graphics in TEX

of METAFONT. But it is device independent. The
only proviso is that the device driver be able to
handle these very large characters. This is not a
trivial expectation, since many drivers were written
expecting that they would be dealing with letters,
and that there was some reasonable maximum size
to a letter.

Wilcox did not really expect the user to write
in her 'Metaplot'. The notion was that a variety
of other, arbitrary, plotting languages could be
mapped onto the Metaplot commands, which were
then shipped to METRFONT.

CGM, or Computer Graphics Metafile, is worth
considering too. It has a couple of features which
we ought to bear in mind. It is an international
standard. Nominally, every graphics package ought
to have the facility to generate CGM, and also to
read it in. The metafile should also be able to
be transmitted over electronic networks with the
minimum of fuss. The other feature is that CALS
(Computer-aided Acquisition and Logistics System)
has adopted CGM as one of its components: while
we may worry about the militaristic background of
CALS, it has done much to revitalize and make
acceptable SGML, and we can expect it to help
in the adoption of CGM. One other component
of CALS is that it has adopted another 'graphics'
standard, IGES. IGES is usually described as a de
facto standard; it was developed principally for use
with CAD-CAM software. Nevertheless, it does
offer another routeway. In essence there is no real
reason why Metaplot could not read an IGES file
and transform it to METAFONT form. Since we are
in the real world of 'standards', Heinz (1990) notes
that GKS (Graphics Kernel Standard) may also be
transformed into '.

Another route to create a character. If we
look a little more closely at what a driver actually
requires to set a character, we note that there are
two items: the pixel file, and the T)$ font metric
file. Conventionally, the route to produce these is
METAFONT. but there is no particular reason why
we should have to adopt this route. Provided the
tfm and pk contain appropriate information, the
driver should be able to typeset. The underlying
idea here is that we can have another program take
(say) a grey-scale picture and process it to produce
both the required files. The tfm file should be
simple enough to produce, even by hand, since we
might make this 'font' have only one character at a
time. The property list would be fairly simple. A
traditional pixel (or ~ x l) file only contains binary
information. so we are back in the realms of image

processing or half toning if we wish to do something
rather fancy. Most drivers now accept .packed pixel'
rather than 'pixel' information. This is simply a far
more compact form of the same information.

Simpson (1990) also describes an application
of this approach. The example he chooses takes a
raster image and turns it into a font. The program
imtopk converts an IMPART image processing file
into a pk/tfm pair. impart handles the image
scaling, allowing for device pixel density, does any
filtering necessary, and converts an n-level grey scale
to two levels. TEX positions the image on the page,
typesets any annotation, and handles any other
typesetting. At Texas A&M University, a similar
approach is used where output from a number
of graphics programs, but especially the graphics
software package 'Disspla', is processed t o produce
the pk/tfm pair. This has some appeal since Disspla
runs on a very wide variety of machines, and may
even be called from programming languages. A
drawback of this approach is that it is difficult to
annotate the diagrams with fonts similar to the ones
used in the TQX document.

Special

Now to the less general: any sort of material may
be incorporated in a \spec ia l . Whatever appears
there is passed directly to the dvi file, where it
will be handled by the dvi driver. For example,
we could have PostScript commands in there (or
even a reference to a file containing a PostScript-
created graphic). The problem is that you also
need a driver which knows what to do with the
information, and a device (printerlscreen) which
can display the information. While PostScript is
described as a de facto standard, not everyone has
access to a PostScript device, and in fact more
Hewlett Packard (and compatible) machines are out
there in the real world than anything else.

This actually opens up another route. While we
could easily include a complete graphic produced
by another approach (one of the vast array of
graphics packages which will produce PostScript),
and probably scale or otherwise modify it, we can
also pass simpler information to the dvi file for
processing by the driver. Maus and Baker (1986)
extended the L A ' p ic tu re environment by adding
a whole host of commands, which, when examined
closely, are little 'specials' which do things like
draw a line of arbitrary slope through Postscript
commands. Now does not process anything;
therefore m ' s memory does not fill up. When
printed (on a PostScript device), the line is there.

TUGboat, Volume 13 (19921, No. 3-Proceedings of the 1992 Annual Meeting

Malcolm Clark

Unfortunately, only a few screens are PostScript
devices, and so we don't usually expect to see these
elements previewed.

One other disadvantage of using specials is
that the form of specials is by no means standard-
ized. Although there is a working party (TUG,
1992) attempting to standardize and issue recom-
mendations, they are facing the usual problems of
standardization committees. One of the recommen-
dations is that a level 0 driver should be able to
place at least 1000 rules and 20,000 characters on a
single page, unless the output device is constrained
in some way. On-board device memory may be
limited and limit these ideal minima.

Recall that well over half of the drivers written
for use with T)$ reside in the public domain. No
commercial forces come into play with them, nor
can the Users Group impose rules (it is there
to serve its members, not police them: in general
this sort of anarchy works, since there is enough
goodwill around). What we are coming to is the
fact that specials have to be written with a specific
driver in mind. To give an example: imagine we
want to ship out a couple of PostScript commands,
represented by <command>. Using Textures on the
Macintosh, which has its own built-in driver, you
could say

\special{postscript <command>)

Using ArborTextls (1987) PostScript driver, DVI-
LASER/PS, the command is

\special{ps : : <command>)
Using the public domain DVI2PS, the structure is

\special{pstext=<command>)

or using another public domain driver DVIPS (Tom
Rokicki) , the equivalent is

\specialps : <command> or
\specialps : : <command>

while Nelson Beebe's driver (Beebe, 1987) appears
to have no way of including a single command (you
could obviously use the facility to read in a file,
which itself contained only one command); similarly,
Personal m ' s PostScript driver (Personal m,
1987) appears to lack the .in-line command' feature.

Trevor Darrell (1987) wrote a useful set of
commands, psf ig, which greatly ease the prob-
lems of incorporating PostScript into a document.
The PostScript is really 'encapsulated', since the
'bounding box' information is required. 'Encapsu-
lated' also implies that the PostScript should not
change the state of commands - in other words,
that any changes should be local (in termi-
nology). The portion of ps f ig which deals with

the \specia ls is well separated, and it is possi-
ble to modify that part of the command suite for
particular drivers.

You could reasonably ask why we d o not include
CGM files in \specials. In fact, this has been done
(Andrews, 1989). Provided the driver can handle
the commands and change them into the correct
form for the output device, any sort of file can be
processed. As noted earlier, the dvi is itself a sort
of metafile. Andrews' extensions work for UNIX and
VMS environments.

PostScript is not yet ubiquitous. Fortunately,
there is also an approach which allows us to use
a Hewlett Packard LaserJet - CAPTURE (Pickrell,
1990). Any program which produces output for
a LaserJet can have that output processed with
CAPTURE to produce a file which may be input to
T&C, through some suitable commands (which will,
somewhere, employ \specials) . Again, this sounds
longwinded, but there are a great many programs
which will do this. Even more remarkable, there
are programs which can take PostScript and turn it
into LaserJet form (Freedom of the Press, Goscript,
Ghostscript, etc.). This means that we are now
relatively independent of PostScript.

In Betweens

A few years ago the notion of 'little languages'
became current. This is a scheme which is found
most generally in UNIX. Instead of adding fea-
tures to troff, 'little languages' were created: pre-
processors which massaged some reasonable form
of input into troff. These include chem (for chem-
istry), tbl (for tables), eqn (for equations), grap (for
general graphs), and pic (for pictures). The one we
are interested in is pic and perhaps grap: pic has
a language which allows creation of line diagrams
with embedded text. Sounds simple. Of course,
with the way that UNIX works, it is 'easy' to write
a command line which hides all the 'little language'
bits and pieces from the end user.

How is this relevant? Recall that TJ@ passes
\special information straight to the dvi file. That
information could easily be special commands which
the driver could interpret. If we pass PostScript
commands, then the driver can handle PostScript
(maybe). What if we pass higher-level commands
which the driver then processes to produce a new
dvi file? In other words, a dvi to dvi processor.
The new dvi file would, among other things, be
able to be previewed, or be sent to any suitable
printer (provided you had the correct dvi-to-printer

258 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

KEYNOTE ADDRESS: Portable Graphics in TEX

driver). So what we end up with is a device
independent method.

There are a couple of attempts to do this.
There is a program around called dvidvi (Rokicki,
1989) which processes a dvi file, but only so that
you can rearrange the pages-say to shrink them
to thumbnails and arrange them all on a single
sheet (actually very useful for book make-up). Mike
Spivak (1989) has provided dvipaste which allows
you to 'paste' a dvi file into another dvi file, so that
you can put a table (which gobbles up space in T@+X)
where you want (equally it could paste in a large
picture-and that is why it has been mentioned
here). And lastly, the one that really does pictures,
Rolf Olejniczak's texp ic (1989). This is a rn
implementation of pic which does all the things
that pic does and more, and works in just the way
outlined.

What is the snag? The driver has to be
implemented on all sorts of different machines. We
are gnawing away at the portability. Including Post-
Script or Hewlett Packard's laser printer language
seems also eminently non-portable. At least this
localizes the problem and in the longer term gives
a far more general solution. Olejniczak's program
is available only for MS-DOS, and is currently
proprietary, although it is not especially expensive.
It is the restricted platform which is the real
problem.

Closing Comments
Beebe (1989), Rahtz (1989)) and Heinz (1990) have
all contributed to the discussion of incorporating
graphics into rn documents. The adoption of the
METAFONT and pk/tfm solution goes some way to
ensuring the transportability of documents. None
of the other approaches yet comes close enough
to being capable of being transmitted over fairly
arbitrary networks. Another advantage of this
approach should be the capability of viewing the
diagrams on the screen, as well as on paper. The
tools which enable these transformations ought to
be part of the standard T# distributions. Within a
closed environment, any solution which works is to
be applauded. But one of the major features of TEX
is its 'open1-ness, and the portability of documents
created with m.

It will have become apparent that we are always
in the hands of the drivers available. This is perhaps
the weakest link in the whole chain. Whether you
regard the drivers as part of 7l&X or not depends on
your viewpoint.

It is perhaps wise to remind ourselves that even
in the days of Johann Gensfleisch zum Gutenberg
the integration of text and illustration (through
woodblocks) took some time, and could only be
achieved after agreement with the professional
woodblock cutters.

Bibliography
Andrews, Phil. "Integration of and graph-

ics at the Pittsburgh Supercomputing Center."
TUGboat 10(2), pages 177- 178, 1989.

ArborText. Dvilaser/PS User Manual, 1989.
Beebe, Nelson H.F.. "A TJ$ DVI Driver Family."

W n i q u e s 5, pages 71 - 113, 1988.
Beebe, Nelson H.F. "W and Graphics: The State

of the Problem." Cahiers GUTenberg 2, pages
13-53, 1989.

Bruin, Rob de, Cornelis G. van der Laan, Jan R.
Luyten, and Herman F. Vogt. "Publiceren met
L A W . " CWI Syllabus 19, 1989.

Clark, Adrian F. "Halftone Output from T)$L7'
TUGboat 8(3), pages 270- 274, 1987.

Clark, Adrian F. "Practical Halftoning with TJ$."
TUGboat 12(1) pages 157- 165, 1991.

Darrell, Trevor. "Incorporating Postscript and Mac-
intosh Figures in m." Electronic document
available with psf i g commands, 1987.

Ehrbar, Hans. "Statistical Graphics with m."
TUGboat 7(3), pages 171 - 175, 1986.

Gehani, N. "Tutorial: UNIX Document Formatting
and Typesetting." IEEE Software, pages 15 - 24,
September 1986.

Gruber, H., E. Krautz, H.P. Fritzer, K. Gatterer,
G. Sperka, W. Sitte, and A. Popitsch. "Electrical
Resistivity, Magnetic Susceptibility, and Infrared
Spectra of Superconducting RBazCu307 with
R = Y, Sc, Tm, Ho, Eu, Nd, Gd." Pages 83-
88 in High-T, Superconductors, H.W. Weber. ed.
New York: Plenum Press, 1989.

Heinz, Alois. "Including Pictures in T@." Pages
141 - 151 in Applications, Uses, Methods,
Malcolm Clark (ed.). Chichester, England: Ellis
Horwood Publishers, 1990.

Hoenig, Alan. "Fractal Images with m." TUGboat
10(4), pages 491 -498, 1989.

Kernighan, Brian W. "pzc- A Language for Type-
setting Graphics." Software - Practice and Ex-
perience 12(1), pages 1 - 21, 1982.

Kernighan, Brian W. "The UNIX Document Prepa-
ration Tools - A Retrospective." Pages 12 - 25
in PROTEXT I. J.J.H. Miller, ed. Dublin: Boole
Press, 1984.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Malcolm Clark

Knuth, Donald E. The w b o o k . Reading, Mass.:
Addison-Wesley, 1984.

Knuth, Donald E. The METRFONT Book. Reading,
Mass.: Addison- Wesley, 1984.

Knuth, Donald E. "Fonts for Digital Halftones."
TUGboat 8(2), pages 135- 160, 1987.

Lamport, Leslie. D m : A Document Preparation
System. Reading, Mass.: Addison-Wesley, 1985.

Maus, Doug, and Bruce Baker. .'Dvilaser/PS Ex-
tensions to LAW." TUGboat 7(1), pages 41 -47,
1987.

hJurray, Peter, and Linda Murray. The Art of the
Renaissance. London: Thames & Hudson, 1963.

Nicole, Olivier, "A Graphic Driver to Interface
Statistical Software S with m." TUGboat
12(1), pages 70-73, 1990.

Norris, A.C., and A.L. Oakley. "Electronic Publish-
ing and Chemical Text Processing." Pages 207-
225 in l&X Applications, Uses, Methods, Malcolm
Clark (ed.). Chichester, England: Ellis Horwood
Publishers, 1990.

Olejniczak-Burkert, Rolf. texpic User Manual 1.0.
Interplan TB Software GmbH., 1990.

Olejniczak-Burkert, Rolf. "texpic- Design and Im-
plementation of a Picture Graphics Language in

B la pic." TUGboat 10(4), pages 627-637,
1989.

Personal w Inc. PTI Laser/PS Manual, 1987.
Pickrell, Lee S. "Combining Graphics with Q X

on IBM PC-Compatible Systems and LaserJet
Printers." ?&X Users Group 11(1), 26-31, 1990.

Podar, Sunil. "Enhancements to the Picture En-
vironment of LATEX." Technical Report 86-17,
Department of Computer Science, SUNY, 1986.

Rahtz, Sebastian. "A Survey of 7&X and Graph-
ics." CSTR 89-7, Department of Electronics &
Computer Science, University of Southampton,
1989.

Ramek, Michael. "Chemical Structure Formulas
and X/Y Diagrams with w . " Pages 227 - 258 in

Applications, Uses, Methods, Malcolm Clark
(ed.). Chichester, England: Ellis Horwood Pub-
lishers, 1990.

Rokicki, Tom. "dvidvi: read.me." Electronic docu-
mentation), Radical Eye Software, 1989.

Rokicki, Tom. DVIPS: A 7&X Driver.
Salomon, David. "DDA Methods in m." TUGboat

10(2), pages 207-216, 1989.
Schopf, Rainer. "Drawing Histogram Bars inside the

LATEX Picture-Environment ." TUGboat 10(1),
pages 105 - 107, 1989.

Simpson, Richard. "Nontraditional uses of METR-
FONT." Pages 259- 271 in Applications,
Uses, Methods, Malcolm Clark (ed.) . Chichester,
England: Ellis Horwood Publishers, 1990.

Ballantyne, Michael, Michael D. Spivak, and Yoke
Lee. "HI-7$J Cutting & Pasting." TUGboat
10(2), pages 164 - 165, 1989.

TUG D V I Driver Standards Committee. "The D V I
Driver Standard, Level 0." TUGboat 13(1), pages
54- 57, 1992.

Van Haagen, A.J. "Box Plots and Scatter Plots
with Macros." TUGboat 9(2), pages 189-
192, 1988.

Wichura, Michael. The Manual. (r nn iques
6 series. Providence, Rhode Island: 7&X Users
Group, 1987.

Wichura, Michael. "m: Macros for Drawing
qCtures." TUGboat 9(2), pages 193 - 197, 1988.

Wilcox, Patricia. "Metaplot: Machine Independent
Line Graphics for w . " TUGboat 10(2), pages
179 - 187, 1989.

Wujastyk, Dominik. "Chemical Ring Macros in
LAW." w l i n e 4, page 11, 1987.

Wujastyk, Dominik. "Chemical Symbols from lK&jX."
m l i n e 5 , page 10, 1987.

TUGboat, Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting

Literate Programming, A Practioner's View

Bart Childs
Texas A&M University
Department of Computer Science
College Station, TX 77843-3112
Phone (409) 845-5470; FAX (409) 847-8578
Internet: bart@cs. tamu.edu

Abstract

I have been using the WEB style of Literate Programming since my first efforts
to port T)$ to the Data General AOS system. When I looked back at those
efforts, the work in porting drivers that were not written in WEB and the writing
of drivers in WEB (based upon DVITYPE, of course), the value of this method of
programming became evident.

I have concentrated my research (and some teaching) efforts upon this
style of programming. I will relate my insights and opinions of the following:
some quantitative and qualitative measures of the value of WEB programming;
a description of some tools that are part of an environment for writing and
maintaining literate programs; literate programming environments that are
alternatives to the WEB style; an annotated list of some literate programming
systems; and I will conclude with my perception of the future of literate
programming.

Introduction
Donald Knuth created the WEB system of literate
programming when he wrote the typesetting
system a second time (see "The WEB system of
structured documentation", 1983; "Literate pro-
gramming", 1984; m: The Program, 1986; and
METRFONT: The Program). The WEB system can be
described as the merging of documentation, code,
and presenting the listings in a typeset format with
aids of table of contents, cross-referencing, and
indices.

I have used Knuth's original WEB system and
several descendants for a number of years. It is
my opinion that the training necessary to learn how
to program in a literate style is relatively small. I
believe the benefits of literate programming make
it worthwhile. The benefits are better and more
maintainable code (it can be argued that this is not
proven.)

In this paper I will also report on available
literate programming systems, some of my successes
and failures as a literate programmer, creation of
some tools to aid the literate programmer, the
community of literate programmers that I have
been able to identify, alternatives to the WEB system,
and suggested directions for use and research in
literate programming.

A Definition
I use the following list of requirements to imply a
definition of a literate program and the minimum
set of tools which are needed to prepare, use, and
study the resulting code.

0 The high-level language code and the system
documentation of the program come from the
same set of source files.

0 The documentation and high-level language
code are complementary and should address
the same elements of the algorithms being
written.

0 The literate program should have logical subdi-
visions. Knuth called these modules or sectzons.

0 The system should be presented in an order
based upon logical considerations rather than
syntactic constraints.

0 The documentation should include an examina-
tion of alternative solutions and should suggest
future maintenance problems and extensions.

0 The documentation should include a descrip-
tion of the problem and its solution. This
should include all aids such as mathematics
and graphics that enhance communication of
the problem statement and the understanding
of its challenge.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Bart Childs

Cross references, indices, and different fonts
for text, high-level language keywords, vari-
able names, and literals should be reasonably
automatic and obvious in the source and the
documentation.

These requirements have been adapted from (Knuth,
1992), and (VanWyk, 1989 and 1990). My adapta-
tions of the list were affected by my experience as
a WEB user-first in a maintenance mode, then as
an author, and finally using WEB in undergraduate
and graduate education environments. The last has
involved the creation of some tools to enhance the
use of literate programming in all environments.

Knuth posed this thought to introduce literate
programming: "Instead of imagining that our main
task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings
what we want a computer to do" (Knuth, 1984).
His thesis was that it should be just as important to
communicate with the other persons who read the
program as it is to communicate with the computer
which executes it (Knuth, 1992). David Ness said
"it is the most important task."

Knuth's WEB System
When Don Knuth wrote rn the second time,
he gave thought to making it portable to many
different systems. WEB was created as a superset of
TEX and Pascal.

WEB'S design encourages writing programs in
small chunks which Knuth called modules (he also
used the term sections). Modules have three parts:
documentation, definitions, and code. At least one
of these three parts must be non-null.

The documentation portion is often a verbal
description of the algorithm. It may be any
textual information that aids the understanding of
the problem. It is not uncommon for a WEB to
have a number of 'documentation only' modules.
These usually describe the problem independent
of the chosen language for implementation. For
example, a WEB for a subprogram that solves the
linear equation, Ax = b, could have discussion of
singularity, condition numbers, partial pivoting, the
banded nature of the expected coefficient matrices,
etc. It should be an unusual but not exceptional
case when a module contains no documentation.

The definition part of a module was often
used by Knuth to offset shortcomings of Pascal
when used in systems programming. (Wirth created
Pascal to be a language for pedagogy, not systems
programming.) This is rarely the language of choice
by today's systems programmers but sometimes it is

a convenient way to represent certain ideas. (Knuth
used Pascal because "it was everybody's second
best language" at the time (Knuth, TUGboat, 7(2),
1986). It was before C was widely available.)

Some of My Successes and Failures
My introduction to the WEB system of literate
programming was rather abrupt -I was porting
m 8 2 . I had not written a Pascal program or a
TEX document at the time. I had written a number
of systems programs in PL/1.

Version 0.6 of the TEX system was made avail-
able to me in the fall semester of 1982. Distribution
tapes contained about 300 files. Most of these had
to do with the fonts in a binary form. Binary files
were written in a format of twenty bytes per record.
Each byte was converted to four ASCII characters;
for example, 'u255' for the byte with all bits being
one. Over a two or three week period I ported
the TANGLE processor and began work on the WEAVE
processor. I also had the 'report version' of volume
B of the C & T series (Knuth, 1986).

The end of the semester caused me to stop the
work and I did not resume until the spring with
version 0.9 of rn. I spent some time reviewing the
changes in the necessary parts of the 'TEX system:
TANGLE, WEAVE, and '&X.

The WEB sources were usually complemented
with the change files for TOPS, VMS, and UNIX
systems. These were valuable, but I recall the
feeling that the "system dependencies" entries in
the index were even more valuable. It helped to
see what was changed for other systems, but often
those changes were in terms of "system calls" whose
documentation I did not have.

The necessary codes are approximately 2,700,
7,000, and 25,000 lines of Pascal each of the
INITeX and TEX processors. I was able to port
approximately 60,000 lines of Pascal code to a
system on which only 2,700 lines had previously
been ported. I did this in three days (probably 15
hours of work). I regret that I did not keep a diary
or log errors like Don Knuth did, (Knuth, TUGboat,
7(2), 1986; and Knuth, chapters 10 and 11, 1992).

The experience of porting the system convinced
me that the literate programming style had signif-
icant merit. Most of the programs I subsequently
wrote for the T@ system were WEBS. The exisJence
of dvitype as a model for drivers helped this de-
cision. I created a family of drivers for the AOS
system for QMS, HP, and Canon printers. These
used a common source and adaptations for the
different printers were accomplished by change files.

262 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Literate Programming, A Practioner's View

This further experience led to the logical con-
clusion that an "environment" could help signifi-
cantly. We created several environments to auto-
mate the steps of creation of code and documenta-
tion for the AOS system. The emergence of UNIX
and availability of workstations has relegated these
early works to simply being a pleasant memory that
in some sense could be called a failure.

Marcus Brown built part of an "Interactive
Environment for Literate Programming" as part of
his dissertation under my direction (Brown, 1988
and 1990). This was essentially the output side of
an editor which also allowed the navigation of the
source with views of the typeset output, a graphical
tree structure of the module interconnections, and
other functionalities. It did not include a real edi-
tor. The environment was tested by giving senior
computer science students the tasks of identifying
the changes to make a "big Q$P and changing tan-
gle to make code that is more readable. (Knuth's
original WEB created code that was to be "unfit for
human consumption".) These students had been
using WEB in processing system performance logs.

The positive results of this work were that the
subjects performed well in identifying the necessary
changes using the typeset listings of the codes and
in the on-line form using the environment.

The environment was dependent upon SUN
graphics and did not lend itself to incorporation
with public domain editors. A later environment
was based upon GNU Emacs.

Other WEB Systems
There have been a number of WEB and WEB-like
systems developed. They can be divided into
several categories.

WEB systems that have the same set of tools that
are adapted to a different high-level language.
The high-level languages supported include:
C (Guntermann and Schrod, 1986 and Levy,
1987), FORTRAN (Krommes, 1989)) Modula-2
(Sewell, 1987), LISP dialects, and Reduce. In
the references I also indicate the sites where
the 'definitive' sources are available.
There are some differences in functionality in
many of these such as support of multiple
change files (Guntermann) and several high
level languages (Krommes) .
WEB systems that have been adapted to a
different high-level language by pre-processors
and/or post-processors. These include support
for FORTRAN, and the first WEB for Reduce.

WEB systems that have a different basis for their
creation but generally follow the same WEB con-
cepts. Ramsey's Spider enables reasonably easy
creation of WEBs for several different languages
(Ramsey, 1989). His example include WEBs for
Ada, C, awk, and SPL. Gragert and Roelofs
created the second WEB for Reduce with Spider
(Gragert, 1991). They are now creating a WEB
for Maple (Gragert, 1992).
WEB systems using a different language or for-
matting system. Three will be mentioned.
Thimbelby did his CWEB with the UNIX stan-
dards of C and troff (Thimbelby, 1986). The
limitations of troff caused problems. I have had
personal communication about another literate
programming system that used a Macintosh
WYSIWYG editor and the C language. All the
documentation was done in German. David
Ness created a CWEB-like system at T V Guide,
which was not published or distributed.
A NOWEB system that relaxed significant WEB
requirements. Ramsey characterized his NOWEB
as a "low-tech" literate programming system
(Ramsey, 1991). It does not indent the source
but passes it through.
Jim Fox created c-web, which gives a nice
listing of the source and some organization
of the code. It can be argued that this is
not a literate programming system because its
indexing is minimal and the order of the code
is dictated by C syntax. The c-we8 package
assumes that the C comments are written in
'IjEX. The only other assumptions are that two
C comments of a specific format appear near
the start and end of the program, otherwise it
is ordinary C with pretty output. The user
simply W ' s the C source.

What is a Good WEB?
This is a question which still needs to be answered.
It probably can't be answered today because there
is not a large enough body of programs written in
a literate style that are available for study. Later
I will show one graph that appears to be a good
indicator of characteristics of WEBS. I think several
graphs of this type could be an effective indicator
of quality.

The 7&X system and the work reported in
(Ramsey and Marceau, 1991) are the most signifi-
cant examples from which we can begin to search
for answers. Ramsey's work is based on a project
in which there was not a single programmer (as in
Knuth's work). More studies like this are needed.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Bart Childs

Many of the characteristics I think of in using Tools for the Literate Programmer -
for evaluative purposes relate to the module. A

I admit to believing in the value of literate pro- module should be a 'sensible chunk.' In most cases,
grarnrning even when I only had the usual editors I interpret this to mean most modules should not

be more than one screen of source, in spite of
and hardcopy (w e d) output with the indices
and cross-references. This was obviously not the varying screen sizes of up to 40 lines. This is not an
preferred literate programming environment.

absolute rule, just a guideline. Some modules will
The editor is the most important "tool". It

be documentation only and may be several pages in
will be discussed briefly and most of the web-mode

length. In some cases, it is convenient to make each
commands will be listed in a table. Other tools will paragraph a module of its own. Further, there are
be discussed without further introduction.

modules that seem to be best presented when the
documentation and code are each about a screen.

I can't yet answer the question as to what
are the characteristics of a good web, but I think
that studying with figures like Figure 1 and some
statistics will begin to give us some 'normal charac-
teristics.' These kinds of graphics make it easy to
spot inconsistencies in documentation, modularity,
and other causes of maintenance problems.

I do not doubt that there will be more than just
one description of a good literate program. However,
I think that most will have consistent "patterns"
when analyzed in similar graphical manners using
the "right statistics."

Figure 1. Percent modules us. number of lines
of code per module in PS-Quasi. web.

Mamoun Babiker wrote the tool to extract the
data and create the w code for drawing the figure.
Figures like this are better when they are done with
a graphics package rather than relying on w ' s
rules, for portability.

Some of the elements of a good essay will
apply. Programming practices must change signifi-
cantly for the spelling requirement to apply. Many
codes and their documentation are full of acronyms
and mnemonics. It can be argued that with to-
day's systems and compilers accepting long variable
names, there should be some change in this.

Editing environment. Mark Motl created the
web-mode for GNU Emacs (Motl, 1990). It makes
the editor sensitive to the rules of WEB, m, and
some aspects of the high-level language. The table
of contents, index, and index of modules that are
helpful in studying WEBS are on-line. The user
can select a variable while viewing the index and
then with two keystrokes proceed to view each of
the modules where the variable is referenced, in
succession. All lists (module names, extra index
entries like 'system dependencies', etc.) are kept
on-line and the user only has to select from the list
rather than retype them.

Details of web-mode are beyond the scope of
this paper. A list of the functions that have been
added to GNU Emacs to create a web-mode is shown
in the appendix. We know it is used by a number
of literate programmers on several types of UNIX
systems and on MS-DOS machines and it certainly
seems to be effective.

Counters. These are used for calculating the
basic statistics and metrics that can be used to
"measure" a web. We are using variants of these
to build statistical summaries of WEBS, which we
hope will lead to 'proven' statements describing the
characteristics of good WEBS. The earlier figure was
prepared by using one of these.

Table 1 was created by wst (a WEB statistics tool
written by Mark Gaither) and is a count of the WEB
commands in tex.web, while Table 2 is a count of
the commands. This data was extracted from
version 3.14 of T$$ which has 24,863 lines in its
source and 523 of those lines have at least one WEB
command. The complete Table 2 would be too long
for this paper. However, the header is informative.
I have left in only the eight most-used T)$X control
sequences. On the other hand, 69 control
sequences were used once and another 38 were used
twice.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Literate Programming, A Practioner's View

Table 1. WEB control sequences in tex.web.

Unique control sequences =
Occurrences of control sequences =
Words in file =

Unique control sequences/words =

Control sequences/words =

Control Seq.
Q
Q!
0 "
Q#
a$
@&
Q'
Q*
Q+
Q,
Q.
9 /
Q :
Q;
Qc
0 >
Q ?
QQ
a \
Q-
Qd
Q f
QP
Qt
QC
a I
Q 3

Count
1325
1655

3
28
3
5

260
5 5

227
8

259
685
407

90
1774
2868

29
16
2

259
1216

12
178
169

5
66

5

Table 2. control sequences in tex. web.

Unique control sequences = 202
Occurrences of control sequences = 6186
Words in fi le =

Unique control sequences/words =
Control sequences/words =

Control Seq.
\u
\ .

\PASCAL
\TeX

\ \
\cr

\hang
\yskip

Count
38 1

1728
86

477
1431

125
166
142

A recent scientific code of mine has 3,900 lines
of WEB, 0.0072 unique control sequences per word,
and 0.0431 control sequences per word-I think
that this was expected. I consider this da ta to show
an upper bound of the amount of rn that might
be included in a WEB. This is evidence that it is not
necessary to be a w p e r t to use WEB.

Change file analyzer. Change files are analyzed
in detail by this code (written by Mark Gaither).
The UNIX diff utility is used to show exactly what
changed in the change file for each module. Each
module is flagged if it is only part of the lines of the
module. The reason for this is that the GNU Emacs
web-mode assumes that change files always contain
complete modules. Also, since a module should be
the minimum part of a code that can stand alone,
it seems wrong to have only a part of it. If code is
changed, documentation should also be changed.

A WEB structure viewer. Web-view (written by
Kevin Borden) gives a high-level view of the struc-
ture of a WEB in a manner much like the browsing of
the directory structure in a NeXT computer. This
design was selected because the previous graphics
representation of a WEB did not have sufficient screen
to show enough of a module name to always be
indicative of the purpose of the module. This tool
is based upon X.

TeXbraces. This is a simple WEB (written by David
Ness) that is used to flag those problem places where
the dread braces get out of balance. I use this in the
obvious fashion on both EX and WEB sources. This
functionality is present in web-mode and tex-mode.

Integration of RCS. Configuration management
tools are a significant part of the toolbox on most
code developers. RCS is a reasonably popular
system that aids in keeping up with the changes
from one version to the next. William Needels has
recently finished a project on the integration of RCS
and imake to automatically produce Makef iles for
the generation of executables and documentation
for systems created with WEBS. It shall be re-
leased shortly after packaging and another round of
proofing.

The sources of all the tools that we support are avail-
able for anonymous f tp from: f tp . cs . t amu . e d ~ .
We are attempting to support all except the
original environment of Marcus Brown. An-
other source for literate programming tools is
ftp.th-darmstadt.de, the pub/tex/src/webware
directory.

TUGboat, Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Meeting

Bart Childs

Community of Literate Programmers

Van Wyk indicated that only the creators of literate
programming systems use them (Van Wyk, 1990).
There is a significant international 'community of
literate programmers.' I think the number of users
is surprising since, to my knowledge, there has not
been a conference or major portion of a conference
dedicated to the exposition of the use of literate
programming or the many unanswered questions on
literate programming and environments.

It is difficult to accurately estimate the number
of programmers using WEBS. I think the number is
probably on the order of 1,000 or more because:

0 Each semester several students contact me to
show me some of their work or ask for help.
These are not "my" students. They 'discover'
WEB by scanning '&x directories.
The distribution list for announcements about
John Krommes' FWEB has several dozen ad-
dresses. I estimate that it does not include half
the sites that really use it and most addresses
probably represent several to many users.
I know of three sites in Australia that are
extensively using FWEB and which are not on
the distribution list.
A large multinational company is using CWEB as
their methodology for code development.
I have been politely chastised for not placing
web-mode in the GNU or Archie archives. (It
will be there soon.)
There are at least two journals and four uni-
versities I know of listing literate programming
as a viable/current research area. The subject
literature contains about 100 papers, reports,
and monographs from about 60 authors.
I know of several professionals (such as David
Ness) who are active literate programmers.
Apparently a significant portion of the DANTE
contributions to the QX systems is being done
in WEBS. I have seen the sources of BM2FONT
and I know that Joachim Schrod and associates
continue to use their CWEB.
A discussion list for literate programming
LitProgQSHSU. edu was started in July- 1992
and generated many subscribers and more than

Conclusions and Recommendations

I have no reservations in recommending the use of
Knuth's original WEB, Levy's CWEB, or Krommes' FWEB.
Our primary WEB system is Krommes' FWEB because it
supports FORTRAN, FORT RAN^^, RATFOR, C, and
C++. We also find it to be the best-documented of
the WEBS. It was created by extending Levy's CWEB.

I believe that the use of web-mode has made
literate programming easier to introduce to my
students. A similar tool (but not as complete)
should soon be available for VMS systems based
upon LSEDIT.

Ramsey's Spider system is a good tool for
creating new WEBs and his NOWEB is certainly
worthy of study.

Future Work
The questions related to determining the quality of
a literate program are still not answered. I believe
that we are beginning to have tools and examples
that will help answer these questions or at least give
us some general ideas. We need a significant body of
WEBs written by teams and a range of programmers
for study.

I believe that we need literate programming
systems whose output can be tailored to personal
tastes. For example, a Pascal code could have <=
instead of <, braces instead of begin-end, and
physical things like page size, etc.

Generic WEBS should be available for other styles
of languages such as VAX DCL files, UNIX scripts,
hand-held calculator code, etc. Norman Ramsey's
noweb may be a good vehicle for this since it does
not reformat the code. One of the most underused
features of FWEB is that it allows the creation of
literate style files for macro writing. This
is an obvious improvement over the .doc to . s t y
contribution in Leslie Lamport's original I4m.

Much of today's computing is no longer consid-
ered to be a single-language environment. Scientific
computing is often a mix of high-level languages.
FWEB allows the mixture of FORTRAN, C, etc. The
inclusion of MATLAB, GNUPLOT, etc., should be included
in a literate form.

300k-bytes of messages in one month.

I intend to formalize the above list and seek
A comment

permission to distribute the names and addresses of In the interest of brevity I have omitted many refer-
those I know. I believe that literate programming ences that should be a part of the complete paper.
will be aided greatly by the publication of Don I point to Nelson Beebe's bibliography on literate
Knuth's new book, Literate Programming (Knuth, programming which is available by anonymous f t p
1992). from sc ience. u tah . edu for a complete list of many

relevant citations.

TUGboat, Volume 13 (1992)' No. 3-Proceedings of the 1992 Annual Meeting

Literate Programming, A Practioner's View

Acknowledgements
TUG'S anonymous reviewer made many comments
that contributed to this paper. The thoroughness
of that review is appreciated.

David Ness and I have had many conversations
about literate programming and his vision has
certainly helped my views and understanding about
literate programming and several other aspects of
the computing professions.

References
Brown, Marcus E. "An Interactive Environment

for Literate Programming". Ph.D. thesis, Texas
A&M University, College Station, TX, August
1988.

Brown, Marcus E. and Bart Childs. "An interactive
environment for literate programming". Journal
of Structured Programming, 11(1), pages 11 - 25,
1990.

Fox, Jim. "Webless literate programming". TUG-
boat, 11(4), pages 511 - 513, November 1990.
u.washington.edu

Gragert, Peter, and Marcel Roelofs. Reduce WEB
version 3.4. utmfuO .math. utwente. nl

Gragert, Peter. Personal communication.
Guntermann, Klaus, and Joachim Schrod. "WEB

adapted to C". TUGboat, 7(3), pages 134-
137, October 1986. This WEB is no longer sup-
ported. They recommend the Levy/Knuth CWEB.
schrod@iti.informatik.th-darmstadt.de

Knuth, Donald E. "The WEB system of structured
documentation". Stanford Computer Science Re-
port (3980, Stanford University, Stanford, CA,
September, 1983. labrea. stanf ord. edu

Knuth, Donald E. "Literate programming". The
Computer Journal, 27(2), pages 97 - 111, May
1984. Also appears as chapter 4 in "Literate
Programming".

Knuth, Donald E. w: The Program, volume B of
Computers & Typesetting. Reading, MA: Addi-
son-Wesley, 1986. ISBN 0-201-13437-3.

Knuth, Donald E. METAFONT: The Program, vol-
ume D of Computers & Typesetting. Reading,
MA: Addison-Wesley, 1986. ISBN 0-201-13438-1.

Knuth, Donald E. "Remarks to celebrate the pub-
lication of Computers & Typesetting" TUGboat,
7(2), pages 95 - 98, June 1986.

Knuth, Donald E. Literate Programming. Center for
the Study of Language and Information, Stanford
University, CA: Distributed by Univ. of Chicago
Press, ISBN 0-937073-80-6, 1992.

Krommes, John A. The FWEB System. Princeton
University. 1989. lyman. pppl . princeton. edu

Levy, Silvio. "WEB adapted to C, another ap-
proach". TUGboat, 8(1), pages 12 - 13, April
1987.princeton.eduandlabrea.stanford.edu

Motl, Mark B. "A Literate Programming Environ-
ment Based on an Extensible Editor". Ph.D. the-
sis, Texas A&M University, College Station, TX,
December, 1990. csseq. c s . t a m . edu

Ramsey, Norman. "Weaving a language-independent
WEB". Communications of the ACM, 32(9), pages
1051 - 1055, September 1989. princeton. edu

Ramsey, Norman , and Carla Marceau. "Literate
programming on a team project". Software-
Practice & Experience, 21(7), pages 677 - 683,
July 1991.

Ramsey, Norman. "Literate programming tools need
not be complex". Submitted for publication, 1991.

Sewell, E. Wayne. "How to MANGLE your software:
the WEB system for Modula-2". TUGboat, 8(2),
pages 118-122, July 1987.

Sewell, E. Wayne. Weaving a Program: Literate Pro-
gramming in WEB. New York, NY: Van Nostrand
Reinhold, 1989. ISBN 0-442-31946-0.

Thimbleby, Harold. "Experiences of 'literate pro-
gramming' using cweb (a variant of Knuth's
WEB)". The Computer Journal, 29(3). pages 201-
211, June 1986.

Van Wyk, Christopher J. "Literate Programming:
Moderator's Introduction". Communications of
the ACM, 32(6), page 740, June 1989.

Van Wyk, Christopher J. "Literate programming-
an assessment". Communications of the ACM,
33(3), pages 361 and 365, March 1990.

TUGboat, Volume 13 (l992), No. 3 - Proceedings of the 1992 Annual Meeting

Bart Childs

Appendix

Listing of WEB-MODE Commands by Functionality

Functionality

Movement Among
Buffers (Files)

Movement Among
Modules

Interactive Access to
and Movement

Among Sections

Interactive Access to
Index

Interactive Access
to Modules

Change File
Editing and Movement

Web
Structure

Information

Miscellaneous

Command
web-goto-buffer-by-name
web-goto-buffer-change-file
web-goto-buffer-include-file
web-goto-buffer-web-file
web-goto-module
web-next-module
web-wevious-module
web-goto-section
web-next-section
web-previous-section
web-view-section-names-list
web-next-index
web-previous-index
web-view-index
web-next-define
web-next -use
web-previous-def ine
web-previous-use
web-view-module-names-list
web-edit-module
web-goto-change-corresponding-to-module
web-next-change
web-previous-change
web-delimiter-match-check
web-determine-characteristics
web-view-changed-modules-list
web-what -change
web-what-module
web-what-section
web-insert-index-entry
web-mode-save-buffers-kill-emacs
web-rename-module

Key Binding
C-c b n

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

A High-Performance TEX for the Motorola 68000 Processor Family

Steve Hampson and Barry Smith
Blue Sky Research
534 SW Third Avenue
Portland, OR 97204
Phone: (800) 622 - 8398
Internet: barryareed. edu

Abstract

is a large, computationally-intensive program that, thanks to its author, is
extremely stable and thoroughly debugged. We describe herein some aspects of
our recent work on an assembly language implementation of 7$X for the Motorola
68000 processor family. Particular attention is given to memory reference and
procedure call templates, performance measurement tools and techniques, and
stupid compiler tricks. We also compare the results of our work with those of
more conventional methods.

Background

Each of the authors has a good deal of practical
experience with Pascal compiler engineering. We
were each previously employed in senior technical
positions at Oregon Software, a small company spe-
cializing in high-performance compilers. (Curiously,
our times at Oregon Software did not overlap, and
we did not meet until later.)

w, of course, is a large computer program
written (by D. E. Knuth) in WEB, a structured
design language that can be processed to yield a
(more or less) standard Pascal program. The
program is very stable and thoroughly debugged,
thanks to its author and the many users involved in
its development.

Motive
Blue Sky Research is the publisher of Textures, a
m - b a s e d desktop publishing system for the Apple
Macintosh family of computers. The interactive ori-
entation of the Macintosh compels its programmers
to be attentive to human-scale performance, and
we found the speed of TEX itself to be a limiting
factor in making Textures more interactive. (Also,
frankly, as compiler writers, we became unhappy
whenever we looked at the code produced by the
commercially-available compilers.) We, of course,
were aware of the traditional disadvantages of as-
sembly code, but thought that the extreme stability
of the T@ program made this a special case.

Procedure
We did not propose to recode 'I)$ directly in
assembly code, being aware of the programmer's
maxim "80% of the time is spent in 20% of the
code." (Actual measurements suggest that, for
m, 95% of the time is taken by less than 3% of
the instructions!) We instead proposed (and carried
out) a course of action roughly as follows:

Produce a special-purpose Pascal compiler to
generate readable basic assembly code;
tune the code generation of the compiler based
on extensive measurement and examination of
critical code sequences;
when no further compiler improvements ap-
pear worthwhile, throw the compiler away and
continue with the compiler-generated assembly
code as a base;
identify critical routines and segments and
rewrite "by hand"; and
repeat step 4 until it no longer appears worth-
while.

(Step 3 was referred to within our team as "making
the jump to hyperspace." Steps 4 - 5 are continuing
as of this writing.)

Examples
This portion of the paper assumes some familiarity
on the part of the reader with the flavor of assembly
language and the structure of itself. For
readers not familiar with the Motorola 68000 family
architecture, it is by and large a 32-bit two-address
multiple-word instruction set with 8 general-purpose

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Steve Hampson and Barry Smith

arithmetic registers (DO-D7) and 8 32-bit address
base registers (A0 - A7). A7 is conventionally used
as the stack pointer (SP).

Example 1: Access to the "rnem" array. The
rnem array is W ' s principal memory structure,
and is referenced by many parts of the program.
Since Textures incorporates a "large" m, each
element of rnem occupies 8 bytes; furthermore, since
in Textures the rnem array can grow as needed, it
is referenced by a pointer that may change value
when the array changes size.

The straightforward 68000 instruction sequence
to access item 'k" is as follows, assuming "nu is in
DO:

asl.1 \#3,DO ; shift N left 3 bits
move.1 MEMPTR,AO ; load address reg
move.1 O(AO,DO:L),Di ; mem[N] .rh -> Dl

This is a relatively expensive sequence, con-
sidering its wide-spread use. Especially costly is
the instruction to load the base address of mem,
requiring 4 bytes for the instruction itself and also
a 4-byte memory fetch.

On the 68000, address register A6 is convention-
ally used as a procedure frame pointer, maintaining
the stack offset on procedure entry for reference
to parameters and local variables. (This simplifies
code generation within the procedure as the stack
grows and shrinks.) As it happened, the Oregon
Software Pascal- 2 compiler we used as a base for
our efforts was originally designed for the Digi-
tal PDP-11 computer, which has no such frame
pointer. The compiler therefore already was capable
of computing stack offsets without the benefit of
the frame pointer, freeing register A6 for other uses.
We dedicated it to serve as the pointer to mem, and
modified the compiler to generate special code for
references to that variable.

We then went through the code to l&X, iden-
tifying each variable and expression that could
serve as a rnem reference. The compiler pre-shifted
constants in rnem indices, and we changed each
computed expression to pre-calculate the left shift
(equivalent to multiplying by 8). (Most pointers
are produced by arithmetic on pointers, so we
changed statements like "p : =p+Iv to "p : =p+8" .)
The resulting code eliminated the need for the shift
instruction, so the code above simplifies to a single
instruction:

(This was much easier to write about than to
actually perform; before we could be satisfied that
we had identified every reference to rnem, we found
it necessary to create tools that would give us a

full trace of each rnem reference to compare with a
standard trace.)

Example 2: instruction counting. We used sev-
eral EX jobs as performance benchmarks. The
largest and most "life-like" of these was The
Wbook, which produces 494 typeset pages. The
performance analyzer provided with the Macintosh
development system is an interrupt-based profiler
that samples the program counter every few mil-
liseconds and produces an execution time profile by
procedure blocks. While this was very indicative of
major program flow, we found it somewhat unstable
and too coarse for critical sections. We then built
an instruction-by-instruction counter that produced
an assembly listing with execution counts attached
to each instruction. Here is a partial summary of
counts for The m b o o k from April 20:

calls instructions %/total procedure
5 703 564 190 236 375 16.435 getnext

1 152 982 983 13.217 main-control
82 008 60 914 195 5.263 hpack
53 313 57 517 172 4.969 hlist-out

229 313 55 271 629 4.775 try-break
8 036 46 325 505 4.002 line-break
This tool was somewhat expensive to use,

slowing execution by a factor of 150 or so, but
the information was happily consistent and pre-
cise. (Perhaps seductively so; we sometimes needed
to remind ourselves that instruction counts were
not directly related to processing time. In more
than one case we chose instruction sequences with
more instructions but faster execution, according to
processor timing calculations.)

Our measurement tools gave us more than
enough information to identify critical sequences for
hand work. (a target-rich environment for assembler
jockeys, so to speak.) Here is a similar summary
from May 23 (the calls are identical):

instructions %/total procedure
128 071 928 13.322 getnext
109 146 891 11.353 main-control
53 136 456 5.527 try-break
51 951 382 5.404 hlist-out
46 203 165 4.806 line-break
43 949 702 4.572 hpack

Example 3: Procedure calling sequences. A
slightly different view of instruction count data
summarizes procedures in order of the number of
calls:

270 TUGboat, Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Meeting

w for the Motorola 68000

calls instructions inst/call procedure
5 703 564 190 236 375 33.4 getnext
2 840 411 32 782 196 11.5 getxtoken
1998 121 12 033 901 6.0 get -avail
1 150 392 39 422 420 34.3 getnode
1 150 334 14 954 342 13.0 freenode
1057213 11 336 157 10.7 get-token

Here, for example, we can see that we should
consider replacing high-frequency calls to LLget-avail"
with the equivalent in-line code. (In fact, Knuth
has already done this with a "fast-getavail" WEB
macro; we carried this idea a little further in our
assembly code.)

More importantly, the sheer number of calls
to these routines focused our attention on calling
sequence overhead, both at the compiler template
level, and later on special-case sequences for certain
routines. Each single instruction eliminated from
the calling sequence for "getnext" reduced the run-
time for The l&Ybook by almost 1 second on our
Quadra test platform.

Perhaps the most interesting lesson from our
experiments was the (in-)validation of some of
the design concepts of the Pascal-2 compiler. The
design team made some assumptions about program
structure that are not true for m, e.g., that
the procedure structure corresponded to significant
work elements of the problem. We found instead
that, in m, a typical procedure has a relatively
small critical path that corresponds to the large
majority of uses, and a much larger body of code for
special cases and error recovery. Unfortunately, the
compiler generated significant amounts of register
traffic on each entry to "optimize" register usage
over code that was never used!

Conclusions

The overall performance of TQX has improved
by roughly a factor of three as of this writing,
compared to previous Macintosh implementations
via a standard (Apple) Pascal compiler. We believe
there are significant gains still to be realized,
although we are clearly seeing a diminishing return
on efforts. So far, the reliability and maintainability
are more than satisfactory; the assembly language
7&X described herein is shipping in our current
version of Textures, with no 'QJ problems reported
to date.

Thanks
We would like to express our thanks to Professor
Knuth for the 7&X program itself, and especially
for the TRIP test program, which has allowed us to
easily locate bugs that would have been vanishingly
obscure in more "normal" uses of 7&X.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Using a High-Level Language as an Aid in Writing Documents

Harry L. Baldwin, Jr.
San Diego City College
1313 12th Ave.
San Diego, CA 92101

Abstract

Certain mathematical procedures associated with the preparation of a document
are best handled by some high-level language other than m. One example is
the generation of random numbers and the subsequent ordering of those numbers
as a means of scrambling lines or groups of lines in the preparation of different
forms of a test. Other examples involve the generation of curves and angles for
inclusion in graphs and diagrams. An alliance of the True BASIC programming
language and has proven to be a useful combination for the efficient creation
of ~ - s o u r c e files.

Introduction

Although was designed for quality typesetting,
and to reach that goal Don Knuth filled his program
with many capabilities, most users would probably
admit that number crunching is more easily done in
some other high-level language. In my four years of
using 7&X as a mathematics teacher, I have found
several applications in which my attempts to pro-
duce high-quality output are simplified by using =
in close association with another language. This ar-
ticle will be a chronological account of some of those
applications.

The high level language that I use is not one
of the latest exotic creations to which Byte Maga-
zine might devote an entire issue, but rather what
has lately been looked upon as the Rodney Danger-
field of computer languages, BASIC. My first mesh-
ing of = and BASIC came when I implemented
PC'IpX and needed an editor capable of creating an
ASCII file. Although I was doing True BASIC num-
ber crunching on the PC, all my word processing
was being done on a Northstar Horizon computer
(anybody remember that old warhorse?). I decided
to write my TpX source files using the True BASIC
editor until something better came along.

The True BASIC editor has been working so
well that I've never bothered searching for a bet-
ter one. The only time it complains is when I
occasionally accidently hit F9 (the "RUN" com-
mand) at which time it politely tells me that
"\documentstyleIbook)" is an illegal statement.
All the editing features I need are available. such as
search and replace, block move, copy, delete, and so
forth, together with the capability to insert another
file into the working file at any desired location.

Scrambling Questions and Answers

My first uses of were handouts and tests (where
"tests" means both long "examinations" and short
"quizzes"). Since the number of students in my
classes kept getting larger each semester, but the
classroom sizes somehow stayed the same, roving
eyes during tests became a problem. Giving differ-
ent versions of a test seemed to be the appropriate
action to take. The versions would differ from one
another by either scrambling the order of choices to
each multiple-choice question, or by scrambling the
order of the questions on the test, or perhaps by us-
ing both of these techniques. Rather than have =
create the different versions of a test - an approach
adopted by Don De Smet (1991)-my strategy is
to let True BASIC do the scrambling: A 7Q$ source
document (let's assume it is named TEST. SCR) is in-
put to a BASIC program (called SCRAMBLE. TRU) that
searches the lines for certain code characters. The
codes identify lines whose positions will be changed
in a manner that will be described below. A new
source file (let's name it TEST .TEX) is written to the
hard disk, all ready to be compiled under U r n .

Two types of scrambling can be done: scram-
bling of questions and scrambling of answers. A
multiple-choice question comprises a group of lines
that contain the question's "root" and the five "an-
swers" (the single correct answer and the four "dis-
tractors"). Scrambling of questions requires chang-
ing the positions of blocks of lines, while scrambling
of answers involves shuffling a few contiguous lines
within the block. The type of scrambling that will
be done is determined by "code characters" that ap-
pear on some lines of TEST. SCR. The code characters
are placed to the far right end of the line for easy

272 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

A High-Level Language and

identification during screen editing of the source file.
The leftmost character in any sequence of code char-
acters is the comment character %, which will not in-
terfere with the subsequent compilation of the doc-
ument.

The beginning line and ending line of a question
that is to be scrambled are identified by the code
characters %B and %E in character positions 76-77.
These lines, together with all lines in between, form
a block whose position will be scrambled. The end
of the last question in a group of questions that is to
be scrambled is identified by %EL in positions 76-78.

A question that is to be scrambled need not be
a multiple-choice question, but if it is, usually we
want the answers to be scrambled also. Each of the
answers in a multiple-choice question (we will as-
sume there are five) will be an argument of a macro
designed to output the answers appropriately. In
TEST. SCR the answers must be written on five con-
tiguous lines, one answer per line. (If an answer is
too long to fit on one line, then that answer should
be made into a macro, and the macro command put
on the line.) To identify an answer that is to be
scrambled, the comment symbol % is placed in char-
acter position 78 on that line. For example, if only
the first four answers are to be scrambled (maybe
the fifth answer is "all of the above") then four con-
tiguous lines would contain a percent symbol in po-
sition 78.

The scrambling is done as follows: The source
file TEST. SCR is read into memory, each line des-
tined to become an element of a one-dimensional
string matrix that we'll name TEST$. As each line
is entered, it is examined for a percent symbol in
position 78, which would identify that line as an an-
swer to be scrambled. If such a symbol is not found,
then the line is merely appended to TEST$, but any
sequence of answer lines that are to be scrambled
are first stored in another temporary array. Pseudo-
random numbers are generated (the "pseudo" is for
the purists-I'll just call them random numbers)
and placed in another column of that array. The
rows of the array are then reordered so that the
random numbers increase as we go down the col-
umn, and the lines associated with those numbers
have their positions changed as well. The reordered
answer lines are then transferred to TEST$. This
process continues until all lines of TEST. SCR have
been entered.

The lines of the matrix TEST$ can now be
output to TEST.TEX, and the only change from
TEST.SCR will be the order of answers. However,
if scrambling of questions also is desired, then some
more juggling is required: As each line of TEST$

is output, it is examined for %B in positions 76-77,
which would mark the "begin-line" of a question
whose position is to be scrambled. If not found,
then the line is merely output to TEST. TEX; if found,
output is suspended while the program searches for
the corresponding "end-line" of that question, iden-
tified by %E is positions 76-77. The line numbers
that identify that question are stored in a row of a
"line-number matrix", and search continues for an-
other begin-end pair of line numbers, which will be
stored in the next row of that matrix. After the
end-line of the last question to be scrambled is iden-
tified (by %EL in positions 76-78), then a random
number is assigned to each row of the line-number
matrix, and those rows are reordered. The output
of TEST$ is then resumed, with the order of the lines
indicated by information contained in the rows of
the reordered line-number matrix.

Sometimes a test should not have all questions
scrambled together, but rather, say, the first twenty
easier questions scrambled, and then the next thirty
more-difficult questions scrambled. This can be
done by the above scheme, by merely terminating
each group that is to be scrambled with a line con-
taining %EL in positions 76-78.

Each time a True BASIC program is run, the
same sequence of random numbers is generated. To
obtain a version of a test, SCRAMBLE.TRU asks for
the date and the form number, and then discards
the first n random numbers, where the number n
is given by n = 366 (yr+form) + 31 .mo + day. For
example, to generate the fifth form of my last April
Fool's test I entered the "seed" 0401925, and the first
35 627 random numbers were discarded (slowing the
execution by less than a second). If, for some reason,
I need to recreate the version I can input the same
seed and obtain exactly the same test.

The macro chosen to output the answers to a
multiple-choice question depends on the lengths of
those answers. Five macros have accommodated all
possibilities I've needed so far; letting r :s : t . . . repre-
sent T answers on the first line, followed by s answers
on the next line, etc., the macros will print the an-
swers following one of these patterns: 5 , 3:2, 2:2:1,
4:1, and 1:l: l : l : l .

An example of what a couple of questions in the
source file might look like, and what output might
be produced, is shown in Figure 1 (in the Appendix).
The command \QQQQR is the macro that outputs
four answers on one line and the fifth answer on
the second line (such an arrangement would only be
used if the fifth answer is not to be included in the
scrambling); the command \QQRRS outputs two an-
swers on the first line, two on the second, and one

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Harry L. Baldwin, Jr.

on the third; (can you guess what \QRSTU would
output?). These macros begin by incrementing the
question number. Then (in a \vtop, so that a ques-
tion won't be split by a pagebreak) a horizontal rule
is drawn for question separation, followed by print-
ing the root of the question (the first argument of
the macro) and then the answers (arguments two
through six). The macro concludes with another
horizontal rule.

Generating a Test

SCRAMBLE. TRU worked so well that when the City
College Mathematics Department decided to imple-
ment a departmental final exam for the Beginning
Algebra course (and I was drafted to create this fi-
nal), it seemed reasonable to let True BASIC com-
pose the entire test. The test-making philosophy
our department adopted was this: the final exam
would be formed by selecting questions from a test
bank that is so large that test security is of no con-
cern. Currently our test bank contains 215 "mas-
ter questions" (we are aiming for 300), each master
question having ten quite-similar "versions". Since
a final exam would be formed by selecting 60 master
questions from the bank of 215, a n d any of the ten
versions of each question will be randomly selected,
a n d the 60 test questions would be scrambled (in two
groups), and the answers would be scrambled, we
feel that any student capable of beating the system
by remembering all the questions and their correct
answers is probably bright enough to realize that it
would be easier just to learn the algebra.

Each master question (comprising ten versions)
is stored as a separate file; for example, 4130 is the
file that contains master question 130. If that mas-
ter question is selected for a test, then part of that
file (a version of the question) is destined to be input
by the BASIC program MAKETEST. TRU that will be
composing the test. A random number determines
which of the ten versions will be selected. Each ver-
sion occupies 15 lines of the file, so version 4, for
example, would extend from lines 46 through 60,
with perhaps the last few lines being blank.

Refer to Figure 2 (in the Appendix) as we look
at what MAKETEST.TRU does with the 15 lines of a
question version that has been randomly selected.
The first line contains five pieces of information
about the question, with each of these pieces of infor-
mation appearing in a specific location on the line:

Version number. A whole number, in charac-
ter positions 9-10, identifies the version se-
lected. During any subsequent scrambling,
MAKETEST. TRU will keep track of the question

master number (one of the 215 questions in the
test bank) and the version number (1 through
10). After the test is constructed an answer key
is printed that will include this information. If
a bug in the question shows up then it is easy
to locate the offending version.

Scramble code. A whole number, in character
position 21, tells how many answers are to be
scrambled: 0 (for no scrambling), or 3 (the first
three answers), or 4, or 5.

Answerline code. A whole number (1, 2, 3, 4, or
5), in character position 36, tells MAKETEST. TRU
what macro to use when outputting the an-
swers. For example, code number 1 is five an-
swers on one line.

Rootlines code. A whole number, in character
position 49, tells how many lines contain the
root of the question. The root lines immedi-
ately follow this first codeline, are written in
TpX, and will be inserted directly into the
document being constructed. The maximum
number of root lines is 9; although we have
never needed that many lines, a macro could
be defined and placed in the preamble if neces-
sary.

Correct answer. A letter (A, B, C, D, or E),
in character position 59, identifies the correct
answer. The five answers are on the five lines
that follow the root line, with exactly one an-
swer per line. Before scrambling, answer A is
the first answer listed, B is the second, and so
forth. When writing a test question, I usually
work the problem and write the correct answer
on the first answer line, and then play the part
of an inattentive student as I make up the dis-
tractors. During the subsequent scrambling of
the answers, MAKETEST. TRU tracks the correct
answer for inclusion on the answer key.

The construction of a test by MAKETEST .TRU
proceeds as follows: The person creating the test
selects the master numbers of the questions that
will be on the test. These numbers are written
in a file, perhaps named FINS92 if they are the
questions to be used on the final exam for the
Spring semester in 1992. MAKETEST.TRU is then
run, and begins by asking for the test title, sub-
title, and special instructions. (Provision is made
for placing this information in a file before running
MAKETEST. TRU, and merely entering the name of the
file when prompted.) MAKETEST.TRU next asks for
the number of questions, for a random-number seed,
and for information on what groups of questions are
to be scrambled. (If no question scrambling is to be

TUGboat, Volume 13 (1992), No. 3 - Proceetiirigs of t , h 1992 ,41~111itl M ~ ~ t i n g

A High-Level Language and

done, then the questions will be output in the same
order as they appear in the question file.) Then the
master-question numbers are scrambled, and ver-
sions randomly selected.

The output file (let's again call it TEST. TEX) is
now ready to be created. MAKETEST. TRU first calls
a file named PREAMBLE.TEX that contains all the
commands in a IPW document preamble. These
lines are output to TEST .TEX. Then the title in-
formation and instructions are appended. Finally,
the randomly selected version of each master ques-
tion is input: the master number of a question is
used to form the name of the file that holds the
ten versions, the lines of that file are entered into
memory, and the 15 lines that correspond to the se-
lected version are retained while all other lines are
discarded. Information is extracted from the code-
line (the first line): how many of the following lines
contain the root, how many answers are to be scram-
bled, how many answers should appear on each line,
and which is the correct answer. The root of the
question is then inserted as an argument of a macro
written by MAKETEST. TRU using BASIC string func-
tions, the answers are scrambled and inserted as ar-
guments into the appropriate macro (also written
by MAKETEST.TRU), and all of the lines are written
to TEST.TEX. This procedure is repeated until the
lines that will print all questions have been output
to TEST. TEX.

The answer key is then constructed. After a
\pagebreak, four columns of information are pre-
sented: the question number as it appears on the
test, the corresponding master-question number, the
version number, and the answer. The last hurrah of
MAKETEST. TRU is to append \end(document).

After the file containing the master ques-
tion numbers has been created, the running of
MAKETEST .TRU takes only a few minutes. Even
though a lot of computation and scrambling is in-
volved, on an 80386 running at 33 megahertz the
questions are written to TEST. TEX at about one per
second. For the final exam in Beginning Algebra this
last Spring semester, all sections were to be given
a test that used the same master questions. Since
the tests were to be given at different times, eight
runs were made using different seeds to obtain eight
different forms, each form containing eight pages of
questions plus an answer key. Creation of all eight
forms of TEST .TEX, compiling under U r n , and then
obtaining HP LaserJet I1 output ready for photo-
copying took about 40 minutes.

Writing the ten versions of a master question
goes quickly. Since all versions are to be very simi-
lar, the roots of the versions usually will be the same,

except perhaps for a mathematical expression or a
few words. The codelines for each version usually
differ only in the version number. Therefore, one
version can be written, duplicated nine times, and
then changes made to those parts where the versions
differ.

Another BASIC program, PRT-VER . TRU, was
written that will read in a master file and print
all versions - a great help in proofreading the ques-
tions. Still another program, PRT-ALL. TRU, prints
a single version from each master question. The
output from PRT-ALL. TRU is what instructors look
at when selecting master questions for a test, and
what students look at when they are curious as to
what might appear on a test.

This testing strategy can be a morale raiser for
students, since they needn't fear being hit with a
question of a type they have never seen before. But
since the students would see only one version from
each master question (printing all ten versions would
make a booklet of several hundred pages), great care
must be taken to insure that all versions are of the
same difficulty. For example, a question that asks
for one of the binomial factors of x2 + 72 + 12 is
not considered to be of the same difficulty as ask-
ing for one of the binomial factors of x2 - 42 - 12,
for this second trinomial involves both positive and
negative integers. To insure that much thought is
applied to the construction of the questions, a ver-
bal description of the limitations is written for each
master question. For example, the description of
one trinomial-factoring question is as follows:

A given second-degree trinomial has two first-
degree binomial factors, one of which is to be se-
lected from a list of five possibilities. The coeffi-
cient of the second-degree term is 1; the constant
terms of the binomials will be non-zero integers,
of different sign, having magnitudes less than 10.

Of course, a student who only knows his multiplica-
tion table up through fives might not consider the
factoring of x2 + 32 - 54 to be of the same difficulty
as x2 + 35 - 10, but at least we tried.

Figure 2 (in the Appendix) shows an example
of a version from each of two master questions, as
they would appear in the master-question files. Also
shown is the output of these same questions as pro-
duced by MAKETEST. TRU.

Graphics Output

Other opportunities to mesh True BASIC and
arose from my efforts to produce mathematically-
accurate drawings for my handouts, and for a ge-
ometry book recently completed (Baldwin, 1992).

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 275

Harry L. Baldwin, Jr.

A brief description will be given here of only two of
several BASIC programs that were helpful.

Most of the graphs I construct for tests and
handouts require only a simple xy coordinate sys-
tem framework, on which an arbitrary curve will
be drawn. In the T@ document, a macro \XYgrid
will construct the framework, label and place scales
on the axes, and then leave the "cursor" at the left
end of the top gridline of the framework. Another
macro enters the TPm picture environment, places
the origin at the intersection of the x and y axes,
and sets \unitlength equal to the unit distance on
the framework. The rn document is then saved
while BASIC constructs the curve.

A True BASIC program named CURVE. TRU will
write TPQX \multiput statements to a temporary
file, which will then be inserted into the T'EX docu-
ment at the proper place. Each \multiput state-
ment will place dots of a selected size along a
straight-line segment defined by the endpoints. By
making the segments quite short, and linking them
together, a curve can be drawn.

The curve is defined by functions of a param-
eter -x and y each as a function of t -which
are placed very near the beginning of CURVE. TRU.
These functions are defined by editing CURVE.TRU
before running (which is much easier that having
CURVE. TRU ask for the functions during running).
When run, CURVE. TRU first asks for the framework
scale, the starting and ending values of the param-
eter t , and "delta t" (the change in t, which will
influence the lengths of the straight-line segments.
Finally, CURVE.TRU asks for the size and spacing of
the dots that will form the curve. After a couple of
seconds the program announces that it is finished,
having written a series of \multiput commands to
a file named TEMP .TRU. The QX document is then
reloaded, and the lines in TEMP .TRU are inserted at
the proper location.

A dot diameter of 1 point (obtained by using
the smallest possible I4Tp-X \circle*) with a spac-
ing between centers of 0.7 points creates a curve
whose thickness matches a I4m \thicklines line
almost perfectly. Thinner curves can be made by
using periods in smaller fonts.

Several variations of CURVE. TRU have been writ-
ten: dotted curves, dashed curves, curves where
checking is done so plotting is restricted to a cer-
tain area, and some other variations. Rather than
have one giant elegant program that will do every-
thing, I have found it more efficient to select one of a
number of special programs available, so that a lot of
queries needn't be answered during running. For ex-
ample, CURVE-DU . TRU ("dashes, unlimited") makes

a dashed curve, without checking for out-of-bounds
points, while CURVE-DL . TRU ("dashes, limited") asks
for the limits on x and y.

Some curves result in many \multiput com-
mands being inserted into the T@ file-perhaps
a few hundred. Occasionally I get a "Sorry, TeX
capacity exceeded" message. Since I don't under-
stand any of the rest of the message, I usually just
shrink the curve or increase the delta t and try again.

I often draw curves using the excellent curve-
drawing capabilities of PI-, especially circles and
ellipses. For other curves, PfZIQX requires comput-
ing the coordinates of some points that lie on the
curve and either entering these coordinates into the
T@ document or storing them on a file. Rather
than worry if enough points have been computed, or
if something strange is happening on the curve be-
tween those points, I just use CURVE .TRU. The com-
piling times for documents that produce curves
by the two methods are about the same.

Figure 3, immediately below this paragraph.
shows an example. The framework (axes and labels,
grid lines, and the scale) was generated by XYgrid
(a QX macro), but the curve was formed from 72
\mult iput commands generated by CURVE. TRU, and
inserted into the QX source file for the document
you are reading.

Figure 3: limaqon: r = 2 + 3 cos 6'

If an angle in a drawing is accurate to within
about one degree of its labeled measure, then it takes
a highly-trained eye to detect the error. Whenever
possible, I use the line-drawing capabilities of the
picture environment of to draw an angle.
The \line command in PTEX can draw a vertical
line, or a line having slope f.y/x, where x and y are
whole numbers six or less. The available slopes al-
low an angle of any measure to be constructed with

276 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

A High-Level Language and

an error less than one degree, although not with an
arbitrary orientation. If a figure has two or more an-
gles, or if the orientations of one or more angles are
constrained, then U r n \line commands may not
create a sufficiently-accurate drawing, so the sides
of those angles may have to be drawn by another
method. Furthermore, pictures of angles often re-
quire an arc to indicate the measure of the angle,
and that arc might terminate with an arrow at one
or both ends. Sometimes a picture should show the
sides of an angle to be rays (an arrow pointing away
from the vertex); sometimes an angle's sides are seg-
ments. A right angle might be indicated by a square
placed at the vertex. All of these facts served as the
incentive to let True BASIC do the job, by means of
a program named ANGLEARC. TRU.

A U'l$X picture environment is established,
with the scale and the origin chosen, and the 'l$X
source file is saved. When ANGLEARC .TRU is run, it
asks (and I answer) these questions:

What is the scale?
What are the coordinates of the vertex?
What is the direction of the angle's side?
What is the length of angle's side?
Is the side a ray? If yes, a \thicklines

vector of zero length having the closest-possible
direction as the side will be placed at the end
of the segment that forms the side.

Should a right-angle square be drawn at the ver-
tex? If yes, then what is the size of the square?

What is the radius of the arc that will indicate
the angle's measure? (An answer of zero indi-
cates no arc is to be drawn, and the next two
questions are skipped.)

Should arrows be placed at the terminal end of
the arc, or at both ends of the arc? If yes,
U ' \thinlines vectors of zero length (and
closest direction) are placed at the appropriate
endpoints of the arc.

What is the central angle of the arc?
Is another side to be drawn? To construct the

terminal side, answer yes and the questioning
begins anew.

As the questions are answered, ANGLEARC. TRU
constructs the proper U r n \multiput and \put
commands, and outputs them to TEMP. TRU. After
no more angle sides are to be drawn, control re-
turns to the BASIC editor and the 'QX source file
is reloaded. The cursor is moved to the proper
location, and all the lines of TEMP. TRU are copied
into the source file.

An example of output produced mainly by
commands generated by ANGLEARC. TRU is shown
in Figure 4, immediately below this paragraph.
Except for the two angle labels and the Figure
label, all of the drawing was done by commands
generated by ANGLEARC. TRU. The vector arrows,
and the dots that form the arcs, were placed with
\put commands. The angle sides were formed
from \multiput commands, which placed 1-point
dots with their centers spaced 0.7 points apart.
The right-angle square was formed similarly, but
using smaller dots. The three labels were placed
"manually" after returning to W.

Figure 4: x = ?

Much use was made of \ANGLEARC. TRU and
other True BASIC programs during the writing of
my geometry book. Figure 5 (in the Appendix)
shows part of a page from the book, one of many
in which this program played an important role.

Every program described in this article could,
of course, be implemented in other high-level lan-
guages-perhaps even in m . But for ease and
convenience of use, True BASIC has earned my re-
spect. I've enjoyed being a witness to the wedding
of True BASIC and W, and I'm sure that the mar-
riage will be a long and happy one in my computer
system.

Bibliography

Kemeny, John G., and Thomas E. Kurtz. True
BASIC Reference Manual. West Lebanon,
N.H.: True BASIC, Inc., 1990.

De Smet, Don. ''W Macros for Producing
Multiple-choice Tests." TUGboat 12(2),
pages 261-268, 1991.

Lamport, Leslie. MTEX User's Guide and Ref-
erence Manual. Reading, Mass.: Addison-
Wesley, 1986.

UTichura, Michael J. The Manuel. TEX-
niques 6, 1987.

Baldwin, Harry L. Jr. Essential Geometry. San
Francisco, Calif.: McGraw-Hill, 1992.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 277

Harry L. Baldwin, Jr.

Appendix

character
position

1

character
position

77 +
\midexamplespacer % Draws a horizontal rule
%I3
\QQQQRCWhich of the four complex numbers listed below has the

greatest modulus?)
{$5+5i$)
{$7+3i$)
{$6+4i$)
{$8+2i$3
{They all have the same modulus. 1
\midexamplespacer

%I4
\QQRRSCA circle of radius 1 is centered at the origin. Starting at

the point where $\,x=l\,$ and $\,y=O\,$, a distance $\,u\,$ is
measured along the circle in a counterclockwise direction. The
coordinates of the location after moving this distance u are)

{$x=\sin u,\ \ y=\cos u$)
t$x=\cos u,\ \ y=\sin ~ $ 3
C$x=\tan u,\ \ y=\cot u$>
($x=\cos u,\ \ y=\tan ~ $ 3
t$x=\sec u,\ \ y=\csc u$)
\midexamplespacer

1. Which of the four complex numbers listed below has the greatest modulus?

A) 8 + 2 i B) 6+4 i C) 5 + 5 i D) 7 + 32

E) They all have the same modulus.

2. A circle of radius 1 is centered at the origin. Starting at the point where x = 1 and y = 0 , a distance
u is measured along the circle in a counterclockwise direction. The coordinates of the location after
moving this distance u are

E) x = tanu, y = cot u

Figure 1: An Example of part of TEST. SCR and the resulting output

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

A High-Level Language and 7$J

character character character character character
position position position position position

10 21 36 49 59

version 2 scramble 5 answerlines 2 rootlines 3 answer B
The graph of the \U{intersection) of the

equations\ \ $\cases{\hskip-.12in & $x-y=-3$ \cr \hskip-.12in
& $x+y=l$ \cr)$\hskip.2in is a point that is located
Quadrant I.
Quadrant 11.
Quadrant 111.
Quadrant IV .
a coordinate axis.

(The remaining 6 lines of the 15 lines that form this version are blank.)

character character character character character
position position position position position

10 2 1 36 49 59

version 6 scramble 5 answerlines 1 rootlines 1 answer A
$\d isp laysty le \ f rac{x(x+5)+2(~+6)Hx+4) \ =$
$x+3$
$x+2$
$x+I$
$x+4$
$x+5$

, .

(The remaining 8 lines of the 15 lines that form this version are blank.)

x - y = - 3 1. The graph of the intersection of the equations is a point that is located
x + y = l

A) in Quadrant IV. B) in Quadrant 111. C) in Quadrant I.

D) on a coordinate axis. E) in Quadrant 11.

Figure 2: Examples of a version from each of two master questions, and the resulting output

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Harry L. Baldwin, Jr.

Sometimes knowledge of the measure of one or more angles in a geometric drawing will enable
you to determine the measures of other angles. The examples below show some of the techniques
that can be used.

1. Rays BA and BC determine an obtuse an-
Figure 2.8 %.,x gle having measure 121" (see Figure 2.8 at

right). These same rays also form a reflex an- - gle, which has been labeled x in the draw-
ing. From knowledge of the measure of the

....... obtuse angle ABC, determine the measure of 12'i' " ""

the reflex angle ABC.

The sum of the measures of the obtuse angle and the reflex angle must be 1 revolution,
or 360". Although x is a name of the reflex angle, we will also let x represent the measure of
this angle. Therefore,

121" + x = 360" * x = 360" - 121" + x = 239".

2. In Figure 2.9a, angle XYZ is a right Figure 2.9a Figure 2.9b
angle. Determine the approximate lo-
cation of point P on the arc, if LXYP
is to have measure 45". J 4

Y Y

Since 45" is half of 90°, point P must be located so that a rotation of ray YX to ray YP
would be half of the rotation of that ray to ray YZ. If P is located halfway along the arc from
X to Z (see Figure 2.9b), then the measure of LXYP will be half the measure of LXYZ.

3. In Figure 2.10, these angles are shown:

............ IFGI = 135" IHGI = 75"

a) What is the measure of LFGH? 135O::"'

b) What is the measure of reflex LFGH? F G

Unless information is given that an angle is a reflex angle, we assume that the angle we are
interested in will be the one having the smallest ~ossible measure. In part (a), therefore, LFGH
is referring to the acute angle, whose measure will be the difference between the measures of
the obtuse angle FGI and the acute angle HGI. In part (b), we can determine the measure of
the reflex angle by subtracting the acute angle's measure from 360".

a) LFGH = LFGI - LHGI = 135" - 75" = 60'

b) reflex iFGH = 360" - acute LFGH = 360" - 60" = 300"

Figure 5: Example of part of a page from Essential Geometry that made use of ANGLEARC .TRU

TUGboat. Volume 13 (1992). No. 3 -Proceedings of the 1992 Annual Meeting

T-EDIT, A Collection of Editing Macros for 7)jX

Larry F. Bennett
Department of Mathematics
South Dakota State University
Box 2220
Brookings, South Dakota 57007-1297
Phone: 605-688-6218
Bitnet: MAOlBSDSUMUS .BITNET

Abstract

T-EDIT is a powerful collection of editing macros designed specifically for w.
The macros are designed to be used with the KEDIT editor on IBM PC or
PC-compatible computers. The user is aided in every step of the preparation of
a completed document. Menus or prompting messages are included with many
of the macros. Over 1250 TEX and A M S ~ control sequences may be accessed
through menus. The control sequences may either be inserted directly into the
text or assigned to function keys. T-EDIT can be used to control the w i n g
and possible previewing of output. Debugging features are included. Macros
generating several lines of complicated 'l&X source code are available, and w
macros have been designed to be used with several of the code-generating macros.

Introduction
T-EDIT is a powerful collection of editing macros,
TEX execution control macros, and a collection of
special l$$ macros to be used in conjunction with
the other macros. The macro package is designed
to be used with the KEDIT editor on IBM PC
or PC-compatible computers, but can probably be
modified to be used with other editors in other
environments. In addition, although it currently
makes use of a P C W implementation of w, the
ArborText previewer, and the Microspell spelling
checker, T-EDIT is in no way bound to these
software packages. With a few simple changes, it
should work with other software.

The editing macros are currently all written in
the macro language KEXX, which is essentially a
subset of the computer language REXX.

The T-EDIT macro package was developed
to make the entire process of creating a TEX
source program, w i n g it, previewing it, and
debugging it into a fairly simple task. This has
been accomplished in many instances by using
menus and prompting messages within the macros
which guide the user through each required step.
Like TJ$ macros, existing T-EDIT macros may be
modified if desired, and new T-EDIT macros may
be created. In addition, menus may be modified
and created.

The present version of T-EDIT was designed
under the assumption that its primary use would

be for the entry of mathematical text into source
files. Consequently, many T-EDIT macros have
been created for specific mathematical applications.
Furthermore, the macros have all been designed
under the assumption that the user will employ
Plain TJ$ and/or AMS-TJ$. However, since
T-EDIT may be easily modified and expanded, it
would be a simple matter for a user to modify it to
suit his or her needs.

An editing macro package for 'based
upon the KEDIT editor was developed in 1989
by Don L. Riley and Brad L. Halverson (See Riley
and Halverson). These macros were based mainly
upon REXX macros instead of KEXX macros. T-
EDIT was developed independently. Consequently,
the two collections of macros are completely dif-
ferent and were created with different needs in
mind.

In the remainder of this paper, I shall describe
what T-EDIT is capable of doing, although I will
not be able to discuss everything. In most cases, I
will not be able to go into too much detail about
how it accomplishes what it does. This is simply
because of the enormous number of the macros
employed by T-EDIT, the length of some of the
macros, and the fact that the macros are written in
a computer language which most readers may not
be familiar with. This paper should be considered
as an introduction to T-EDIT.

TUGboat, Volume 13 (1992)) No. 3-Proceedings of the 1992 Annual Meeting

Larry F. Bennett

Editing Features

Special keys. T-Edit employs special keys and
key combinations to implement KEXX macros.
IBM compatible Personal Computer keyboards are
ordinarily supplied with ten so-called Function keys,
which are designated on the keyboard as F1, F2, . . . ,
FIO. In addition, keyboards which are referred to as
extended keyboards have two additional Function
keys: F1 I and F12. In this paper, it will be assumed
that an extended keyboard is being employed.
There is also a Control key, which is denoted
by C t r l , and there is an Alternate key which is
abbreviated Alt. Key combinations may be formed
using C t r l and A l t . To form a key combination
using C t r l , the C t r l key is held down and a second
key is pressed. If the second key happens to be the
Function key F5, then Ctrl-F5 is used to denote
this key combination. Similarly, if A l t is held down
and P is pressed, then this gives the key combination
Alt-P. Any one of the key combinations Alt-F1,
Alt-F2, . . . , Alt-F12 will be referred to as an
Alt-F key. The purpose of the Alt-F keys will be
discussed later. The Escape key, which is denoted
by Esc, is another special key that is employed in
various T-EDIT macros.

KEDIT allows a user to assign a KEXX macro
to any key or combination of keys, and the macro
is stored in computer memory. Such a macro will
be referred to as both a level-0 macro and as
the macro associated with the key or combination
of keys. KEDIT refers to the associated macro
using the name of the key or key combination it is
associated with. For example, the macro associated
with Ctrl-T is named Ctrl-T by KEDIT. This
naming convention makes it possible to initiate
the macro without pressing the corresponding key
or combination of keys. For example, including
the command 'macro Ctrl-T' in another KEDIT
macro will cause the macro associated with the key
combination Ctrl-T to be executed.

Throughout this paper, a simple macro should
be thought of as level-0 macro which does not
call upon any macro stored on the hard disk. A
redirection macro is a level-0 macro which calls
immediately upon a macro stored on the hard
disk. Ordinarily, T-EDIT uses the same name
for the macro on the hard disk as the name
of the redirection macro. For instance, Ctrl-T
is a redirection macro, and it calls immediately
upon the macro Ctrl-T.kex on the hard disk.
The extension kex is simply the default extension
employed by KEDIT for macros stored on the hard
disk. Whenever a macro which resides on the

hard disk is called upon, it is loaded into memory,
executed, and then released from memory. These
macros may also call upon other macros stored in
memory or on the hard disk. Any macro T-EDIT
associates with a key or combination of keys is either
a simple macro or a redirection macro. However, T-
EDIT makes use of many more redirection macros
than simple macros, and throughout the remainder
of the paper, all macros associated with keys or key
combinations should be assumed to be redirection
macros unless specified otherwise.

KEDIT only allows macros to be associated
with a single key or a key combination consisting
of two keys. In order to create the illusion of
extended key combinations, T-EDIT makes use of
selection macros. By definition, a selection macro
is a macro which is stored on the hard disk whose
only purpose is to allow the user to select from
other macros which are stored on the hard disk by
simply pressing a key or combination of keys.

Although several selection macros are employed
by T-EDIT, only three are going to be mentioned
in this paper. As mentioned earlier, the redirection
macro Ctrl-T, associated with the key combination
Ctrl-T, calls upon the macro Ctrl-T. kex which is
stored on the hard disk. The macro Ctrl-T.kex is
a selection macro. Once this macro is initiated, a
message appears on the screen informing the user
of possible choices of keys to press next. One of
the options which is available, and which will be
discussed in more detail later, is to press 0. The
character associated with the key pressed is read
into a KEDIT variable called readv. 1. Next, a
substitution is made in a KEDIT command which
is similar to, but slightly more complicated than
the KEDIT command

'macro \Ctr l -T 'readv.1' .kexJ.

Thus, the macro called upon at this point is actu-
ally Ctrl-TO. kex. Although there is no message to
the effect that it is possible to enter the extended
key combination in any other way, the same results
are achieved by pressing Ctrl-0 instead of 0. This
option is allowed since after pressing Ctrl-T it is
very easy to forget and press 0 next while still
holding down the C t r l key. Because of this addi-
tional option, the extended key combination Ctrl-T
followed by either 0 or Ctr l -0 will be designated
as Ctrl-TO. Similar notation will be used to denote
all other extended Ctrl-T key combinations as well
as extended key combinations involving C t r l - I and
C t r l - D l which are also associated with redirection
macros and which call upon selection macros.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

T-EDIT, A Collection of Editing Macros for TEX

Throughout the remainder of this paper, ex-
tended combinations will be used without further
explanation.

Automatic key assignments. Whenever a QjX
source program is edited with T-EDIT, a great
number of macros are automatically associated
with keys and key combinations. It is the collection
of macros associated with various keys and key
combinations which does much of the work for
T-EDIT. Some of these macros call upon menus
which may be used to select other macros, insert
TEX source code, or associate macros with Alt-F
keys, etc.

Text insertion. Many macros associated with
keys, key combinations, or extended key combi-
nations eventually cause text to be inserted in a
document. Any time T-EDIT inserts text into a
document, it automatically puts the KEDIT editor
into insert mode and often repositions the cursor in
the proper position for the user to continue. This
means that text, which was above and to the right
of the cursor at the time the new text is inserted,
will be moved to the right. Furthermore, until the
user turns insert mode off, additional text typed in
will cause any characters above and to the right of
the cursor to be shoved to the right.

TEX control sequence insertion macros. The
macro associated with the key combination Ctrl-I
is a redirection macro. It calls upon the selection
macro C t r l - I . kex. Although many options are
available after Ctrl-I is pressed, only one will be
discussed in this paper. In particular, suppose
that @ (that is, Shift-2) is pressed next. A
menu of over 1250 Plain 7lJ$ and AMS-m control
sequences and corresponding text insertion macros
is initiated. The screen is split into 2 windows. The
source program which is being edited appears in the
lower window with the cursor under the character
it was positioned under when Ctr l - I was initially
pressed. The user is in what may now be referred
to as menu mode.

The user sees the first 9 control sequences of
the over 1250 which are available displayed in the
upper screen window with the first of these control
sequences highlighted in red. Also displayed near
the top of that window is a message which lists, in a
somewhat cryptic form, eighteen options which are
available. One of these options, Name, is included
to suggest that the user begin to type in the name
of the control sequence. Suppose that the control
word \begingroup is needed. After typing B and E,
the user sees

highlighted in red. In addition, the characters
which have been typed in so far, namely be, are
displayed in the upper portion of the top screen
window in order to keep track of what has been
typed in. Note that these are lower case letters.
In order to have obtained the corresponding upper
case letters, the Sh i f t key would have had to have
been employed. The cursor is still resting beneath
the same character as when Ctrl-I was pressed. If
Enter is pressed at this point, then the text

\begingroup \ endgroup

will be inserted beginning at the current position
of the cursor, and the cursor will be repositioned
to rest under the second \. Any characters on the
current line which were above and to the right of
the cursor are moved to the right. The menu is
still displayed in the top screen window, but there
is a new message that informs the user that he or
she is in program mode. This means that editing
can proceed as usual, even though it is actually
being accomplished under the control of the macro
Ctrl-I.kex. The message also instructs the user
that to enter menu mode again, press Ctrl-Enter,
or press Alt-Esc to get rid of the menu and return
the screen to full screen edit mode.

Now, let's assume that once a desired entry is
highlighted, then instead of pressing Enter, the user
presses @ (that is, Shift-2). Then the highlighted
text insertion macro is assigned to some undefined
Alt-F key. In the bottom window of the screen, a
new message appears which tells what Alt-F key
the macro was assigned to and describes what the
macro does. In the case of the preceding example,
the displayed message would be

Alt-F3 : ' t ex t \begingroup \endgroup'

if the text insertion macro was automatically as-
signed to the undefined Alt-F key Alt-F3. The
user can prohibit the display of such information,
then display it again, etc. This time, T-EDIT stays
in menu mode. After all, there are probably more
text insertion macros which should be assigned to
Alt-F keys. To escape this mode, Esc may be
pressed to get back into program mode. In fact,
Esc may be used at any time the user is in menu
mode to return to program mode.

Additional keys which may be used in the menu
mode to make a selection are the Up Arrow and Down
Arrow keys, PgUp and PgDn keys, and the C t r l -
PgUp and Ctrl-PgDn key combinations. Pressing
the Backspace key will undo the last key entry, and

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 283

Larry F. Bennett

pressing the key combination Alt-Enter will cause
the highlighted macro or text insertion macro to
be executed with an automatic cancellation of the
menu.

It should be clear that macros which control
menus are not selection macros as described earlier.
All but 21 of the over 1250 T-EDIT KEXX text
macros which can be accessed using the menu just
described are generated on the fly. That is, they do
not exist at the time they are called upon, but are
created using a special code which is present in the
menu line containing the desired control sequence,
but which is not seen by the user. Specifically, a
code appears in the first 4 columns of each menu
line which instructs T-EDIT how to handle the
creation of the text insertion macro, or if the macro
is saved on the hard disk instead, then the code m
is found in column 1 and the name of the macro,
which is visible to the user, is found starting in
column 69 of the line. Although the other codes
available are quite simple, it is far beyond the scope
of this paper to describe them all.

Private macros. The key combination Ctrl-P
will activate a private menu of user defined macros.
This menu in used in the same way as described
for the menu of rn insertion macros. However,
many of the macros which may be called upon in
this menu are much more powerful than any control
sequence 7&X insertion macros. In addition, the
menu may call upon submenus, and a couple of
extra options may be used in searching for specific
macros. Also, in most cases, a fairly lengthy
description of what the macro will do is included,
and this will be displayed at the bottom of the
screen if the user elects to assign the macro to
an Alt-F key. Furthermore, when called upon,
most of these macros lead the user through all
of the additional steps necessary to fill in needed
data. Some of these macros are powerful rn
code-generating macros which in many cases make
use of specially designed TEX macros.

Examples of private macros. Three ex-
amples have been included in the Appendix to
demonstrate the capabilities of T-EDIT. In each
case, a typesetting problem is presented, the steps
necessary to generate the required 'I)$ source code
using T-EDIT are discussed, and the output ob-
tained from the code is displayed. Please look
carefully at these examples so that you can judge
for yourself!

At the present time, the private menu refers to
a great number of macros which perform remarkable
typesetting feats with a minimum amount of effort.

In the future, many new private macros will be
added to T-EDIT. As a matter of fact, the list will
probably continue to grow indefinitely as more and
more applications arise. At the same time, many
difficult typesetting problems will be reduced to
trivial tasks.

Alt-F key management. If the key combination
Alt-E is pressed, then a number of options are
made available. It is now possible to edit or delete
Alt-F key macro definitions and descriptions, or
even enter new ones directly from the keyboard.
Collections of Alt-F key definitions and descriptions
may be automatically saved and added to a menu.
When the user saves such a collection of Alt-F
key definitions, he or she is asked to enter a name
for the file in which to store the key information
as well as a description of the collection. This is
then added to a menu so that the entire collection
of key definitions and descriptions may be easily
reinstated later using that menu. In addition, files
containing collections of Alt-F key definitions as
well as the menu referring to collections of Alt-F
key files may be edited. The macros associated
with A l t - E make each of these tasks fairly easy.
Because of the capabilities just mentioned, the key
assignments which T-EDIT makes at the beginning
of each editing session should be adequate for most
users.

Letter and mail merge menu. By pressing
Alt-0, a menu of letter-writing and mail-merge
options appears on the screen. The user is aided
in writing documents with a minimum amount
of effort. Descriptive information concerning a
document is recorded in a menu. Later, if the
document needs to be located, the desired menu
is called upon. Once the information describing
the desired file is seen highlighted in red, pressing
Enter will cause the file to be loaded into the
KEDIT editor to be reviewed or revised. Special
data-writing macros for mail-merge documents are
included. Again, descriptive information concerning
specific data sets is inserted in a menu so that the
data set may be located easily in the future. Other
options allow letter or data menus to be edited. Of
course, all documents and data sets are written for
use with TJ$.

The key combination Alt-0, which may seem
somewhat out of place, was chosen so that no
useful key combination would be wasted. It was
included as an additional way of accessing a macro
on the hard disk which was actually designed to
be initiated from the DOS command line using the
Function key F 11.

284 TUGboat, Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting

T-EDIT, A Collection of Editing Macros for

Special text insertion keys. Some examples of
simple macros associated with keys or combinations
of keys are as follows. Keep in mind that T-EDIT
is currently used most frequently to enter text
which contains mathematical text written for use
with Plain rn or AMS-w. It is useful to have
additional methods of inserting often-used control
sequences so that these control sequences can be
entered as easily as possible. When Fi is pressed,
$$ is inserted in the file beginning at the position of
the cursor at the time that the key is pressed. The
cursor is positioned under the second $ sign. The
simple macro associated with the Function key Fi
is

' i nse r t o n) ; ' t e x t $$ ' ; ' cu r l e f t ' .

Definitions of other simple macros are similar. If
the user proceeded to type E=mcA2, then after
typing the 2, $E=mc^2$ would be seen with the
cursor positioned under the last $ sign. Remember,
KEDIT was put automatically into insert mode
when the Fl key was pressed. Similarly, pressing
C t r l - [causes C) to be inserted as text with the
cursor repositioned below 1. The symbol C appears
on the key referenced by the symbol C, so the choice
of C t r l - [to represent C) is a fairly natural one.
Pressing C t r l - \ causes \C \3 to be inserted into
the source file with the cursor resting under the
blank space to the right of C. Here, since the
first character generated is the character \, the key
combination C t r l - \ was chosen to generate this
character string.

The macro associated with the key combination
C t r l - D is a redirection macro which calls upon the
selection macro C t r l - D . kex. When C t r l - D is
pressed, a message appears on the screen which
instructs the user to press Esc to get out of the
menu, press i for $$, press 2 for $$$$, or press 3
for $$ $$ spread out over three lines. Only one
of the three options will be discussed. Suppose
the user presses 3. Then the following will occur.
If the cursor is not resting on a blank line, then
a new line is first added after the line the cursor
was positioned on. Three lines of text are created.
The first line contains $$ left justified, the second
line is a blank line, and the third line is $$. The
cursor is repositioned to appear at the first column
of the blank line separating the two $$ groups. This
format is used when mathematical expressions are
to be entered in display math style.

The macros associated with the key combi-
nations C t r l - G and Ctrl-0, which are discussed
next, are redirection macros, but the corresponding
macros on the hard disk which they call upon are

not selection macros or menu-type macros. Details
cannot be included in paper as short as the present
one.

Greek letters. To get Greek letters quickly, the
combination of keys C t r l - G may be pressed fol-
lowed by one, two, or three of the letters in the
control word representing that letter. For exam-
ple, the text \varepsilon is automatically inserted
after C t r l - T is pressed followed by VE, while the
text \gamma is automatically inserted after pressing
C t r l - G followed by G. The instant that the user
has typed in enough information to distinguish the
desired Greek letter from all others, then the text
for that Greek letter is automatically inserted. The
user never presses the Enter key.

Math delirniters. Opening and closing math de-
limiters can be obtained by pressing Ctr l -0. Sup-
pose that the text

needs to be inserted in a document to create delim-
iters for a mathematical expression. Assume that
the key combination Ctrl-0 is pressed. A message
appears at the top of the screen which instructs
the user to press the key which represents the first
symbol in the opening delimiter. So suppose that
\ is pressed. At this point, the screen will be split
into two windows, with a menu displayed in the
upper window. The source file appears in the lower
window with the cursor positioned as it was before
Ctrl-0 was pressed. Suppose LE is typed next.
The code \ l e f t \ r igh t appears highlighted in red
in the menu. Assume that Enter is pressed. The
text \ l e f t is inserted. However, note that \ r igh t
has not been inserted yet. It has been saved to
be inserted later. The menu is still in effect, and
a message instructs the user to type the first sym-
bol of the code representing the opening delimiter.
That symbol would be \ for the opening delimiter
\ l c e i l . So suppose that \ is pressed next. A
matching math opening and closing delimiter code
is highlighted in red, but it is not the pair which
is currently being sought. However, after pressing
C and E, the desired matching opening and closing
delimiter pair is seen highlighted in red. If the En-
t e r key is pressed next, then the menu disappears,
and it is observed that the code

has been inserted in the source file with the cursor
positioned under the first space to the left of the
control word \ r ight . Note how the control word
\ r igh t , which was not present before, has now been

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 285

Larry F. Bennett

inserted in the proper position. Incidentally, the
requirement that \ be entered as the first symbol in
the control word representing the opening delimiter
is due to the fact that simple math opening and
closing delimiter pairs like 0 may be used also.

T~Xing, Previewing, and Debugging
When a source file is ready to be w e d , the
combination of keys Ctrl-TE is pressed. A check is
made to make sure that a \bye or \end statement
is included at the end of the program. If there is no
such statement, then one is added. The w source
file is saved, and then w e d . If no error occurs
when the source file is w e d , then the output
is automatically previewed. After the preview is
completed, there is a return to the editor and the
source file. The cursor is positioned wherever it
was when Ctrl-TE was pressed. If an error occurs
while w i n g the file, and if the user enters the
'-!$$ option e, then the line in the source file where
the error occurred becomes the current line in edit
mode, and the cursor is positioned at the beginning
of this line. Furthermore, the screen is split into
two windows, and as much of the pertinent log
file information as possible is shown in the upper
window. If it isn't possible to display all of this
information, then the user is advised and informed
to press C t r l - U if there is need to review more
of the error message than is shown. If C t r l - U is
pressed, then although the cursor never moves from
its current position in the source file, the log file
may be reviewed using the Up Arrow, Down Arrow,
PgUp, PgDn keys, etc. The key combination C t r l - T T
may be used to TEX a file without previewing the
output.

Pressing the key combination C t r l - T B allows a
user to a KEDIT so-called "marked block" in
a file. This could include as much or as little w
source code as desired. In fact, a single character
could be w e d this way. What actually happens
is that the block is saved as a TEX source file called
\exper.tex with a \bye statement inserted as the
last line. This file is then w e d and previewed.
If there is an error, then the offending line in the
original file, not the \exper. t ex file, becomes the
current line in the editor with the cursor positioned
at the beginning of that line. The screen is split into
two windows, with the error message or a portion
of it displayed as was described above.

Pressing the key combination C t r l - T O does
the very same thing as C t r l - T B with one important
exception. Any lines in the file with % in column 80
are also included in the \exper. t ex file. Such lines

can be marked immediately by pressing C t r l - M
while the cursor is positioned on the line. Later the
symbol % may be erased by pressing C t r l - E while
the cursor is positioned on the line. However, in
most cases, only certain lines need to be marked in
this way, and they will not have to be altered again
later.

Pressing the key combination C t r l - T D will
cause all lines in the current source file, from the
first blank line at or above the cursor to the bottom
of the file, together with any lines marked with a %
in column 80, to be w e d , and previewed, etc.

Pressing C t r l - C will cause a forward search
from the beginning of the file for matching pairs
of {I, followed by a backward search from the end
of the file for such matching pairs. Pressing the
key combination C t r l - T C followed by F will cause a
forward search from the current cursor position to
the end of the file for matching pairs of this type,
while pressing C t r l - T C followed by B will cause a
backward search from the current cursor position to
the top of the file for such pairs. In all cases, the
search will end at the first { or 1 for which there is
no match.

If Ctrl-S is pressed, then the Microspell
spelling checker is activated. Up to about 90%
of the spelling errors in the document are usually
spotted and corrected this way. The key combina-
tion Ctrl-TP will cause the output to be printed,
and C t r l - T H will cause the dv i file associated with
the source file to be copied to a diskette.

In case a user cannot recall all of the pre-defined
key definitions, A l t - H brings up a menu of all such
key assignments the user may not be familiar with.
Once the given key and description are shown
highlighted in red, the key can be accessed by
simply pressing the Enter key! By pressing C t r l - H ,
a menu comprised of a subset of the key definitions
just mentioned, which are TEX related, is initiated.

Future of T-EDIT
T-EDIT is still in its infancy. It will continue to
grow and become more sophisticated in the future
regardless of whatever else happens. Hopefully,
other individuals will become interested in T-EDIT,
and perhaps a method for the distribution of T-
EDIT software will become available.

Bibliography
Riley, Don L. and Brad L. Halverson, "Creating an

Efficient and Workable PC Interface for w " ,
TUGboat, 10 (4), pages 751-759, 1989.

286 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

T-EDIT, A Collection of Editing Macros for TJ?J

Appendix

Example 1

Suppose that a user wants to display the long division of the polynomial

by the polynomial

The user presses Ctrl-P to get into the private macro menu. After POL has been typed in, the user sees the
entry which says polynomial d iv is ion highlighted in red. If the user presses Enter, then the first thing
which is done by T-EDIT is to search the 7&X source file for an \ input statement for file \polydiv.mac,
which contains the TFJ macros which will be needed. If no such \input file is found, then one will be
added automatically to the source file at the beginning of the file or following the last \ input statement
found, if any. While this is accomplished, the cursor appears to stay in precisely the same position that it
was in before Enter was pressed. Next, the name of the variable to be used is requested. This could be a
Greek letter, etc. if desired. Suppose that x is entered. The user is then asked to insert the coefficients of
the denominator. Here, that would mean that 2 3 -2 is typed in and then entered. Now the coefficients of
the numerator are requested. For the current problem, the user would type 6 -15 -34 36 -14 -7 7 and
enter it. T-EDIT causes all of the additional numerical information required to be computed. Line after
line of 'IjEX code is automatically generated until all necessary code has been inserted. The code generated
by T-EDIT is shown below.

The output which will be produced by the code is shown below.

The user can position the output on the page however desired. In the case of the example above, the display
has simply been indented by the default indentation amount.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Larry F. Bennett

Example 2

A user desires to create a short table of Laplace transforms of functions. Assuming that the appropriate
T-EDIT macro has not already been assigned to an Alt-F key, the first step in creating the table would be
to press Ctrl-P to access the private macro menu. After TA has been typed, the desired entry is highlighted
in red. It is listed in the form table, math together with some additional information which identifies the
table style. Beneath this entry, other styles of math tables are listed.

To initiate the macro, the user presses Enter (or Alt-Enter if the menu is to be exited after the
selection of the macro). A check is made to see if the user has included an \input file for the required TEX
macro \mathtab1 .mace If no such statement is found, then one is added after the last \input statement
in the file, or at the beginning of the file if there is no \input statement. A beep sounds and a message
appears which requests the user to enter the title on one line, separating lines of the title with \cr, or to
press Enter to quit. Suppose that Laplace Transforms\cr of Functions is typed in and entered. A new
line is added if the line upon which the cursor is resting is not a blank line. The text below is inserted, a
beep sounds, and a message appears requesting the user to either enter the amount to spread the table or
to press Enter to accept the default of 100pt.

\mathtable{Laplace Transf orms\cr of Functions)

Assume that Enter is pressed to accept the default. The symbols {) are added to the text shown above.
There are three more input parameter values which the user may enter or accept default values for. The
first of these parameter values is the amount of indentation from the left margin, and has a default value of
ltruein associated with it. The other two parameters represent strut heights and depths which will be used
in the construction of the main part of the table. Suppose that the default value is accepted for each of
these parameters. After the last time Enter is pressed to accept a default value, a new line is automatically
added, the symbol I is inserted, and the cursor is positioned two spaces to the right of it. So far,

\mathtable{Laplace Transf orms\cr of Functions){){){){)
I

has been generated. Now, the user is asked to enter a heading for the first column and press the Tab key
when the entry is completed. Suppose that f (t) is typed, and then the Tab key is pressed. The following
text is displayed with the cursor positioned two spaces to the right of the last I shown.

Next, a message requesting the entry of the column heading for the second column appears. The message
also includes instructions to press the Tab key when the entry is completed. Assume that I \cal L) (f 1 is
typed in and the Tab key is pressed. The text which has been inserted after the Tab key was pressed is
shown below.

\mathtableILaplace Transf orms\cr of Functions>C){){)I)
I f(t) I {\cal L)(f 1
I

The symbol I has been automatically inserted twice more, and the cursor is positioned on the last line
shown, two spaces to the right of it. The user is requested to insert the entry for the first column and press
the Tab key when that entry is completed, or to press @ to finish the creation of the table. Suppose that 1
is typed in and the Tab key is pressed. So far, the following text has been added to the source file .

A space separates the last symbol I on the right from the current position of the cursor.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

T-EDIT, A Collection of Editing Macros for TJ$

The text l\over s is typed in next, and the Tab key is pressed. The text below is present after the
Tab key is pressed, with the cursor positioned one space to the right of the symbol I on the last line.

\mathtable{Laplace Transforms\cr of Functions){){){){)
I f(t) I {\cal L)(f 1 I
I I I l\over s I
I

Now that the idea is clear, let's look at the keystrokes needed to complete the table. Tab will be used
to represent the Tab key.

e-{at) Tab l\over{s-a) Tab \sin at Tab a\over{s-2+ae2) Tab \cos at
Tab s\over{s-2+ae2) Tab \sinh at Tab a\over{s-2-a-2) Tab \cosh at Tab
s\over{s-2-a-2) Tab O
All of the necessary code to generate the Table has been entered and appears below.

\mathtable{Laplace Transforms\cr of Functions){){){){)
I f (t) I {\cal L)(f 1 I
I I I l\over s I
I e-Cat) I l\over Cs-a) I
I \sin at I a\over {s-2+a-2) I
I \cos at I s\over {s-2+a-2) 1
I \sinh at I a\over {s-2-a-2) I
I \cosh at I s\over Cs-2-a-2) I

\endmathtable

Note that the required control word \endmathtable was automatically inserted on the last line. In
addition, one extra line has been added following the last line shown, and the cursor is positioned under
the first column of that line. The table produced by the code is illustrated below.

Laplace Transforms

of Functions

cos at

sinh at

cosh at

TUGboat, Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Meeting

Larry F. Bennett

Example 3
Consider the problem of displaying a linear system of equations. In this example, it will be assumed that
the T-EDIT macro has already been assigned to an Alt-F key, say Alt-F5, using the private menu. Then
towards the bottom of the screen, the message

*** Use Ctrl-V to toggle info. display. Use Alt-5 to clear keys and screen ***
appears together with information for Alt-F keys which have been defined. For Alt-5, the user would see
the following line displayed.

Alt-F5 : systems of equations

Assume the key combination Alt-F5 is pressed. As in the case of the previous examples, the \input
statement for the macro \sysequa is inserted in the source code if it does not already appear. A beep is
heard, and a message appears towards the top of the current screen window which instructs the user to
enter each variable name to be used or enter the name of the subscripted variable name which will be
employed followed by the number of unknowns. Pressing Enter is mentioned as a method of terminating
execution. For this example, suppose that \alpha 4 is typed in and entered. If the cursor is resting on a
line which is not completely blank, then a new line is added. The code

appears left justified as shown on that line. In addition, a beep is heard and a message appears towards the
top of the current screen window which instructs the user to enter four coefficients, followed by the entry
to appear on the right-hand side of the equals sign for this row equation. Entering too little information
or too much information for this row equation will cause several beeps to sound, together with a message
instructing the user to enter values for this row equation again. If 1 35 -3 2 6 is entered then the following
code will be seen.

\sysequa
\lp \alpha-ill \p 35\alpha-(2) \m 3\alpha-I33 \p 2\alpha-I43 \eqI63

Of course, a beep is heard and the same message appears as before. Continuing, let's assume that 15 -4
21 9 5 is entered, followed by -2 0 2 4 8, and then 1 3 0 -1 10. Finally, f is entered to finish. The code
which has been generated by T-Edit is shown below.

\sysequa
\lp \alpha-I13 \p 35\alpha-I23 \m 3\alpha,C33 \p 2\alpha-(4) \eq(6>
\lp 15\alpha_Ill \m 4\alpha-(2) \p 21\alpha-(3) \p 9\alpha-(41 \eq{5)
\lm 2\alpha_CIl \zero \p 2\alpha-(3) \p 4\alpha-I43 \eqt8)
\lp \alpha-C13 \p 3\alpha-(2) \zero \m \alpha-(4) \eqClO)

\endsysequa

Note that \endsysequa has been automatically added to the code. Furthermore,.an additional line has
been added following this line, and the cursor appears at the first column of the new line.

The system of equations generated may be displayed wherever desired on the page. If $$ had been
typed in before the macro was initiated, and if $$ had been entered on the line following the command
word \endsysequa, then the output obtained would be the same as that displayed below.

TUGboat, Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting

Automatic Tables Using SGML, C, and TEX

Robert MCGaffey
Oak Ridge National Laboratory
Building 2506 MS 6302
P. 0. Box 2008
Oak Ridge, T N 37831-6302 U.S.A.
Phone: 615-574-0618; FAX: 615-574-6983
Internet: rumQornl . gov

Abstract

This paper presents yet another method for doing tables with 'YEX. This process
is different in that the source of the tables is not TEX but SGML, and there are
no formatting instructions in the input. We present a method whose goal is to
produce the highest quality output under the constraints given. We also present
a set of problems that result from this method and suggest a solution.

Automatic Tables

Definition. Perhaps the best way to define an
automatic table is to describe how it gets created.
Suppose you are a TEX expert and I tell you that I
want you to typeset a table with a specific number
of columns. I also give you the default type of entry
for each column. I am not telling you how many
rows there are, nor how wide any of the entries
might be. Now, it's up to you to design the table
without the entries. I will then add the entries
myself and expect some good result. Finally, after
I add the entries and print the result, I may not
modify such things as \ tabskip glue to make the
table be more pleasing to the eye. So, the table
is created from its content to the paper without
human intervention.

Corollaries. Some obvious conclusions about such
tables: since we do not know the length of the
headings or the text entries, the decision to wrap
headings and/or text must be made automatically.
Since we do not know if the headings to a particular
column are wider than the other column entries
we cannot adopt a simple \hidewidth approach
for fear that our column headings will overlap each
other. Furthermore, we do not know beforehand
how long a table will be. Some of ours are 75 pages
long which prohibits the direct use of \hal ign due
to memory constraints.

Why automation and why w. Our problem
is that our articles are ultimately to come from
a database where a researcher may have selected
various parts of many articles for closer scrutiny. In
spite of the fact that many want to remove paper

from our desks it has not happened yet and will not
for some time. Thus our researcher wants several
copies of the parts of articles he/she has selected on
paper for later study. We do not want anyone at
this point to have to gather all of the parts together
and typeset them before our hero can have them.
We want him/her to be able to say, PRINT this and'
turn around to the laser printer (in a few short
minutes) and retrieve the output. Thus our hero
need not know any typesetting language at all to
get the results. And that's why Tj$ is being used.
It is the most programmable of all typesetters and
thus the choice most likely to generate a 'pleasing
to the eye' paper for our hero to study.

Goals
We want the following:

1. The inputter should be faced with an easy-to-
edit ASCII file.

2. Decimal alignment capability without "extra"
columns.

3. No heading to migrate into the heading on
either side of it as could happen if \hidewidth
is used.

4. Sizing of headings and text entries to be deter-
mined on the fly depending on the discovered
width of both the heading and the column
entries under the heading.

5 . Both column spanning and row spanning.
6. Tables of many pages to be handled without

losing either the inherent benefits of \halignls
measuring or exceeding W ' s memory capac-
ity.

TUGboat, Volume 13 (1992)' No. 3-Proceedings of the 1992 Annual Meeting

Robert MCGaffey

7. Headings must be automatically migrated from
page to page of a many-page table.

The Algorithm

What I have done. We start with an SGML
instance file. For those of you not in the know,
this is an ASCII file in which all of the elements of
information in a document are labeled with SGML
tags. In our case, we use the tag <CELL> to indicate
a table entry. For example, a numerical field may
be indicated by <CELL>493.7</CELL>, an equation
by (CELL TYPE="eqn">xy/a</CELL>, and text by
(CELL TYPE="text1I>Robert</CELL>. In the event
that a particular cell spans, say three columns and
two rows, it must be tagged differently, say, <CELL
TYPE="textl' C="3" R="2">Robert</CELL>. Note
that TYPE, C, and R are called attributes of the
element CELL. A row consists of the start tag <ROW>,
any number of cells, and the end tag </ROW>.

Headings are given special treatment in our sys-
tem. A main heading consists of <CHI>, the heading,
and </CHI>. Subheadings are included inside of the
main heading they modify. Let's say we have a table
with the main headings: Main 1 and Main 2. And
that both of these headings have two subheadings
with obvious names. Then the markup of these
headings could be <CHl>Main l<CH2>Sub la</CH2>
<CH2>Sub lb</CH2></CHI><CHl>Main 2<CH2>Sub
2a</CH2><CH2>Sub 2b</CH2></CHI>. Note that
the headings do not come out in the order needed
by w.

And I could go on to describe the rest of the
table elements but I hope the above suffices to show
how the information is delineated in the tables we
use. If not, the Appendix contains a short sample
table and the SGML markup we use for that table.

Each <CELL> comes equipped with another
attribute not yet shown. The COORD attribute
gives the row and column numbers spanned by
the particular entry. Thus if our large CELL
above was entered in the fourth row and the third
column of a table it could be fully described by
<CELL TYPE="textM C="3" R="2" COORD="4-5,3-
5">Robert</CELL>, as it spans rows four and five,
and columns three through five. We do not want
inputters to have to deal with the determination of
the COORD attribute so we have a parser/translator
program and a C program which together generate
the COORD attributes. The translator expands the
table so that all implied (defaulted) attributes are
available to the C program which then calculates
and outputs the COORD attributes.

Now, we have the SGML instance file we
wanted in the first place. The integrity of the
information has been preserved and the coordinates
of table cells are now available for insertion into a
database so that our hero may access, say, the third
and fifth columns of a table while ignoring the other
columns.

Now we use our parser/translator to convert
from SGML to p s e u d o m . We are now left with
many holes in our Tm file. Since we input sub-
headings as part of our heading elements, our table
headings are interleaved; that is, some subheadings
may appear in the document before all of the ma-
jor headings. Our table entries may have white
space before and/or after them. And, we have no
preamble.

Recalling our goals, we want to take advantage
of the \ h a l i p ability to premeasure columns and
yet also handle 75 page tables. Well, the only
way to measure the columns is to let 7$$ do it.
Yet we cannot turn TEX loose blindly or we may
someday exceed its memory capabilities. Also, we
do not ever want to encounter the extra white
space in the last column that Knuth refers to on
page 247 of The m b o o k . What if we let
measure each table entry and report the result to
another program which can then decide the best
width, height, and depth for each column and row
in the table? Then, that program could generate
a suitable TEX file which would then typeset the
table using an algorithm designed to create a result
which is pleasing to the eye.

That's the plan.
So, we execute a C program to unravel our

headings and to remove unwanted white space.
Also, this is where we add our extra columns to
the aligned decimal columns so that decimals line
up. Note this does not break goal number two, as
the inputter never sees this 'I'EX file. The result is
a m file which will run with the proper macros;
but, it will not produce a table. There is still no
preamble. What it does produce is a file giving the
height, width, and depth of every single cell entry
in the table. For the headings and text entries, it
assumes that the headinglentry will be typeset on
one line.

What I hope to do. Here is where I will use
a C program to mimic m ' s \hal ign process.
The natural width of every single column will be
determined in two ways: first, by ignoring all
headings, and secondly, by assuming headings are
not stacked. When headings are ignored, text
columns will also be ignored. At the same time,

292 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Automatic Tables

the natural height and depth of each row will be
determined, also, in two ways. During this phase,
every spanning entry will be stored away in a list
for future processing.

Next, the width of the text columns and the
headings will be determined by trying to mathemat-
ically choose widths to make the table pleasing to
look at. For example, we don't want a column with
a two inch heading sitting on a column of numbers
whose natural width is one-half inch. I intend to
use a set of parameters which can be tweaked with
experience until a good job is done. We shall see.

Each entry consists logically of a cell we can
create in l'@ with the box \hboxC\tskip\cskip
\vbox(\rskip cell entry \rskip)\cskip\tskip).
The \ tskips take the place of \tabskip% \cskips
are used to surround the columns of a cell when
the header is larger than the rest of the column.
\rskips are used to handle vertically spanning
problems. And \vtop or \vcenter will take the
place of \vbox when appropriate.

Now, we have to process our spanning entries.
If the entry already fits inside the rows and/or
columns it spans, then we remove it from the list. If
not, we calculate a row factor which is the amount
we must expand the spanned rows to make our
spanner fit; or, we calculate a column factor; or,
both. Then, since spanning entries can overlap,
we are going to select the smallest factor we find
and increase each of the spanning rows or columns.
This is done by increasing the row's \rskips or
the column's \cskips. Now, we reprocess the
spanning entries, since the factors may be changed
by the previous expansion. We then iterate this
process until all of the spanning cells fit. Now
we can modify our aformentioned p s e u d o m file
by inserting \set tabs and \+s in the right places.
We only have to make sure that we have correctly
specified each box and that we have left gaps to
handle vertical spanning.

Of course, we are talking theory here, not
reality yet.

The Problems
The biggest problems here involve the fact that
a C program that doesn't know 7QX is stuck in
the middle of the process. For example, we allow
footnotes in our tables. If the inputter inserts a
period in the footnote, then the C program may
pick that period to be the decimal upon which
it must align the column. I know this from
experience. I have not solved this problem in theory
or practice. For now, I ignore them. I suspect that
if I cause <FTNOTE> to be translated to something
like \ foo tno te i i i and also output the footnote to
another file so that the C program could never see
it, I could make it work.

The Proposal

The real cure, however, is for someone with more
smarts and time than I have to tackle this problem
without the use of the C program. After all, 7QX
always knows more about the text and math and
the curly braces, etc., than I could ever teach a C
program.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Robert MCGaffey

Appendix

Sample Table

XYZABC

XYZ ABC

X Y Z A B

372.466 493.7 45 124 489
372.40 493.7 45 124 489
372. 493.7 45 124 489

X Y / A 832 abc 774
qrr aaa 799

SGML Representation of Table

(TABLE NUMBER=" 1" ID="xyzabc">

C

280
280
280
INT

TUGboat, Volume 13 (1992). No. 3 - Proceedings of the 1992 Annual Meeting

Dotex - Integrating TEX into the X Window System

Anthony J. Starks
Merck Research Laboratories
Computer Resources, RY86-200
126 Lincoln Avenue
Rahway, NJ 07065 U.S.A.
Phone: (908) 594 - 7288
FAX: (908) 594 - 1455
Internet: aj samsdrl . corn

Abstract

Dotex is a system to integrate TEX tools and automate the format, edit, preview,
and print cycle in the X Window System. Dotex uses a single X Window client,
xtmenu, to provide a simple push-button interface to the formatter, text
editor, and dv i previewer. Other functions such as spell-checking are easily
added. Dotex's function is to integrate, not change existing tools, providing
a highly interactive "point and shoot" interface to traditional batch-oriented
programs. Dotex's chief advantage is allowing the user to rapidly visualize
changes in the manuscript, thus facilitating such things as prototyping different
typographic effects.

Introduction

is an interactive, terminal based program,
but today's computing environment is increasingly
window- and mouse-based. Dotex provides a L'point
and click" wrapper around and other tools in
the X Window System (Gettys et al, 1990).

Dotex was built out of the frustration of
constantly running an editor and the formatter
during the document preparation cycle. The first
step was to use the built-in history and line editing
functions of the shell command interpreter, but
even this was unsatisfactory. What was needed was
a tool that would centralize all the actions needed
to prepare a document, without having to change
the tools themselves. Out of this need, dotex was
born.

The Tools
The tools needed to implement dotex are the front-
end client, xtmenu, the dv i previewer xdvi and a
text editor. The standard X terminal client, xterm
is used to start dotex and serves as a logging device.

xtmenu. The X client, xtmenu is the heart of
dotex. Xtmenu's function is to bind actions to
buttons. When a button (or keyboard equivalent)
is pressed, a user-defined action takes place. The
action can be some window-management task, or

more importantly, the execution of an arbitrary
program.

xdvi. xdvi is a typical dv i previewer that has
several attractive features:

0 I t uses the same font bitmaps as the printer, so
that a special set of font bitmaps is not needed
just for the previewer.

0 xdvi has a rich, unobtrusive interaction model
for moving around within the dv i file. including
jumping to a particular page and zooming to
different magnifications. A pop-up magnifier
for examining fine typographic details is also
provided.

0 Also, recent patches provide much improved
display quality through anti-aliased font display
on color or grayscale X servers.
But the critical feature needed for the success

of dotex is xdvi's ability to refresh its display when
the dv i file changes.

The editor. Any standard text editor may be
used with dotex. Popular editors usually found
in a X Window environment such as Emacs and
vz will work fine. The editor must be able to
write its buffer without quitting to be effective with
dotex. Window based editors such as xed i t are
particularly effective because they don't need to be
run within an xterm, and already support mouse-
based interaction. The author's personal favorite is
mx, a programmable mouse-based editor based on

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Anthony J. Starks

the Tcl language (Ousterhout, 1990). Mx provides
mouse-based selection, multiple windows, and other
niceties such as support for regular expressions.
Another welcome feature for TEX use is the visual
indication of the nesting level of delimiter pairs like
C > and [I .
O t h e r tools. Any program that can aid in doc-
ument preparation can potentially be used with
dotex. For example, spell checking can be added
by running an interactive speller such as i s p e l l .
In the same way, T)$ manuscripts may be checked
for grammatical correctness.

Configuration

The dotex shell script. A simple xtmenu script
looks like this:

1. #
2. #
3. # dotex -- automate TeX and t o o l s
4. #
5. # Usage: dotex f i l e
6. #
7. f i l e = $ l
8. xtmenu -noquit -s td in <<!
9. " $ f i l e . tex t ' ! l a b e l

10. TeX %tex $ f i l e s t e x
11. Ed i t %nx $ f i l e . tex&
12. Preview %xdvi $ f i l e . dv i&
13. P r i n t Xdvidsk $ f i l e l l p -0 nobanner -r
14. Done ! e x i t
15. !

Figure 1: The dotex script

It is a UNIX shell script that defines the buttons
in the main xtmenu window. Line 7 saves the name
of the file that is to be used later in the script.
Line 8 is the execution of the xtmenu program itself.
The option -noquit tells xtmenu not to quit after
an action executed, and the - s t d i n option means
take the input from the standard input file; in this
case the shell here document (Kernighan and Pike.
page 94) contained in lines 9-14. If desired, the
buttons may be arranged horizontally by adding
the -hor izonta l option.

The lines in the here document are the heart
of dotex. Each line is a label/action pair. The
first string in the pair is a label that manifests itself
as either a button or label in the xtmenu menu.
The second string is either a keyword defining a
label, a system command, or special action. The
label/action pair in line 9 defines a label at the top
of the menu. This label is for identification only

and no action takes place when it is clicked with the
mouse. Lines whose action-string begin with % are
sent to the command interpreter for execution when
their labels are "pressed" by placing the mouse
cursor over them and pressing the first mouse
button.

Lines 10 - 13 run T)$, the editor, the previewer,
and dv i print tool respectively on the target file.
The action in line 14 terminates a dotex session,
and line 15 terminates the here document.

The order of the buttons is arbitrary, but it is
best to arrange the most used buttons at the top,
and to group the functions logically.

Note that the definitions of the buttons are
not necessarily static. With appropriate X resource
settings, a given key sequence may be defined which
invokes a dialog box in which a new action and/or
label can be defined. This mechanism can be used
to alter command names or parameters.

A dotex Session

To begin a dotex session, type the command:

dotex f i l e

in a xterm window running a shell. To make
effective use of screen space, the shell window
should be about 10 lines long.

This creates the dotex menu, with its buttons
corresponding to the script described above:

I I

Figure 2: The dotex menu

Generally a dotex session will have these win-
dows on the screen concurrently:

the dotex menu,
the editor window,
the previewer window, and
the shell, or log window.
The editor and preview windows correspond

with the Edi t and Preview buttons. The shell
window is the xterm used to start dotex. The
standard TEX dialog and other system messages are

296 TUGboa.t, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Dotex-Integrating T@ into the X Window System

displayed here. If the operating system supports it,
dotex can be placed in the background*, and then
other commands may be issued in the shell window.

Editing. Pressing the Edit button creates an
editor window acting on the filename specified in
the dotex command line with . t e x appended to it.
This is usually the first action. When the file is
ready to be formatted by w, the edit buffer is
written.

Formatting. The next action is running 'I)$ on
the file just written by simply pressing the TeX
button on the dotex menu. The normal TEX dialog
appears in the shell window.

Note that it is best to position the editor
window close to the dotex menu so that the
operation of writing the file and formatting requires
minimal mouse movement.

To achieve tighter integration of the e d i t - w
cycle, the act of writing the editor buffer could
trigger automatic formatting by making the action
of the TeX button execute this shell script:

touch $l.tex
while :
do

if newer $l.tex $l.dvi
then

tex $l.tex
f i
sleep 5

done

Figure 3: Triggered T@ script

which automatically runs 7JjX when the source file
is newer than the corresponding dv i file. The
responsiveness of the formatting is controlled by
changing the number of seconds in the s l e e p
command. As an extra bonus, the file would also
be formatted after any other action that accessed
the w source such as spell checking.

Previewing. If the T)jX run produced no errors,
you can preview the file by pressing the Preview
button. This will bring up a window representing
the output of your TJ$X run. You can move through
the dv i file, and perhaps magnify sections of the
output.

Printing. When you are ready to print, simply
press the P r i n t button in the dotex menu. This
will run the dv i processor defined in the xtmenu

* Some implementations do not correctly handle
errors during a backgrounded run.

script on the file just formatted and previewed. Any
messages generated by the dv i driver appear in the
shell window.

Once the windows are arranged, you are free
to move between them, interacting with each as
appropriate.

Arranging the windows. The figure in the ap-
pendix shows a typical arrangement of the windows.
The previewer window is the largest with the other
windows atop it. The shell window is kept small
and unobtrusive near the bottom of the screen. The
dotex menu is also near the Control menu of the
editor, so that writing and w i n g require minimal
mouse movement. Note that to preserve screen
space it is sometimes useful to iconify both the shell
and previewer window. In this arrangement, the
focus is on the edit window and the dotex menu.
The usual interaction is to make changes in the edit
window, press the TeX button, and then view the
file by pressing the mouse on the iconfied previewer
window. Alternatively, the file can be previewed by
bringing the large previewer window to the front of
window stack. When the view is no longer needed,
the previewer window can be pushed to the bottom
of the stack.

The use of the X Window window manager,
(Gettys, pages S2/49- S2/52) is important to the
use of Dotex, since the window manager's job of
window sizing, movement and arrangement effects
the productive use of the system. At a minimum the
window manager is used to raise (place a window
on the top of the stack) and lower (push a window
to the bottom of the stack) the previewer window.
All of these actions force xdvi to re-read the dv i
file and present a fresh display.

Any standard X Window window manager will
work with dotex, but since the predominate actions
are raising, lowering and iconifying windows, a
minimalist setup with the t w m window manager
(Querica and O'Reilly, chapters 3 and l o) , works
well. This setup is based the work of Pike (page
284, 1988) and presents a simple pop-up menu of
window management functions that look like this:

Reshape

Bottom
Icon
Delete

Figure 4: Window Management Popup

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 297

Anthony J. Starks

These commands in the t w m startup file define the
setup:

NoTitle
Button3 = : a l l : f .menu "wimngr"
menu "winmgr "
C

"New" ! "xterm -1s t"
"Reshape" f . r e s i z e
"Move" f .move
"Top" f . r a i s e
"Bottom" f . lower
"Icon" f . i con i f y
"Delete" f . d e l e t e

1

Figure 5 : t w m Window Management Definitions

Benefits

Prototyping typographic effects. The arrange-
ment just presented has many benefits over the
traditional 'l&X interaction model. For example, it
facilitates the rapid prototyping of different typo-
graphic effects before final printing. As a simple
example, to see the page-breaking effects of altering
a parameter such as page width, the steps are:

0 go to the editor window, and the add the
change, for example, \hsize=3in,
write the edit buffer,
go to the dotex menu, press the TeX button,
and

0 then expose the previewer window.
If the editor supports the undo function, the

change can be easily backed off if the desired effect
did not meet expectations.

Network usage. Dotex runs in the X Window
system so it is inherently network-based. This
means that the appropriate hardware can be used
for a particular document preparation task. For
example, it is possible to run TJ$ on fast machine
and at the same time use a different machine that
has fast graphics for previewing.

Reduced loading. Once all of the tools are
loaded and on-screen, they remain available to be
used when needed, avoiding repeated startup and
shutdown.

Rapid correction of errors. Because the error
context from the log window and the editor are
both visible, it makes error correction easier, not
to mention having decreased overhead over the
traditional method of having 7&X spawn a new

instance of the editor. The normal mode of
operation becomes the more productive e d i t - m -
preview instead of edi t-m-pr int .

Enhancements

The window shell wish (Ousterhout, 1991) could
replace xtmenu as the front-end to and asso-
ciated tools. Wish provides a richer widget set as
well as the ability to define behavior of applications
with the Tcl language. For example, instead of
relying on shell scripts to provide the edit-format
integration, a Tcl-aware editor such as mx could
communicate directly via the send (Ousterhout,
1990) command with a Tcl-aware previewer.

Related Work

Pike (1984) describes an edit-format-preview tool
built on the Blit window system, t ro f f and UNIX

pipes. This scheme has the advantage of immediate
feedback-as soon as the file is written, it is imme-
diately formatted and presented. Pike's approach
is to use the operating and window system facilities
to build the tool without changing the basic tools.

V O W (Chen 1988, pages 133 - 152) takes the
approach of an incremental formatter/editor system
using and Emacs. The system provides two
distinct but integrated views into the document,
allowing direct manipulation of both.

Availability
All of the tools needed to implement dotex are
publically available on the Internet.

Both xdvi and xtmenu have been posted to
the USENET newsgroup comp.sources.x, and are
archived on ftp.uu.net in

packages/X/contrib/xdvi.tar.Z, and
packages/X/contrib/xtmenu\~l.l.tar.Z.
xdvi is also available on export.lcs.mit.edu in

the file contrib/xdvi . t a r . Z.
The mouse based editor, mx is available on

sprite.berkeley.edu in the file t cl/mx . t a r . Z

Bibliography

Chen, Pehong, "A Multiple-Representation Para-
digm for Document Development", Technical Re-
port UCB/CSD 88/436, University of California,
Berkeley, July 1988.

Gettys, Jim, Philip L. Karlton, and Scott McGregor,
"The X Window System, Version ll", Software
Practice and Experience, vol. 20, no. S2, pages
S2/35 - S2/67, October, 1990.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Dotex-Integrating TF-X into the X Window System

Kernighan, Brian W. and Rob Pike, The UNIX Pro-
gramming Environment, Englewood Cliffs, NJ:
Prentice Hall, 1984.

Ousterhout, John K., "Tcl: An Embeddable Com-
mand Language", Proceedings of the Winter 1990
USENIX Conference, Washington, D .C., January
22-26, 1990.

Ousterhout, John K.. "An XI1 Toolkit Based on
the Tcl Language", pages 105-1 15. Proceedings of
the Winter 1991 USENIX Conference, Anaheim,
(3.4,

Pike, Rob, "The Blit: A Multiplexed Graphics
Terminal", Bell Labs Tech. J., vol. 63, no. 8, Part
2. pages 1607- 1631, 1984.

Pike, Rob, "Window Systems Should Be Transpar-
ent", USENIX Computing Systems, vol. 1, no. 3,
pages 279-296, Summer, 1988.

Quercia, Valerie and Tim O'Reilly, X Window Sys-
tem User's Guide, for XI1 R3 and R4 of the X
Window System, Sebastapol, CA: O'Reilly and
Associates, Third Edition, 1990.

Taylor, William, "xtmenu - An X Windows Menu
Program", Version 1 .O, comp.sources.x, vol. 13,
xtmenu, June 17, 1991.

Vojta, Paul, et al, "xdvi-DVI Previewer for the X
Window System", comp.sources.x, vol. 17, xdvi,
March, 1992.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Anthony J. Starks

Appendix I - A Sample Session

Dot,ex - htegrathilp 'IPX into the X Window Svstan

Anthony .I. Starks
Merck Reearch Laboratory
Co~npurer Rrmurcrr, RY BG-?W
126 Lincoln Avenue

1 Control Helo Search Window Indent Selection Misc 1
wrote "dotex.texU: 462 l ines

Search: 3

Rnhuuy, NJ 07069 US A Replace:
Phone. 908.594.7288 \ t i t l e *Dotex \Dash In tegra t ing \TeX() i n t o the X Window System*
FAX 908 594 1455 \author *Anthony J. Starks*
Inlernel a jakadrL.com \address *

Merck Research Laboratory\\

dotex.tex Computer Resources, RYB6-200\\
126 L inco ln Avenue\\

~~t~~ asystem Rahway, NJ 07062 U.S.A.\\
in the Phone: 908.594.7288\\

to pmvid FAX: 908.594.1455

JPreul.wl editor. and dvi * WSpelf D~~~~~~ fu\netaddress[\network(Internet)] ajs@msdrl.com
71 a hiehlv ,nrerscti \endnetaddress 7 h c t l o n i
hit roduct ion Dotex uses a s ing le X Window c l ien t , \tool(xtmenu) t o provide

a simple push-button inter face t o the \TeX(}

History I i J zoomtng to different rnagn~ficat~on A pop
Ddex ras budt out of the Frustrat~on or constantlv up rnagn~fier for exammng fine typographr

running an editor and the 'KY formatter during details is abo provided.

h i s i s TeX, C Version 3.14
dotex.tex (/usr/ajs/tex/tugproc.sty F i l e 'TUGPROC.STY' u1.09 <8 Mar 92)
/usr/ajs/tex/tugboat.sty F i l e 'TUGBO(IT.STY' vl.11 <8 March 1992)
/usr/ajs/tex/tugboat.cmn F ~ l e 'TUGBOAT.CMN' v1.10 (8 March 1992>))) [1001.2.1

11002.2.21 [1003.2.31 [1004.2.41)
utput wr i t ten on dotex.dv~ (4 pages, 21152 bytes).

t h d u , r m y be

-1 m l
used with dotex. Popubr editors usually round in , . ,..

Figure 6: A dotex session

This typical arrangement shows the shell window at the bottom, with the edit window atop the large
previewer window. The dotex menu is to the left of the edit window.

TUGboat, Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting

Dotex - Integrating w into the X Window System

This
checking.
the blank

Appendix I1 - Customizing dotex scripts
script is more elaborate than the simple one presented above, and adds spell and grammar
Note the use of horizontal orientation which is useful when there are many menu items. Also note
label used here to provide visual separation of the functions.

f ile=$l
xtmenu -horizontal -noquit -stdin <<!
"$file.tex" !label
TeX %tex $file . tex
Edit %mx $file .tex
Preview %xdvi $file.dvi&
II II ! label

Spell %xterm -e ispell $file.tex
Diction Xstriptex $file.tex 1, diction
Print %dvips $file
Done !exit
!

Of course dotex is not limited to plain w; this example runs L A W and adds special BIB^ support.
Also added is an additional button to view the log file.

f ile=$l
xtmenu -noquit -stdin <<!
"$file.texU !label
LaTeX %latex $file. tex
BibTeX Xbibtex $file
Clean %rm -f $file.aux $file.bbl && echo Work files cleaned.
Edit ?ax $file . tex
Log %rnx $file . log
Preview %xdvi $file.dvi&
Print %dvips $file
Done ! exit
!

This script is used to automate the creation of documents with included figures. Buttons are defined
to popup the figure drawing tool xf ig and to translate the figure file to L A W .

f ile=$l
xtmenu -horizontal -noquit -stdin <<!
"$file.texU !label
LaTeX %latex $file.tex
Edit %mx $file . tex
Log %xterm -e less $file.log
Figure %xfig $file.fig&
fig->TeX xfig2dev -Llatex $file.fig >${file)-fig.tex
Preview %xdvi $file.dvi&
Print %dvips $file
Done ! exit
!

TUGboat, Volume 13 (1992). No. 3 -Proceedings of the 1992 Annual Meeting

Anthony J. Starks

Another way to run xtmenu is with multiple menu files, each tailored to a different formatting situation. In
this case, the dotex shell script might look like this:

dotex -- automate TeX and tools
(multiple menu file version)

Usage: dotex [-I] [-p] [-b] file

mdir=/usr/local/lib/xtmenus
option=$l
TeXfile=$2
export TeXf ile
case $option in
-1) xtmenu -noquit -m $mdir/latex.xtm&;;
-p) xtmenu -noquit -m $mdir/pictex.xtm&;;
-b) xtmenu -noquit -m $mdir/bibtex.xtm&;;
*> xtmenu -noquit -m $mdir/plain.xtm&;;
esac

Figure 7: A dotex script with multiple menu files

where the different menu files are stored in a special directory /usr/local/lib/xtmenus. All of the menu
files use a common variable, $TeXf ile when referring to the l&X source file. The different styles of l&X
use are invoked by using a different option character, as in:

dotex -1 file

to run the l3m specific setup.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Dotex-Integrating into the X Window System

Appendix I11 - The newer program
/*
* newer -- compare the age of two files
*
*
* Usage: newer filel file2
*
* A zero status is returned
* if and only if filel was modified after f ile2.
*

main(argc , argv)
char **argv ;
int argc ;

struct stat s1, s2;

if (argc != 3)
exit (I) ;

if (s1.st-mtime >= s2.st-mtime)
exit (0) ;

else
exit (1) ;

TUGboat, Volume 13 (1992). No. 3 -Proceedings of the 1992 Annual Meeting

GNU Emacs as a Front End to

Kresten Krab Thorup
Dept. of Mathematics and Computer Science
Institute of Electronic Systems
Aalborg University
DK-9220 Aalborg 0
Denmark
krab@iesd.auc.dk

Abstract

As U r n and w are more widely used, the need for high-level front ends
becomes urgent. This talk describes AUC m, one such high-level front end for
U r n , written for GNU Emacs.

AUC does not at all attempt to be WYSIWYG; rather, it offers the author
of a I 4 m document a plain ASCII file, together with a number of features to
simplify and help the author perform certain tasks such as running (I 4) m ,
finding errors, and simply typing in the document.

Background - The GNU Emacs
Paradigm

GNU Emacs is a powerful text editor which, very
much like w , leaves the sophisticated Emacs user
with the choice of affecting its behavior on demand.
The extension language of GNU Emacs is a deriva-
tion of lisp called Emacs-lisp. Just as allows
you to associate functionality to a token, Emacs lets
you bind functionality to the keys of your keyboard.
When TQX implicitly inserts a \vbox whenever a
plain letter is encountered, Emacs implicitly calls
the function self -insert-command (which simply
inserts the letter in the current buffer) whenever a
key is pressed. Emacs-lisp is itself a fully featured
general-purpose language; this makes it possible to
make it behave anyway you want.

At my site, Emacs is being used for many dif-
ferent applications, from various kinds of text edit-
ing (such as source code) to Mail and Usenet news
reading. The low-level editing features of Emacs will
stay the same regardless of the current application.
As a user becomes familiar with the basics of the
editor, he will have only a few problems converting
to a new application.

As many users are used to (and pleased with)
Emacs, it is desirable to use Emacs for (I4)QX edit-
ing too, and this is where AUC m enters at the
scene. AUC 'l&X is a general customizable envi-
ronment for editing I 4 m documents. It is written
entirely in Emacs-lisp, which makes it (relatively)
easy to modify to suit personal taste and needs.

Advantages of Struct we-Oriented
Editing

AUC l$jX is an application for editing (U)QX doc-
uments, especially IPTm. The most general advan-
tage is that by knowing the general structure of a
I P w document, which is quite simple, AUC
can help a user perform certain tasks. The following
is an outline of the major features of AUC 'l&X.

Insertion of templates for logical-structural
compositions such as environments and sec-
t ions.
Hot-keys for easy access to certain often used
constructs, e.g., font changes, accented letters,
and mathematical symbols.
Running application programs (such as m),
and then parsing the output so that errors in
the document may be located easily.
Support for multi-file documents.
Online help for (I 4) m error messages.
Outlining - i.e., manipulating the document as
a composition of nestedlsequential logical con-
structs.
Instant formatting and indentation of the ASCII-

document in order to make it easier to read.
'Completion' (and thereby spell-checking) of
partially written control sequences.

AUC ?fEX incorporates a large number of well-
known facilities for user interfacing. At first glance,
it may seem that it's just too much, but it has been
put together in such a way that you can easily use
just parts of it, without even knowing about the rest.
Though featuring a lot of fancy functionality, AUC

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

GNU Emacs as a Front End to I 4 W

still conforms to the standard Emacs environ-
ment - basic operations such as cursor movement
and file handling are the same.

Many of the features of AUC rn which are not
basic Emacs functionality are implemented conform-
ing to certain unwritten conventions, so that if you
have already tried some other Emacs mode, such as
C-mode for instance, you will simply know what do
do.

Writing a STEX Document

I guess it is about time to let you know how it really
works. We will now go on a little journey through
the world of AUC w a n d explore some of its fea-
tures.

Getting started. To start AUC lJjX you simply
run Emacs, with a file as argument:

prompt$ emacs myf i le . tex

Emacs will start and enter I 4 m mode. If you have
already started Emacs, you may enter I 4 W mode,
by typing M-x latex-mode.'

The first thing you are likely to do is to insert
a template for the overall document structure. To
do this, press C-c C-c. You will be prompted to in-
sert an environment. Since the document is empty
so far, AUC will choose document as the de-
fault environment. Now type RET and you will be
prompted for a document style, which defaults to
a r t i c l e . Typing RET once more will prompt you
for a list of style options. Write something and type
RET again. Now AUC will display a template
something like the following on your screen:

\documentstyle[a4,12pt,dk](article)

and the cursor will be placed at the -.
To insert some sectioning command, press C-c

C-x, and you will be prompted for a command (sec-
tion, chapter, etc.), a title, and a label for it. Again,
AUC T@ will look at the document so far, and
choose some appropriate default for the command,
in this case sect ion.

Emacs keying sequences are usually a combi-
nation of Control + another key, or Meta + an-
other key. Thus, the notation C-x means "while
holding down the Control key, type the x key"; M-x
means "press and release the Meta key (which can
be system-dependent) and then type the x." Combi-
nations of sequences (such as C-c C-x), or combina-
tions of sequences + explicit words (such as Meta-x
latex-mode) are also possible.

In general, environments are inserted with the
C-c C-c sequence. Some of the environments have
special handlers attached to them: if you are in-
serting a figure environment, it will ask for place-
ment modifiers, label, caption and whether the fig-
ure should be centered or not.

Completion. Since you have now specified the doc-
ument style and options, AUC rn is now (in prin-
ciple) aware of all the commands you may use in this
particular document. One of the AUC advan-
tages is to allow complet ion in various situations. TO
try this, type C-c C-c again, and press TAB. AUC
lJjX will now display a list of all the environments
you can possibly use in the current document. If,
for example, you want to insert a verbatim environ-
ment, just type ver TAB, and AUC will com-
plete the word verbatim for you. In case more en-
vironments start with the sequence ver, it will com-
plete as much as it unambiguously can, and display
a new list of possible completions.

Another, more general application of comple-
tion is the completion of control sequences. Type
a part of some command, and press ESC TAB. If
you want to insert the command \ th ispagesty le ,
which is very long and tedious to type in, especially
since you are likely to introduce an error, you can
simply type

\ th is ESC TAB

and AUC TEX will complete the entire command
\ th ispagesty le for you. As before, a list of possi-
ble completions will be displayed in case of ambigu-
ity.

Invoking Sm
Now suppose you'd like to process the contents of
the buffer, i.e., run the file through I 4 m . This is
handled very easily from within AUC TEX. Press
C-c C-a (Mnemonic: do it all), and the current
view will be split in two, of which the lower half
is used for W output, while you can still edit the
document in the upper half.

AUC TEX also allows you to process only part
of a document. This is done by marking the region
you'd like to have processed, and pressing C-c C-d
(Mnemonic: don't try to remember it). A temporary
file to be processed by (I 4) m will then be created
in the current directory, in which AUC T@ will put
the preamble there (i.e., from \documentstyle to
\begin{document)), after the marked region, and
then insert an \end{document) in the bottom.

Multi-file documents. In case your document is
spread over several files, AUC T)$ can handle that
too. If you insert the sequence:

TUGboat, Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Meeting 305

Kresten Krab Thorup

1% Master: somefile.tex

then the file somef i le . t e x will be the file actually
to be formatted if you invoke C-c C-a. Also, if you
invoke C-c C-d to format just a part of the docu-
ment, then the preamble will be sought in that file.

Another mechanism is also provided. If you
have neither specified a %% Master line, nor does
your document contain a proper preamble, then
AUC T$4 will insert a command to load the file
texheader . tex in the beginning of the file, which is
then supposed to contain some standard preamble.

Debugging facilities. In case errors occur, the
message 'errors!' is shown in the echo area, and you
are asked to press C-c C-n (Mnemonic: next error)
to locate the first error. Doing this will place the
cursor as close as possible to the first reported er-
ror, and a description of possible causes of the error
is displayed in the lower half of the view.' This may
be repeated as often as there are more reported er-
rors. Please note that one error is likely to produce
more, so if you don't understand what some error
message means, it may be a good idea to reprocess
it all, to see if your changes have perhaps eliminated
some errors.

Locating the error To find some error, AUC
parses the log file. This is perhaps one of the most
interesting parts of AUC m. The parsing is based
on the fact that whenever encounters an error,
it will print something like the following sequence to
the log file:

! Something's wrong--perhaps a missing \item.

(context lines)
1.234 \section

{Formatting)

This means that the error "Something's wrong-
perhaps a missing \ i temn occurred at the control
sequence \section of line 234 of the current buffer.
This spot is quite easily located- and this is where
the interesting part begins. Whenever reads a
file, it will print some sequence like the following to
the log file:

(somef ile. tex [31 [41

(other log messages)
1

The parsing of this construct is complicated some-
what by the fact that (other log messages) may ac-
tually be any arbitrary text, and especially paren-
theses, which may be unbalanced, and perhaps even
followed by things that may look like file names.

Leslie Lamport kindly supplied me with the
"help" texts for (U) W error messages, as descibed
in Lamport (1986)

The Big Picture
Several features of AUC are aimed at making
it easy to overview your document. This can be a
great help, especially if you must edit documents not
written by yourself. In this talk, I will describe the
features for formatting, and outlining.

Formatting When you write a document using
AUC w, you will notice that the text is automat-
ically formatted and indented as you write it. Lines
are automatically wrapped at a particular column,
and the left margin is also adjusted t o reflect the
structure of the document.

To get an idea of what this formatting stuff
means, here is a sample of the 'item list' from
the beginning of this article as it appears in the
document .3

\begin{itemize)
\item Insertion of templates, for

logical-structural compositions such as
environments and sections.

\item Hot-keys for easy access to
certain often used constructs, e.g.,
font changes, accented letters, and
mathematical symbols.

\item Running application programs
(such as \TeX), and then parsing the
output so that errors in
the document may be located easily.

\item 'Completion' (and thereby
spell-checking) of partially written
control sequences.

\end{itemize)

There are several advantages in such a formatting
scheme. Most important, it is easy to locate a given
point in the document, as the ASCII-text reflects the
actual printed document. Moreover, the indentation
is a great help in localizing errors in the document -
if the indentation doesn't look right, you've proba-
bly missed some closing construct, such as an \end
tag.

There are many aspects of formatting in AUC
W. First of all, instant processing is automatically
taking place, while you write a document. Next, re-
formatting of paragraphs is very useful to clean up a
some messy construct, and this even works for things
like an item of a list. Last, general reformatting fea-
tures are available, which let you reformat sections,
environments or the entire document. Refer to the

The verbatim sample shown here is formatted
with a narrower margin than in the actual document
in order to fit the column.

306 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

GNU Emacs as a Front End to I4w

function listing in the appendix of this article for
further information.

Outlining. A special minor mode is available along
with AUC to allow outlining of a I4QX doc-
ument. The outlining feature allows body text or
subheadings to be made temporarily invisible or vis-
ible again. Such invisible text is attached to the end
of the heading to which it belongs, and moves along
with it. A heading under which some body text is
hidden is marked with an ellipsis (. . .). For exam-
ple, the current section looks like this, when totally
collapsed:

\section{The Big Picture) . . .
\subsection{Formatting) . . .
\subsection{Outlining) ...

This outline mode is enabled via the command M-x
outline-minor-mode, after which certain key se-
quences can be issued to manipulate structural ele-
ments of the document. See Thorup (1992) for fur-
ther documentation.

Other Subtle Features
Mathematical symbols. A special minor mode
is available for easy access to mathematical sym-
bols, which is often convenient when writing an ap-
plication full of them. The general idea is that
once you've entered this mode, pressing the sequence
'(left quote) - (letter)' causes some symbol to be in-
serted, e.g., '-a inserts \alpha, '-b inserts \beta,
etc. The translation is controlled by a table, which
may be easily redefined if needed.

Accented letters. As with mathematical symbols,
there is another a minor mode for entering accented
letters with the key sequence '(accent)-(letter)'.
The mapping is easily redefined by the user.

Availability

AUC QX is available by anonymous f tp to the ad-
dress iesd . auc . dk, but should also be available at
major archives around the world.

If you do not have ftp access, you may send mail
to auc-texrmgrQiesd . auc . dk who will be happy to
mail you a copy of the latest release.

A version of AUC QX for Freemacs (Emacs
for the IBM PC), written by Richard Flamsholt
Smrensen (r i c h a r d ~ i e s d . auc . dk) is also available
as part of the Freemacs distribution.

AUC T# is copyrighted by Kresten Krab Tho-
rup 1992, but may be copied under the terms of the
GNU General Public License.

Acknowledgements

I should like to thank Per Abrahamsen, Lars P. Fis-
cher and a lot of unnamed people on the net, for
contributing to the discussion/development of AUC
m; ICL Data Denmark for sponsoring my travel
to the Annual Meeting; and finally Leslie Lamport,
who supplied me with the help text for I4m error
messages.

Bibliography

Lamport, Leslie. U W , A Document Preparation
System. Reading, Mass: Addison-Wesley, 1986.

Stallman, Richard M. The GNU Emacs Lisp Ref-
erence Manual. The Free Software Foundation,
1992.

Thorup, Kresten Krab. The AUC Reference
Manual. To appear, 1992.

TUGboat, Volume 13 (1992)) No. 3 -Proceedings of the 1992 Annual Meeting

Kresten Krab Thorup

Functional summary for AUC
version 5.6

Run TEXIIPTEX on buffer
Run W / I P W on region
Print the DVI file
Preview dvi file
Next error in W / I P W session
Run B i b w on buffer
Run makeindex on buffer
Kill job
Re center output buffer
Toggle Debug Boxes
Home Buffer

Insert bold syntax
Insert italics syntax
Insert roman syntax
Insert emphasized syntax
Insert typewriter syntax
Insert slanted syntax
Insert SMALL CAPS syntax

Comment out a region
Comment out a paragraph
Un-comment a region
Un-comment
Insert item

Format a paragraph
Format a region
Mark a section
Format a section
Mark an Environment
Close off an Environment
Format an Environment

Complete Symbol
Up-list
Terminate Paragraph
Smart "Quote" Insert
IPW-indent-line
Re-indent, then newline and indent
Terminate paragraph

C-c ;
C-c '
C-c :
C-c "
M-RET

M-TAB
M - 1
RET

I1

TAB
LFD

C-c LFD

Insert Sectioning command C-c C-x
Insert \begin(). . . \end{) environment C-c C-c

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Writing Reports with More than a Hundred People

Walter van der Laan and Johannes Braams
PTT Research Neher Laboratories
P.O. Box 421
2260 AK Leidschendam
The Netherlands
W.vanderLaanQresearch.ptt.nl; J.L.Braams@research.ptt.nl

Abstract

This paper describes a system that produces project status reports using I 4 W .
The reports contain both textual and financial information. The textual part of
the status reports is written by over a hundred people who don't need to know
what I4W is. The financial information is retrieved from a database.

Introduction

Each quarter of a year the clients of our research
center receive status reports concerning all of their
projects. As you might expect these reports are
typeset using I4W. What might be more of a sur-
prise is the fact that the status reports are written
by over a hundred project managers who don't need
to have any knowledge of I4W. They write their
status reports at different sites, using various com-
puter systems, word processors and editors.

The first section gives an impression of the en-
vironment and history of this reporting system. The
second explains the least that a project manager
needs to know when using the system. A mail server
is used to collect all project status reports. This
server is discussed in the third section. The fourth
section describes the generation of reports. Some
general conclusions are listed in the last section.

Environment and History

With about 95,000 employees, PTT is the largest
company in the Netherlands. The business of PTT is
selling postal and telecommunication services. The
reporting system described in this paper was made
for PTT Research, a division of PTT with about 800
employees. PTT Research does most of its work un-
der contract to other PTT divisions; typically there
about 350 research projects for about 30 PTT divi-
sions.

Each quarter, all project managers write a one-
page status report to keep their client informed.
These status reports consist of the following four
sections:

a short description of the project,
the targets for the reporting period,
the work realized in the reporting period, and

the targets for the next period.

For each project the text written by the project
manager is pasted into a form supplied by our fi-
nancial department. This form shows information
from a financial package, e.g.:

0 the names of the client, project and project
manager,
important dates related to the project,
the amount of money spent so far, and
the budget.

The completed forms are bundled and presented to
our clients.

The production of these status reports used to
be manual. The texts supplied by the project man-
agers, showing all kinds of fonts and printing qual-
ities, were literally pasted onto the form using scis-
sors and glue. Throughout our company, about a
dozen people used to be busy colbcting status re-
ports and completing forms. It took more than a
month before we were able to present the status re-
ports to our clients. During this production process
it was almost impossible for a project manager to
make any corrections.

The system described in this paper offers much
more flexibility. People, both with and without any
I4m experience, send their status reports to a mail
server. A report generator is used to produce I4W
files containing a mix of information from the finan-
cial database and the status reports that have been
received through the mail server. It enables us to
present a uniform and beautiful report to our clients
about ten days after the financial closure of a quar-
ter year. Within these ten days, project managers
and their managers get several chances to correct
the status reports.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 309

Walter van der Laan and Johannes Braams

Writing Status Reports

The status reports can be written as plain ASCII text
or as I 4 m text. The first option is default and fool-
proof, it protects a project manager from any I 4 W
errors. While this option is easy to use it also leaves
the writer with only a few of the expressions avail-
able in I P m , namely paragraphs and some special
characters common in the Dutch language. This has
proved to be sufficient for 99 percent of the reports
but leaves a few special cases, e.g., some project
managers want to put formulas in their report and
others have a need for symbols used in physics. In
these cases the project managers write their report
as UTEX text and they have to know how to use
it. The remainder of this section explains what a
project manager needs to know when using the fool-
proof mode, i.e., plain ASCII text.

A report sent to the mail server may contain
nothing but plain ASCII characters. This is a nec-
essaiy constraint because the mail server receives
reports written with about twenty different kinds of
word processors and editors on about five different
kinds of platforms. Fortunately all word processors
have an option to save a text in ASCII. This means
that all project managers must know how to produce
an ASCII file containing their report. They must also
be aware of the limitations of ASCII; e.g., no under-
line, no boldface, no special characters.

Project managers must be able to send their re-
ports to the mail server. This hasn't been a problem
in our organization as everybody is connected to the
local network and most people are using electronic
mail.

Each report must contain a few keywords. This
simple syntax is needed to

assign a project number to each report,
separate the four pieces of text in each report,
and
separate the report from the mail headers and
footers.

The next example shows the report for project num-
ber 12345. As you can see the syntax consists of
uppercase keywords with four pieces of text in be-
tween:

PROJECT 12345
DESCRIPTION
We are working on a project.
CURRENT TARGET
Our plan was to finish the project.
REPORT
We've had a lot of problems but the
work is almost done.
NEXT TARGET
We'll finish the project in the next

quarter year
END

Many people were having problems with this
combination of a textual report and a strict syntax.
We eliminated this problem by extending the mail
server to accept all syntax errors that occurred.

Project managers have to understand the effect
of an empty line in their texts: All text is aligned
on the left and right margin. An empty line causes
the alignment to restart at the beginning of the next
line, because texts are set without paragraph inden-
tation.

In the Dutch language one frequently finds
characters such as 6 , i! and i'. For this reason
the project managers have the option of using the
sequence backslash accent vowel whenever they
need to put an accent over a vowel.

The Mail Server
All mail sent to a dedicated network address is pro-
cessed by a program, which replies to every mes-
sage received. The reply consists of two parts.
The first part contains success and error messages,
e.g.: "i found a repor t about p r o j e c t 12345",
or: "i removed some con t ro l c h a r a c t e r s from
your tex t " . The second part is a copy of the re-
ceived message in which all recognized texts have
been removed. If all went well the second part con-
tains nothing but keywords and mail headers. This
construction is clear even to people who aren't used
to syntax errors.

In the beginning we had trouble with errors in
the project number. People would erroneously send
us a report for project 12435 instead of 12345. This
meant one could overwrite another report by mis-
take. We solved this problem by saving a list of the
mail addresses of the senders for each report. We ac-
cept reports from any address on the list. A report
from any other address is rejected but the address is
added to the list. In such cases the sender receives a
message saying the report has been rejected but will
be accepted if the report is sent again. This warning
eliminates the typing errors in project numbers but
still allows different people to send updates for the
same project.

In the foolproof mode all texts must be trans-
formed into valid I P m texts. This transformation
is described next.

Many characters special to I P m have to be
de-activated. We handle those characters as four
separate cases:

Double quote characters are replaced by " and
" , respectively.

310 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Writing Reports with More than a Hundred People

A backslash is added in front of the following
characters: #, $, %, &, -, { and).
The math characters <, > and I are placed be-
tween dollar signs.
The expression (\ t t \char92)() is used to in-
sert a backslash. Note that 92 is the ASCII value
of a backslash. The same procedure is used to
insert the characters ̂ and ".
The sequence backslash accent lowercase

vowel is allowed. This sequence isn't changed by
the transformation; only when the vowel is an i is
it replaced by a dotless z. This change makes the
sequence very uniform and easy to understand for
people not used to I4W.

does a great job at automatic hyphen-
ation. However, when words are joined together
by characters such as the slash and minus, I4W
doesn't hypenate the resulting string. This causes
a lot of overfull hboxes. To solve this the trans-
formation program looks for the sequence l e t t e r
s l ash or minus l e t t e r . Within sequences like this
the slash or minus is transformed into the parameter
of the nw command (nw stands for new word), e.g.:
madwoman is replaced by man\nw(/)woman. The nw
command is expanded to let "man" and "woman"
be separate words divided by a slash. The MTpJ
definition is:

This transformation has proved to be sufficient
in avoiding almost all overfull hboxes.

Last but not least, all characters unknown to
I4TpJ are removed during the transformation.

The Lex specification below (Lesk and Schmidt,
1975) produces a program that performs the trans-
formation described above:
AN [a-zA-ZO-91
AC [l > I t - . =]

%%
i n t dq = (0 == 1) ;

\ " { dq = !dq;
i f (dq) p r in t f (" " ") ;
e l se p r in t f (""") ;

[#$%&-{)I C pr in t f (;'\\%sl', yytext)
[1-1 { pr in t f ("$%s$", yytext)
["*\\ I { pr int f (l l{\\tt\\char%d)

yytext [Ol) ; 1
\\{AC)i { pr int f ("\\%c{\\ i)",

yytext [ll ; 1
\\{AC) [aeou] p r in t f ("%sV, yytext) ;
{AM) [/-I {AN) { pr in t f ("%c\\nw{%c)%c",

yytext [Ol , yytext [ll ,
yytext [21) ;)

\t { putchar (' ') ; 1
\n { putchar (' \ n ') ;

{ i f ((yytext [O] >= 0x20)

&& (yytext [O l < 0x80)
p r in t f ("%sU, yy tex t) ;)

Text sent in I 4 W mode is not transformed by
the mail server. A copy of the text is transformed
into a complete I 4 W document by adding a header
and a footer. The mail server passes this document
to the TE.X compiler and afterwards checks the log
file for errors. If an error occured, it rejects the text
and adds the compiler messages to the reply.

The mail server program was written using
TPU, the VAX/VMS Text Processing Utility (Dig-
ital VMS manuals, 1988). TPU and PTJ$ make a
great team and have allowed us to build this system
in a short time. If you ever need a utility to process
text, try TPU.

Report Generation

The four pieces of text per project are stored in a
separate directory as four files per project. All of
these texts have been tested or transformed by the
mail server. These texts are ready to be typeset in
any textwidth or font.

Our relational database system stores a lot
of project information. This information is trans-
formed into IPTpJ strings just as the texts supplied
by the project managers are transformed.

With an application program our financial de-
partment can define which projects are to be in-
cluded in a report and in what sequence they are to
be included. Every set of projects defined can be
printed in several ways; e.g., a report containing:

all information about a project on one page,
only the financial information, and/or
only the description of each project.

When we started work on automating the re-
port generation process we first agreed upon an in-
terface between the report generator and I P W that
consists of a few special commands.

In Figure 1 an example of a status report is
shown. At the top of the page some general informa-
tion about who ordered the project and who runs it
is shown. This information is repeated on a contin-
uation page as you can see in Figure 2. Then follows
a short description of the project and its targets. In
this case the description is too long and is therefore
continued on a second page. The next texts discuss
the targets for the reporting period, the work done
in the reporting period and the targets for the next
reporting period. At the bottom of the page some fi-
nancial information on the project is included. Both
this financial information and the general informa-
tion at the top of the page is extracted from the
database.

TUGboat, Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting 31 1

Walter van der Laan and Johannes Braams

For each of the text fields a I4W environment
is defined. The task of these environments is to store
the text parts in four boxes of the right size. To
pass the information that is printed in the header
and footer of a report we defined a few I 4 W com-
mands with parameters. All information that be-
longs to a particular project should be inside yet
another I4W environment. The task of this envi-
ronment is to:

0 start a new page,
select the correct page style,

0 write some information about the project to a
table of contents file, and

0 make sure that all information accumulated is
put on the page.

Originally, the layout of the report form was
defined in terms of a number of characters per line,
and a number of lines for each of the four text fields.
It was also specified that a report for any project
should occupy not more than one page.

With typeset text, the specification of the num-
ber of characters per line is not particularly useful,
because it can vary with the kind of characters that
are used in the text. Also, the manual process of
putting together the status reports had shown that
sometimes a project manager would produce more
text than would fit in the field for which it was
meant.

Because the sizes of the fields are fixed, we had
to choose what to do. We could typeset the portion
of the text that would fit into the field and either

1. let the rest print over the next field, or
2. discard the rest, or
3. store leftover text and print it on a second page.

Option 1 clearly is unacceptable; the result would be
both ugly and unreadable. Option 2 would possibly
result in texts ending in a weird manner. Choosing
this option would, however, force the project man-
agers to be brief. It was finally decided to use op-
tion 3. One of the reasons for this decision was that
the implementation of options 2 and 3 is almost the
same.

The implementation of this part of the I 4 W
style file is based on the use of the \vsplit
command. The four environments discussed be-
fore scoop up the text and typeset it in a \vbox
\pickupQbox of the appropriate width. The con-
tents of the \pickup@box are copied into a different
box for each environment using the \vsplit oper-
ation. The resulting height of the \pickup@box is
then measured. If it is not zero there is more text
than fits into the field. In that case an indication

that there is more text is appended to the first part
of the text, and the rest is stored away to be put on
a second page.

Conclusions
The system imposes no special organization upon
its users. Our users write and send their reports us-
ing the computer system that they use for their ev-
eryday work. In some departments the reports are
gathered by one person who sends all reports and
report updates to the mail server. In other depart-
ments all project managers send and update their
own reports. The nice thing about a mail server is
that it doesn't mind where a report was made or
who made it.

The two modes, I4m or foolproof, have made
the system both very flexible and very easy to use.
No special training is required for people who use
the system in the default foolproof mode. People
with special requirements, on the other hand, are
very happy with the I4m mode.

IPW separates the contents of a document
from the form in which it is presented. This sep-
aration was of great benefit to us during the devel-
opment of the system. It allowed us to make a very
clean and easy division of the work to be done. Af-
ter defining the different styles needed for our system
one of us would work on the generation of W m re-
ports using the defined styles, while the other would
work on the creation of the styles.

At first we implemented the reports to be gen-
erated interactively. This didn't work very well be-
cause L4TjjX consumes large amounts of cpu time.
At the moment the production of reports is imple-
mented as a lower priority background process.

Bibliography

Lesk, M.E., and E. Schmidt. "Lex - A Lexical
Analyser Generator." Bell Laboratories. Mur-
ray Hill, New Jersey, October 1975.

VAX Text Processing Utility Manual. Digital VMS
Manuals, 5B, April 1988.

312 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Writing Reports with More than a Hundred People

PTT Research Kwartaal Rapportage

Korte omschrijving en doel van het project

Binnen ISO/IEC J T C l is SC 18 gericht op de standaardisatie-aspecten van creEren en mani-
puleren van documenten. SC18 omvat de volgende gebieden:
* document architecturen en semantiek (ODA, SGML, DSSSL)
* document interchange formaten (ODIF, ODL, SDIF, DTAM)
* basis inhoudsarchitecturen (0.a. teken, raster, muziek) en weergave-aspecten (kleur, fonts)
' hypermedia (HyTime, SMDL)
* printeraansturing (SPDL, DPA)
* message handling en message store (X.400 of MOTIS)
* document filing & retrieval (DFR)
* User System Interfacing (keyboard layouts, Icons & Symbols, dialoog s t a n d a d e n)

Zie volgende pagina
Gesteld doel voor dit kwartaal

Gezien het belang van de SC18-onderwerpen, de breedte van het aandachtsgebied en de doel-
stelling de werkmaatschappijen meer bij dit werk te betrekken, dient er een duidelijk pian van
aanpak geformuleerd te worden. Vanwege een wisseling in de bezetting is deze aktiviteit vorig
jaar opgeschort. Hieraan sal binnenkort we1 veel aandacht besteed worden.

Korte rapportage

61006
TI INFORMATIEDIENSTEN
TERPSTRA, A.F
W. REMMERS
10192 / 311292

91-A041

Projectnaam
Opdrachtgever
Afdeling
Hoofd
Contactpersoon
Kenmerk

Op dit moment zijn een groot aantal standaarden en/of uitbreidingen op de basis-standaard (zie
boven) in bijna-finale vorm. Tegelijkertijd blijken er nog grote definitie-problemen te bestaan,
en blijkt tussen verschiuende standaarden grote overlap te bestaan. In vorige rapportages
is a1 genoemd de relatie tussen 'character, graphic character, font en glyph', Message Store
Extensions versus DFR en DTAM, ODA en SGML. tegelijkertijd worden er in hoog tempo
nieuwe werk-items voorgesteld. De wens naar stabiele standaarden is momenteel strijdig met
de momenteel gehanteerde ISO-planning en het aflopen van de studie-periode van CCITT.
De voorjaarsvergadering is bij OC\'E gehouden, waar een interessante presentatie over de
geschiedenis van het bedrijf en de bemoeienis met ODA werd gegeven.

Gesteld doel voor het volgend kwartaal

1. Het aktief volgen van ontwikkelingen binnen SC18
2. Afronden plan van aanpak (tweede kwartaal 1992)

PART. WERKZAAMHEDENSCl8
RMDVAN BESTUUR RVE
RVB
J. WAGE (secretaris LBR)
W.J. THIEME
OVK D.D. 15lO71l990

Projectnummer
Onderdeellhafd
Hoofd
Projectleider
BeginIEind datum
Kenmerk offerte

1 Ultslutend voor gebrulk b~nnen P T

Figure 1: A sample report for a project

lnzet SbO

Aantal Uren
Bedrag (fl)

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual M ~ ~ t i r l g

overeenkomst

320,OO
63.360,OO

perc, gerealiseerd

2530
2530

afgelopen kwartaal

81,OO
16.038,OO

t/m afgelopen kwartaal

81,OO
16.038,OO

Jackie Damrau

However, when it came to the use of the pic ture
environment, I feared that I might have met my
match.

Flavors of QjX at the SSC. There are many fla-
vors to Tj-$ in use throughout the SSC Laboratory.
These flavors can be compared to the 31 flavors of-
fered by Baskin-Robbins; however, there are only 5
TEX flavors.

At the SSCL, there are the three traditional
TEX packages-?$X, LAW, and A M S - m ; but
there are two others. Since the SSC is a high-
energy physics (HEP)-type environment, we also use
PHYZZX (a W macro package containing many
HEP formatting requirements) and m s i s (another
HEP-type W macro package). PHYZZX was de-
veloped at the Stanford Linear Accelerator Center
by M. Weinstein; W s i s was developed as the result
of a TechRpt format described by W. Groppe and
from W s i s 1.01, the ?$X thesis format by E. hly-
ers; with modifications made by F. Paige.

The use of TEX at the SSCL provides a multi-
tude of learning experiences. Familiarity with each
package is required to become the ?$X support per-
son at the laboratory; but more than that, it keeps
one fluid in the use of every form of ?$X.

Graphics experience: Past and present. My
first attempt at graphics saw the first 16 hours spent
learning the limitations of the p ic tu re environment.
However, this was not the only problem I encoun-
tered. Also, I had to master the limitations of the
Imagen LBP-10 laser printer. One project that I at-
tempted was drawing a simple piece of graph paper
for plotting all my pictures (Figure 2). The ability
to produce complex mathematical diagrams in fields
such as combinatorics, graph theory, discrete and
applied mathematics was soon achieved (Figure 3).

Working at the Superconducting Super Collider
Laboratory (SSCL) since 1989, my graphics expe-
rience blossomed when I used a Macintosh with
its enhanced graphics capabilities. This new expe-
rience led to including graphics into LAW docu-
ments. However, graphics inclusion does not stop
with a graphics package; it also sees the inclusion
of Macintosh or DECstation screen dumps (or cap-
tures) into these documents. According to Freed-
man (page 612), a screen dump is "the ability
to print the entire contents of the current display
screen".

Still using the Macintosh for most of the graph-
ics placed in documents. a DECstation 2100 is used
for screen dumps of workstation windows, applica-
tions, and environments. Being able to locate graph-
ics applications that allow PostScript (PS) or En-

capsulated Postscript (EPS) conversion has been in-
teresting.

This experience opened an opportunity to pro-
duce completely professional-looking documents.

Documents With Graphics Included

In preparing several users' guides requiring the
graphics inclusion, an investigation was started on
the use of the \spec ia l command. The \spec ia l
macro is used for inserting illustrations or graph-
ics in text. This led to some interesting discoveries
about printer drivers, available commercial printer
packages, the Postscript world, and seeing com-
pleted documents with self-contained graphics. Re-
sults from these discoveries have led to the pro-
duction of three documents -the SSCL Computer
User's Guide, the SSCL Computer Operations Man-
ual, and the SSCL Physics Detector Simulation Fa-
cility (PDSF) User's Guide and Training Manuals.
The self-contained graphics in these documents were
created using Deneba Canvas for a Macintosh, Uni-
graphics CAD software from an Intergraph worksta-
tion, and scree11 captures from the Macintosh and a
DECstation 2100.

Details of the procedures used for the graphics
inclusion and the DVI-to-PS packages used are dis-
cussed later in this paper. A little history is now
given on the above documents.

The SSCL Computer User's Guide and SSCL
Computer Operations Manual were created
with graphics inclusion. Only one figure in the first
versions of these two documents was non-contained.
Graphics packages used for these documents were
Deneba Canvas and Unigraphics CAD graphics con-
verted to Canvas-readable format. These graphics
were next converted to EPS format and transferred
to the VMS mainframe. After transferring the con-
verted graphics to the mainframe, Northlake Soft-
ware's T2/script product was used for the \ spec ia l
command inclusion.

These documents are in the second revision
stage and are being done on a DECstation 2100
workstation running the Ultrix operating system.
Some of these graphics are carryovers from the first
versions, but the one non-contained figure is being
replaced by an electronic version (Figure 4). Ar-
bortext's DVILASER/PS software is used for the
\spec ia l command inclusion.

316 TUGboat, Volume 13 (1992), No. 3 -- Pro(w(1illp o f t11(, 1992 Alilllial Meeting

Graphics in L A W

"
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 2: First project -creating graph paper

Figure 3: Second project -schematic diagram

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Jackie Damrau

T-i CIRCUITS (1544 MEGABITSISEC.)

Figure 4: Non-contained figure now included

I l l -- --- -- -- - -=- -
wan

Figure 5: PDSF computer system

The PDSF User's Guide and Training Man-
uals were written to support users of the Physics
Detector Simulation Facility, a complex system that
enhances the scientists ability to do high level simu-
lations of detector experiments. The graphics inclu-
sion and DVI-to-PS packages used were the same as
the other documents, except for one difference. One
figure was created using a software package called
Net Central Station (Figure 5).

After all this background history, you are prob-
ably wondering how do you create graphics. What
packages are used? How do I import/export them
into Postscript or EPS format and include them in
your document.

Graphics Packages Used

0 To create graphics with the user's favorite Mac-
intosh application;

0 convert graphics into Postscript representation;
0 transfer the PostScript file to the L A W host

machine; and
0 include the Postscript file in the LAW docu-

ment via the DVI-to-PS driver's \specia l com-
mand.

The next four sections describe the methods of
creating the PS representation of the graphics into
a usable file for the \special command.

Deneba Canvas 3.0 is a complete graphics pack-
age created by Deneba for the Macintosh. By com-
plete, it is meant that Canvas combines MacDraw I1
and MacPaint 2.0 to create a great graphics im-
age. Canvas 3.0 allows the conversion of Canvas
files into several selections, such as EPSF, Adobe 11-
lustrator 1.1, etc. Once the conversion is done, the
new files are in EPS representation, thus having the
ability of being opened, modified, and saved into
other Macintosh programs. or imported into differ-
ent Macintosh programs. However, the purpose of
this paper is to show how to include graphics into
L A W documents. Therefore, the following proce-
dures, shown pictorially below, explain how to con-
vert the file into EPSF format.

0 Open the file to be converted, then
0 Click on the Save As.. . button providing a

filename, such as filename. eps.

Schwer (page 195) provided the basic steps needed
for including Macintosh graphics in docu-
ments. These steps are:

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Graphics in LATEX

Another dialog box appears allowing selection
of the proper File Format with all available con-
version o~t ions. Select the EPSF option.

After choosing the appropriate conversion format,
click the Save button.

The next step is transferring the .eps files to
the host computer. This procedure is not covered in
the scope of this paper.

The Unigraphics CAD graphics system con-
trols production of engineering drawings, floor plans,
etc. For the user documents produced at the SSCL,
the CAD Group converts the floor plans into PICT
files that are imported into Canvas. Once in Can-
vas, the floor plans are modified and then converted
to an EPSF-formatted file.

Macintosh/DECstation screen captures. A
screen capture is similar to the screen dump. The
major difference is that the DECstation software al-
lows you to capture, or take a snapshot, a portion of
the screen versus the entire screen. Digital Equip-
ment Corporation refers to this as their Print Screen
feature. Print Screen lets you print the snapshot im-

mediately or capture the image and save it in a PS
file to be printed later.

A Macintosh screen dump is done by pressing
the 3 key with the Apple and Shift keys held down.
This results in a MacPaint file being created con-
taining the current screen regardless what type of
application is running.

Canvas is used to open the MacPaint file. Once
the file is open, rotation and sizing modifications are
made. This file is then converted to the appropriate
EPSF-formatted file.

The Netcentral Station (NCS) is Cisco Sys-
tems' network management product that is designed
to monitor complex internetworks and t o simplify
in-depth network planning and analysis. NCS in-
corporates a high-level graphics editor that provides
users with the tools to create and position their own
graphic images of routers, bridgers, hosts, and links.
The graphics editor is able to convert active, online
graphics into suitable raw PS files that are placed
directly into LAW documents.

The ability of seeing the printed page becomes
an exciting reality. Thus, the next step was to ac-
quire the right DVI-to-PS printer drivers.

How DVI-to-PS Printer Packages and
\special Commands Intertwine?

Schwer (page 195) states two key points in his arti-
cle:

1. There are several DVI-Postscript
drivers available and they all treat the
\special command differently.

2. Not all Postscript devices are the
same. Macintosh QuickDraw, a Post-
Script language shorthand, in combina-
tion with various Postscript implemen-
tations of DVI drivers produces different
results on different Postscript drivers.

These observations are certainly true. Most users
are not aware that the way they use the \special
for figure inclusion is not standard. The reason for
this is that a local W wizard has located specific
macros to work with the Laboratory's dv i process-
ing programs. Thus, there is no reason for users
to look under the sheets to discover that not all
\special commands work the same way.

At the SSCL, there are three different comput-
ing platforms available-VMS, UNIX, and Macin-
tosh (with PCs soon to be added) -it became nec-
essary to learn how the \special command worked
on these platforms. Referring back to Schwer's two
key points, I discovered that the \special command

TUGboat, Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Meeting 319

Jackie Damrau

did work differently depending on which computing
platform and DVI-to-PS packages were used.

Discussion is presented about three commercial
packages currently in use at the Laboratory:

VMS: Northlake Software's T2/script
UNIX: Arbortext's DVILASERIPS
Macintosh: Blue Sky Research's Textures

Each of these packages support capabilities other
than figure inclusion (e.g., selecting color for text;
raw PS code insertion; landscape mode; and TIFF,
PCX or PICT file insertion).

VMS. Northlake's T2Iscript (1989) software trans-
lates "m DVI files and fonts into PostScript, for
printing on many different PostScript printers. . .
PostScript commands and Encapsulated PostScript
files may be inserted in the job using TjjX \spec ia l
commands. "

The use of this package was easy. Steps for
using this package are presented below.

1. Place the \spec ia l command where you want
the graphics to appear using the syntax:

\specialCinsert filename.eps [qualifier])

2. Four additional qualifiers are available for use.
They are:

orientat ion=& 1 Rotates picture 90 degrees
magni f i c a t ion=n Enlarges or reduces graphics

(default = 1000)
l e f t = [i lenl Controls left side of graphics
top= [rtlenl Controls top side of graphics

Three examples on the use of this \spec ia l
command are:

where bp stands for big points (or 72 bp = 1 inch).

UNIX. Arbortext's (page 3) DVILASERIPS prod-
uct translates ''W dvi files into PostScript; these
PostScript files can be printed on any printer or
typesetter that supports the PS language". The
\spec ia l command provides graphics inclusion into
L A ' documents and provide the capability to send
PS commands directly to the printer.

Arbortext's \spec ia l command provides the
ability of embedding graphics files in the .ps file
with one of three commands - ps: epsfile, ps: plot-
file; and ps: overlay. For purposes of this paper, the
ps: epsfile command is discussed. The other two are
left for discovery on your own.

The epsfile command takes the form:

\special(ps: epsfile filename.eps magnification)

showing that the file f ilenarne. eps is to be inserted
with the lower left-hand corner of the figure's bound-
ing box placed at W ' s current point, scaled by
magnification/1000. Magnification is optional; how-
ever, it must be an integer. Other uses of DVI-
LASERIPS involves inclusion of extensive verbatim
PS code.

Macintosh. Blue Sky Research's Textures is simply
T'X for the Macintosh computer. The best way of
describing Textures' concept of graphics inclusion is
to use Blue Sky Research's (back cover, 1990 TUG-
boat) own words.

". . . Adobe Illustrator does do pictures, with
a line quality finer than any technical pen.
Or use MacDraw from Claris for technical
drawings; learn it in less than one hour.
Image Studio from Letraset does halftones,
hand-painted or scanned. All world-class
programs, all only on the Macintosh. With
these tools (and many others), Textures does
pictures-on screen, on paper, beautifully."
To begin using the Textures \spec ia l com-

mand, the following definition should be placed in
your preamble.

\def\picture #1 by #1 (#3)C
\vbox to #2{

\hrule width #1 height Opt depth Opt
\vf ill
\specialCpicture #3)3}

After having entered t,his definition, the
proper syntax of including an EPS or PS file is
\specialCpicture name). If the picture needs to
be centered within the page dimensions, type:
\centerlineC\hbox to h-dimen

C\specialCpicture name))}

All these packages detail the use of their version
of the \spec ia l command and how each includes
graphics into LATEX documents.

Printing the document. Once the PS file has
been created, the final step is to process the file
through the right printer driver. There are two types
of printers available for printing PS documents. For
small documents (1 -20 pages in length), the near-
est Apple Laserwriter is used; for large documents
(20+ pages in length), one of three Imagen laser
printers is used. The Imagens are located in strate-
gic places throughout the Laboratory - normally,
far from where you are located.

320 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Graphics in L A W

Conclusions and Recommendations

Recently, graphics created by the high energy
physics community, such as PAW and TOP-
DRAWER, have been placed into L A W documents.
Experimenting through the years and learning new
methods of graphics inclusion, several procedural
quick references for Laboratory personnel were de-
veloped to show how to include graphics in docu-
ments.

A recommendation from one Usenet user on
standardization:

"Unfortunately there is no standard yet for
use of \special -every DVI processor uses
its own scheme. DVI processors should be
able to deal with both plain vanilla encap-
sulated Postscript files (EPS), as well as
the 'augmented' encapsulated PostScriptfiles
(EPSF) used by some applications, where
a low-resolution preview bitmap image in
MetaFile or TIFF format is packaged with a
Postscriptfile. Most are not able to do this."

By no means am I an expert, but I look for-
ward to continuing to learn more on the subject of
graphics inclusion. In this paper I have attempted
to share the information I have obtained in re-
searching graphics inclusion in L A W from using the
p ic tu re environment to using EPS graphics, briefly
discussing how graphics enter user documents, the
graphics packages available to accomplish graphics
inclusion, and the various uses of the \spec ia l com-
mand for the SSCL printers.

Acknowledgements

I would like to thank Professors Stanly Steinberg
and Roger Entringer, and Ms. Moira Robertson
with the Department of Mathematics and Statis-
tics at the University of New Mexico for provid-
ing me with the opportunity to prove that learn-
ing L A W was not impossible and for their encour-
agement in my L A W endeavors. Michael Wester
and Tom Stickels have also lent me their fine edit-
ing skills in putting together this paper. Finally,
I would like to thank Ms. Brenda Ramsey of the
SSCL who saw in me a hidden talent and provided
me with the opportunity to advance my technical
expertise. She has been supportive in directing my
path toward achieving my long-term goals.

References

[l] Arbortext Inc. DVILASER/PS User Manual,
Version 6.3 for Unix Workstations, 1985 - 90.

[2] Blue Sky Research. "Have You Met Your Mac?"
TUGboat 1 1(2), advertisement (back cover),
1990.

[3] Blue Sky Research. Textures Users Guide.
Pages 80 - 87 and pages 104 - 105. 1988.

[4] Cisco Systems, Inc. Netcentral Station Instal-
lation and User Guide, 1990.

[5] Deneba Software. Canvas Update Manual,
1988.

[6] Freedman, A. The Computer ~ l o s s a r ~ , 4th Edi-
tion. The Computer Language Company Inc.,
1989.

[7] Myers. E., and F. Paige. " W s i s : l$$ Macros
for Physicists.'' University of Texas-Austin and
Brookhaven National Laboratory. 1990.

[8] Northlake Software. The T2 Manual: T2/jet,
T2/ln03, T2/script. 1989.

[9] Schwer, L. "Including Macintosh Graphics in
L A W Documents." TUGboat 11 (2)) pages

.194- 200, 1990.
[lo] Universities Research Association. To the Heart

of the Matter-The Superconducting Super Col-
lider. Washington, D.C.

[ll] MJarren, J. "Background Information on the
SSC Project.'' SSCL-501, Superconducting Su-
per Collider Laboratory, Dallas, Texas, 1991.

[12] Weinstein, M. "Everything You Wanted to
Know About PHYZZX But Didn't Know to
Ask.'' SLAC-TN-84-7, Stanford Linear Acceler-
ator Center, Stanford University, 1984.

TUGboat, Volume 13 (1992). No. 3 - Proceedings of the 1992 Annual Meeting

Preparing Halftones for Use in TEX

Robert L. Harris
Micro Programs Inc.
251 Jackson Avenue
Syosset, NY 11791-4117
Phone: (516) 921-1351

Abstract

At the 1987 TUG meeting in Montreal, I discussed the issue of incorporating
halftones into rn documents as part of the process of publishing kennel club
yearbooks. At that time, the modestly-priced scanners and software did not do
an acceptable job, especially when the original was a color photograph.

In the intervening five years, advances have been made in both scanner
technology and image processing software.

This is an update, showing what can be expected today when incorporating
photographs into TEX documents using the PC platform and low (300 dpi)
resolution Postscript printers. Techniques I have used are presented.

Ancient History

Five years ago, I described the production of kennel
club yearbooks using W. There are two phases
to the production of these annuals. The first is
the preparation of the dogs' pedigrees. I showed
that w, combined with a database program,
could automate this step, remove the drudgery and
produce very attractive, accurate pedigrees.

The second phase was the addition of the dog's
photograph to its pedigree. For several reasons.
most production errors occurred in this phase. I
briefly looked at the technology available at that
time to see if the yearbook editor could do this
electronically as well as make the camera-ready
copy of the pedigree. Without known exception.
these annuals are printed in black and white, but the
owner-submitted photographs are color prints. Five
years ago, modestly-priced software and scanners
were not up to the task of producing acceptable
images from color prints.

In the past five years, we have witnessed
remarkable changes in hardware and software.
Whereas an eight megahertz '286 computer was
the norm for personal computing then. a twenty-
five or thirty-three megahertz '386 or '486 machine
is the norm today. The scanner I used for the
original work had 400 dpi (dots per inch) resolution
and no true grey scale capability - greater for OCR
(Optical Character Reader), but poor for processing
halftones. When it was used to scan color pho-
tographs, on a scale of one to ten, I would have to
give its performance a negative value.

Modern History
Although my involvement with kennel club year-
books has ceased, I have maintained an interest in
producing high quality halftone images for use in
documents typeset with m. I presently produce
ne~s le t~ters for two organizations and numerous
publications for my church. The publications fre-
quently are illustrated with halftones. Hence, I
thought I would share with you an update to my
experiences in this area. As before, I am describing
an environment attainable with a modest invest-
ment. There certainly is equipment and software
that will do far more than I will illustrate- but not
within every man's budget.

Hardware. There has been a proliferation of
scanners: flatbed scanners, hand-held scanners,
autofeed scanners. Most of them have an upper
resolution of 300 to 400 spi (spots per inch),
although some have double or triple that number.
As we shall see later, as in Dalmatians, more
is not necessarily better. Virtually all the new
scanners are grey scale scanners. The number of
grey levels vary. Sixteen or 256 are the most
frequently encountered values. Color scanners are
being marketed at retail prices that overlap those
of grey scale scanners. The color scanners available
today in the modest price range use CCD (Charge
Coupled Device) technology. This is not necessarily
the best technology for color scanning. but is the
most affordable.

It does not take long for one to realize that
with all this information being generated by the

322 TUGboat, Volume 13 (1992). No. 3P roceed ings of the 1992 Annual Meeting

Preparing Halftones for Use in

scanner, it is going to take a lot of memory to
process it. Fortunately, today's personal computers
have abundant memory and high processing speed.
Most people who are going to be processing digital
images on a PC-compatible computer will probably
be using a '386 or '486 computer with a clock speed
of 25 MHz or higher and equipped with two to four
megabytes of RAM. With some images requiring
over a megabyte of storage, a large hard disk is
mandatory if any quantity of images are going to
be stored for a period of time.

Since one will want at the very least to preview
a scanned image and mostly likely will want to
edit - crop, size, retouch - the image, a high reso-
lution display will be part of the system. When a
scanned image is displayed on a monitor with 1024
x 768 pixels, one sees a high quality image that
is truly representative of what the final image will
look like. In some cases, the video representation is
better than the hard copy will be!

All of this hardware should cost under $4000
and maybe as little as $3000. The computer with a
130 megabyte hard disk and high resolution display
is available at street prices at , or close to, $2000.
I prefer a flatbed scanner which is more expensive
than a hand-held one. Even so, a high quality one
is available for less than $2000.

The astute reader is going to notice that I
have not discussed printers. There have been a few
printer enhancement products introduced in the
past year or so. I am avoiding those because they
introduce a device dependence that is an anathema
to users. While one could argue that Postscript
makes one device-dependent, it is sufficiently widely
accepted as to constitute a standard. Therefore,
I am restricting myself to output for Postscript
devices.

Software. The developments in image-processing
software have caught up with the hardware. The
software I had five years ago was very limited in
its capabilities. The year after I gave my paper.
Astral Development Corporation released Picture
Publisher, the first greyscale image editing software
for the desktop computer. Two years later, they
released an upgraded version with color capacity.
As the first of its kind - and an excellent product -
it became the benchmark for all the image editing
software that has followed. Last year, Micrographix
acquired Astral Development Corporation. This
spring, Micrographix released version 3.0 of Picture
Publisher. It requires Microsoft Windows.

Most of the other image processing programs
for the PC also required Microsoft Windows. Here

is a quick rundown of the ones of which I have
knowledge.

0

0

0

0

0

0

one

-
ZSoft Corporation. one of the early developers
of paint-type programs introduced Publisher's
Paintbrush last year. They also have a less-
expensive program, PhotoFinish.
Image-In Incorporated has two programs they
describe as a "darkroom on a desk" : Image-In-
Color and Image-In-Color Professional.
Aldus, through the acquisition of Silicon Beach
Software, now has PhotoStyler for Windows.
Computer Associates has been showing a pre-
release beta version of CA-Cricket Image.
Not all the programs require Windows. how-
ever. Mathematica Incorporated has a program
called Tempra.
PixoFoto, like Tempra, does not require Win-
dows. It has its own Windows-like graphical
user interface. It does. however, require a
special graphics (TIGA) board. This product
is from PixoArts Corp.
Once one has chosen and acquired a program,
tends to stay with it unless it is unsatisfactory

for the purpose, br fails to stay with the state of the
art. Although I own a couple of image processing
programs. I find myself using Picture Publisher for
all my work.

From this quick survey, tools that are affordable
are certainly available. Now the question is how
well do they work?

If one is after the highest quality halftones, the
best original is still a black and white photograph.
The absolute highest quality is going to be achieved
by preparing a plate using traditional methods.
Given that it is getting increasingly difficult to
obtain black and white prints, one may have no
choice but to use color photographs. I believe-
although I do not have any proof to back up
this statement - that a color transparency will
reproduce better than a color print.

Halftones prepared from black and white or
color prints using digital techniques can be accept-
able, depending upon the purpose. I have been
using scanned photographs in two newsletters for
the past year. I t has taken some experimenting to
determine the best way to handle different situa-
tions. Lets start at the beginning: scanning the
image and obtaining the initial digital image. I have
a scanner that is capable of 600 spi. This resolution
is going to produce very big files. Table 1 shows the
memory requirements for an 8 by 10 photograph
at a number of scanning resolutions. Fortunately,
we do not need all those spots. The resolution we
need will be determined by the printer resolution,

TUGboat, Volume 13 (1992). No. 3P roceed ings of the 1992 Annual hIeeting 323

Robert L. Harris

Scanner

Table 1. Image Slemory Requirements

which we will express as dpi. Table 2 gives the
scanning resolutions Micrographix recommends for
each printer resolution. The scanning resolution is
approximately 1.5 times the screen ruling.

Bob's rule No. 1:
Do not use a higher scanning resolution than
you will need for your final output device.

If you are going to use your desktop laser
printer, don't waste time and memory scanning
at resolutions greater than 80 spi. If you will
ultimately be sending your files to a service bureau
using a 1270 dpi imagesetter, then use a scanner
resolution of 192 spi.

At this point, we also have to decide, since
we have a color scanner, whether to scan the
photograph as a color image or as a greyscale
image. Remember, we will be printing our final
document in black and white. Color images will be
three times bigger than their greyscale counterparts.
While it is fun to edit and manipulate a color image,
it does not affect the quality of the output if we do

I Printer I Screen I Scanner 1 Grey 1
1 Resolution 1 Rulings 1 Resolution 1 Levels 1
1 (d ~ i) (spi) / Simulated 1

Table 2. Suggested Scanner Resolutions

the conversion from color to greyscale when we scan
the photograph. Truthfully, it will be it easier to
apply proper contrast and/or brightness corrections
that may be necessary during image editing if we
are working with the greyscale image.

Scan your original as a greyscale even if it is
in color if you will be printing the final copy in
black and white.

What about sizing? It is unlikely that the
photograph is going to be reproduced full size in
the final document. I prefer to adjust size when I
am scanning. It does not affect the image quality
and it makes the file size smaller (assuming that I
am reducing the size of the picture).

Which brings up an interesting point. If
you tried to enlarge an image electronically with
earlier scanner software. you were apt to wind up
with weird pictures-~andidat~es for the Museum
of Modern Art. I have successfully enlarged a
photograph by a factor of two when scanning it
without any perceptible digitizing in the image.

Akin to sizing is cropping. Perhaps there is
unwanted or unnecessary detail in the photograph.
Crop it out when you scan the photograph. If you
do not get it cropped enough, you can always refine
the cropping on the editing desk.

An advantage to doing the sizing and cropping
at this time is that the software will do all the
adjustments to the scanner resolution necessary
to maintain the target resolution. So, set the
resolution according to the table and the scanner
driver will take care of the rest.

Bob's rule No. 3:
Size and/or crop the photograph when you
scan it.

Once you have scanned the image, you can
touch it up, adjust the contrast and brightness, do
the final cropping and sizing, and save it as an
encapsulated Postscript file. I recommend that you
make some trial runs on the output. Certain colors
will blend together when changed to greyscale.
With a good program like Picture Publisher, you
can select areas of the image and change the grey
value. This is a good way to bring out detail that
would otherwise be lost. Manipulating the image

TUGboat, Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting

Preparing Halftones for Use in Tm

Fig 1. Fashion Fig 2. Sneakers

this way can be time-consuming and you probably
will not resort to it unless necessary.

Now it is time to view the progress. Let's start
with the only photograph from five years ago that
gave acceptable results - and borderline at that. It
was a black and white photograph of a Dalmatian.
Using one of today's scanners and Picture Publisher.
she looks a lot better. This illustration was reduced
from an 8 by 10 original.

The next example was taken at the beach.
The foreground is sand and a little seaweed. The
background is water and sky. Sneakers is brown and
white with black shadings. The image was cropped
from a 4-by 5 color photograph. Five years ago. she
would have disappeared into the sand.

The third example is a photograph of a German
Shepherd Dog. She is tan and black. She was
posed on grass with some evergreen trees in the
background. There was a lot of light on her chest -
the sun was probably low in the sky. The original
was also a color photograph. I11 this case, the image
was enlarged slightly from 2.25 inches to 3 inches.

Lest you think I am prejudiced, the fourth
illustration includes some humans. Like the first
example. it was prepared from an 8 by 10 black and
xhite photograph.

All four originals were scanned at 80 spi (see
Rule 1). The area of the orlginal to he used was

masked and the desired image width was set to 3
inches before scanning (see Rule 3). Therefore, the
scanner driver took care of adjusting the scanner

Fig 3. Illsa

TITGhoat. Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting

Robert L. Harris

All four images were printed on a 300 dpi
printer. Overall, it reminds the viewer of the quality
of photographs in the typical daily newspaper of
a decade or two ago. As I was preparing this
presentation, a number of printer manufacturers
were announcing or shipping Postscript printers
with increased resolution at prices competitive with
today's 300 dpi printers (QMS, for example, now
supports 600 dpi on a number of their entry-level
printers). The quality of these images would be
greater on such a printer.

Depending upon the nature of the publication,
one can prepare acceptable halftone images for
inclusion in documents today with a modest
investment in equipment and software. Perhaps not
up to the standards set by The National Geographic,
but useful for many purposes. The best quality
halftones will still be obtained with traditional
technology.

Fig 4. Fashion with Judge and Handler

resolution. The two color photographs were scanned
as greyscale images (see Rule 2). All four were
printed "as scanned". No contrast or brightness
adjustments, retouching. filtering or masking was
done.

TUGboat. Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Meeting

Creating Shaded Rectangles with PostScript

David Salomon
California State University, Northridge
Computer Science Department
Northridge, CA 91330 USA
Phone (818) 885-4954; FAX (818) 885-2140
Internet: vacscOrf &ax. csun. edu

Abstract

One of the most common graphics used in documents is text with a shaded
background. This is hard to do with but easy with PostScript. Simple
Postscript code is presented here to create shaded rectangles, and a macro is
developed to combine such a rectangle with text.

Introduction

It is well known that 7&X lacks facilities for graphics.
Certain drawings, such as logos. may be developed
in METAFONT, but for any non-trivial graphics
this is usually too time consuming. A ruled box,

rllke, is the closest m can get to anything
resembling a drawing. Slanted lines can be handled
by typesetting a dot and moving it in small steps.
Hendrickson (1985), Cameron (1985) and Salomon
(1989) use this idea to develop simple macros
for slanted lines. The same principle can be
used to typeset curves, as done by Bez ie r .s ty in
L 4 m , and by the macro package (Wichura,
1986). For more complex graphics, the \spec ia l
command can be used to include graphics in the
final document. Rahtz (1989) is an excellent survey
of the different methods used to combine m and
graphics.

In my work I have often felt the need for enclos-
ing text in ruled boxes. either rectangular or with
rounded corners, with backgrounds of shaded gray,
and sometimes with a thick stroke around them.
Glendown (1989) is an (unsatisfactory) attempt to
draw similar boxes using the arcs provided in the
L A W circle fonts. As a heavy Macintosh user, it
seemed to me that my best choice was to use Post-
Script to achieve such effects. PostScript printers
are widely available, and PostScript programs are
supported, via \spec ia l , by more and more 7&X
implementations. The program used here has the
additional advantage of being small and fast.

The \shade Macro

The result of my efforts is the macro \shade below.
It creates a rectangular box with either sharp or
rounded corners around text. The text can be

placed, by the user. in either an \hbox or a \vbox,
or it can be written explicitly as the macro argument
(see third example below). The rectangle is filled
with the desired shade of gray, and is optionally
surrounded by a stroke of any desired thickness.
It is also possible to make the shaded area larger
than the text by any amount. The macro has five
parameters:

A decimal number specifying the proportion of
white in the shaded background.
gl his is a .97 background. I

A dimension s~ecifvine: the

/ extra size of shaded area (12pt on each side). 1
I I

A count specifying the width of the stroke
in points. A zero or empty argument creates
no stroke. . A count-(the radius of the rounded corners3 in
points. A zero or empty argument produces square
corners.

The text to be boxed. It is either straight text (if
it fits on one line) or is enclosed, by the user. in an
\hbox or \vbox.

The arguments are separated by commas, and
the last one is delimited by '\\'.

Here is the listing of \shade.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Creation and Incorporation of PostScript Graphics with
m- format ted Labels into 7JjX Documents

Neil A. Weiss
Department of Mathematics
Arizona State University
Tempe, AZ 85287
Phone: 602-965-3951; FAX: 602-965-8119

Abstract

In this paper, we will discuss the incorporation of Postscript-created graphics
with m- fo rma t t ed labels into documents using the Mathematical Graphics
System, or hfG for short. We will provide a brief overview of the creation of
such graphics and explain in detail the Tm macros employed to accomplish the
inclusion of the graphics and the labels into the output of a document.
Additionally, we will provide illustration of how to customize figure insertions
for particular applications.

What is the Mathematical
Graphics System?

The Mathematical Graphics System, MG, is a
menu-based program designed for the creation and
display of both two- and three-dimensional Post-
Script graphics on DOS based computers. Although
it is not the purpose of this paper to discuss the
graphics capabilities of MG, we should point out
that they are considerable.

Two-dimensional graphs can be specified as
Cartesian, polar, or parametric curves, straight
lines, and vectors. Three-dimensional graphs can
involve Cartesian or parametric surfaces, straight
lines. and parametric curves. In addition, surfaces
can be ruled by arbitrary families of curves and can
be shaded.

MG also has free-drawing capabilities where
the user can specify points of interpolation for filled
or unfilled polygons and for filled or unfilled splines.
The scatter-plot feature of MG permits the plotting
of points read from a data file or for drawing
curves or polygons (filled or unfilled) through the
points. It also allows for the shading of regions in
two-dimensions. For a detailed explanation of the
graphics capabilities of MG, we refer the reader to
Israel and Adams (Mathematical Graphics System
User's Manual).

The output of MG can be obtained in two
forms: (1) as a pair of files to be incorporated into
the source code of a rn document or (2) as an
encapsulated Postscript file that can either be sent
directly to a Postscript output device (printer or
phototypesetter) or included in a larger document

that will be printed on such a device. In this paper,
we will concentrate on the first form of output.

The two files referred to in (1) consist of an l b l
(label) file and a ps (PostScript) file. The l b l file
contains, among other things, information regarding
the m- fo rma t t ed labels and their placement. The
ps file is a PostScript file delineating the graphic.
This latter file is incorporated into the T@X output
by employing the \spec ia l command, the exact
syntax of which depends on the dv i to PostScript
driver being used.

To obtain the l b l and ps files for a graphic
constructed by MG, the user first selects "Make
PostScript file'' in one of the several menus where
that option occurs. The user is then asked to choose
a file name that will serve as the name for both
the file with the . l b l extension and the file with
the .ps extension. Once that is accomplished, the
user should specify "importing into TEX" for the
type of PostScript file to be saved. (The other
option, "printing directly," yields an encapsulated
PostScript file with the labels being set by Post-
Script.) We will discuss both the l b l and ps files
created by MG in greater detail shortly.

We should note that the user can also elect
to save the grf file corresponding to a graphic
constructed by MG. That file records the menu
selections and other information required by MG to
reproduce the graphic at a later time for editing or
electronic viewing purposes.

330 TUGboat. Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting

Postscript Graphics with m - f o r m a t t e d Labels

The LBL and PS Files

Let us now discuss, in detail, the l b l and ps files
obtained when an MG graphic is saved using the
"importing into TEX" option. The l b l file is an
ASCII file that contains the positions, justification
codes, and text for each of the labels. These labels,
which were specified in MG, are assumed to be
in TjjX form; e.g., labels containing mathematical
expressions should be enclosed in dollar signs.
The l b l file also includes information about the
dimensions of the PostScript figure as well as a few
other pieces of data.

To illustrate, we will examine the l b l file of
the graphic displayed in Figure 1, the graph of the
polar equation r = sin 80:

r = sin 80 1

Figure 1: Graph of a polar curve

Note that there are three labels in Figure 1, all
of which are set by m: the labels for the x and
y axes and the label describing the equation of the
curve, T = sin 80.

A listing of the l b l file that supplies the
requisite information to T@ for the proper location
and coding of the labels is depicted in Table 1 at the
top of the next column. The annotations in the right
column of the table are included for explanatory
purposes and are not part of the l b l file.

In understanding the position coordinates for
the labels, it is important to note that the di-
mensions are in points with reference to an origin
at the upper left corner of the figure and that
the x-dimension increases to the right whereas the
y-dimension increases downward. Since. as we men-
tioned earlier. the l b l file is an ASCII file, it can
be edited using a text editor. Thus, to move the
equation label, r = sin 80, up five points, we need
only change its y-coordinate from 27 to 22.

We now see that the l b l file provides the
information necessary for to set the labels in
Figure 1. The remaining portion of Figure 1 -
the axes, graph, and leader-are described in the
ps file. 'I&$ plays no role in processing the infor-
mation in the ps file except to pass the instructions
in the \spec ia l command to the dvi file.

Table 1: Label file with annotation for Figure 1

Version of MG
Width of figure, in points
Height of figure, in points
x-coord of the y-axis label
y-coord of the y-axis label
Right just'n of y-axis label
Top just'n of y-axis label
y-axis label
x-coord of x-axis label
y-coord of x-axis label
Right just'n of x-axis label
Top just'n of z-axis label
x-axis label
x-coord of eqn label
y-coord of eqn label
Horiz centering of eqn label
Vert centering of eqn label
Equation label
End of label file

How MG Incorporates the Labels
and Graphics into T '
In order to incorporate the w - fo rma t ted labels,
specified in the l b l file, and the Postscript graphic,
specified in the ps file, the distribution of MG
includes a collection of 'l&X macros in the file
f i g . t e x . The macro that provides the commands
for the importation of the labels and the calling of
the PostScript graphic is called \f i g i nse r t . For
reference purposes, we have presented a listing of
that macro in the appendix to this paper.

The argument to \ f i g i nse r t is the common
name of the g r f , l b l , and ps files. In the case of
Figure 1, it is po lar . The \f i g inser t macro first
prepares the input stream, label f i l e , to read from
the specified label file (in Figure 1, po lar . l b l) .
Then it reads the first three lines of the label file,
which contain the version of MG and the width
and height of the Postscript figure, to \mgversion.
\pswidth. and \psheight. At this time, the name
of the file is also displayed on the terminal by use
of the \message command.

TUGboat, Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting

Neil A. Weiss

If boxf igures is true, then the figure will be
surrounded by a rectangle, as is done in Figure 1.
The line width and border width can be changed
from the default in MG (1 pt and 2 pt, respectively)
by altering the values of the dimension registers,
\boxrulewidth and \boxborderwidth. In Figure 1,
\boxrulewidth=.4pt and \boxborderwidth=4pt.

Next, \ f i g i nse r t constructs a \vbox whose
height is \psheight, the height of the Postscript
figure, and uses the \spec ia l command to call the
PostScript graphic (in Figure 1. the graphic is in
the file po1a r .p~) . The actual description of the
graphic will be imported into the Postscript file
for the main document by the driver. The default
syntax for the \spec ia l command can be changed
to accommodate any dv i to Postscript driver.

The control sequence, \ se t l abe l s ize, can be
used to alter the default type size for the labels. For
example, to change to nine point, we use the defini-
tion \def \setlabelsize{\ninepoint). We should
mention that f i g . t e x includes the \ninepoint and
\eightpoint macros provided in Appendix E of
The W b o o k (pages 414 and 415).

The next portion of the \ f i g i nse r t macros
continues reading the label file using a loop. It
begins by reading the fourth line of the l b l file to
\xcoord. That line will either be the x-coordinate
of the first label or the code number, -1000,
for the end of the file. In the latter case. the
reading terminates and the final positioning, boxing
(if any), and closing of the input stream occurs.
Otherwise, the y-coordinate and justification codes
are read to \ycoord, \ j us tx , and \ jus ty , and
the label itself is read to \ labe l . Then the label
is placed in the box \labox which is copied to
the appropriate location using the coordinates and
justification codes. Iteration now occurs for further
labels or the end of the file.

High-level Macros for Figure Format

MG supplies three high-level macros for figure
placement and captions. Of course, these macros
all call the low-level \f i g i nse r t macro.

The first high-level macro for figure placement
and captioning is \cf ig , whose listing is as follows:

\def\cfig#l#2(\par\smallskip
\openin\labelfile=#l.lbl
\ i f eof \ label f i le\immediate
\write16iCanJt f i n d #I.LBL; I qu i t !)
\end\f i \ c lose in \ labe l f i l e
\vboxi
\center l ine(\ f iginsert{#1)}\smallskip
\centerline(\figfont#2})\smallskip}

As we can see, the \ c f i g macro takes two
arguments, the figure file name (e.g., polar) and the
figure caption. The figure is centered o n the \hsize
with the caption centered below. Figure 1 uses the
\cf i g macro.

Note the call to the \ f i g i nse r t macro. Also
note that the caption (#2) is set in the font specified
by \f ig font . The default for that font in MG is
boldface but that can be changed as desired.

The second high-level macro supplied by MG
for figure placement and captions, \rf ig , provides
for text on the left side of a page and the figure with
its caption on the right. This macro takes three
arguments: the text, the figure file name, and the
figure caption. The width of the text is determined
by the width of the figure; namely, it is the \hs ize
minus the width of the figure, \pswidth, minus
1 pc. As with \cf ig , the caption is centered below
the figure.

The third high-level placement macro, called
\twof igs . allows for two side-by-side figures with
captions. Each caption is centered below its figure.
The entire display is also centered on the \hsize.

Of course, the user can modify the high-level
placement macros supplied by MG or define his/her
own high-level placement macros. For instance, one
might want to increase the skips occurring above
and below the figure when applying the \ c f i g
macro, say, by replacing two of the \smal lskips by
\medskips.

Or suppose, for example, that a book being
prepared in uses count registers t o keep track
of the chapter number and figure number and
that the caption of a figure consists of the word
"FIGURE" followed by the chapter number, a
period, the figure number, and a colon, all set
in the font specified by \ f igurefont , and then
by the description of the figure, set in the font
specified by \ f i gu re t i t l e f on t . Further suppose
that figures are insertions using the \midinsert
macro of p l a i n . tex. Then the following adaptation
of the \cf i g macro can be used to accomplish the
setting of the figures:

\def\fig#l\par{\iffigtex\relax
\ e l se \globaldefs=l \ input f i g
\f i g tex t rue
\def\setlabelsize{\ninepoint)
\boxrulewidth=.4pt \boxborderwidth=9pt
\boxf igurestrue \globaldefs=O \ f i
\goodbreak \midinsert

TUGhoat, Volume 13 (1992). No. 3 -Proceedings of the 1992 Annual Meeting

Postscript Graphics with Tm-formatted Labels

\global\advance\figureno by1 Bibliography
\cf ig Israel, R. B. and R. A. Adams. MG, Adathematical
(fig\number\chapterno-\number\figureno) Graphics System User's Manual. MG Software,
(\figurefont \uppercase{Figure) 4223 W. 9th Avenue, Vancouver, B.C., Canada
\number\chapterno.\number\figureno: V6R 2C6, 1990.
\figuretitlefont #l)\endinsert> Knuth, Donald E. The Tmbook. Reading, Mass.:

Kote that , at the beginning of the \fig macro. Addison-Wesley, 1984.
Tm checks to see whether the fig. tex macros have
been input; if they haven't, they are input along
with some changes to some of the MG parameters.

The following figure, the file name of which is
f ig4-I, was obtained by applying the \fig macro. -

We simply typed

\fig A Γ section.

when \chapterno=4 and \f igureno=O.

TLiGhoat. Volume 13 (1992), No. 3-Proceedings of the 1992 Annual hleeting

FIGURE 4.1: A F section

Neil A. Weiss

Appendix

The following is a listing of the \f iginsert macro. Also included are the requisite definitions for
that macro. As can be seen; the \figinsert macro utilizes both the lbl (label) and ps (graphic) files
corresponding to the graph constructed by MG.

\def\figinsert#lC\par %#l=filename
\openin\labelfile=#l.LBL
\global\read\labelfile to\mgversion\message{#l)
\global\read\labelfile to\pswidth
\global\read\labelf ile to\psheight
\ifboxf igures\boxit{\f i\vbox to\psheight pt{\vf ill
\special(ps: plotfile #l.PS)% Version for DVILASER/PS!
\vskip-\psheight pt \setlabelsize
\hbox to\pswidth pt{\hss}%
\parindent=Opt\of f interlineskip
\vpos=o
\loop\global\read\labelfile to\xcoord
\ifnum \xcoord < -999 \doitfalse\else\doittrue\fi
\ifdoit \global\read\labelfile to\ycoord
\global\read\labelf ile to\ justx
\global\read\labelfile to\justy
\global\read\labelfile to\label
\global\setbox\labox=\hbox{\label\hskip-0.3em)%
\advance\vpos by-\ycoord
\vskip-\vpos pt \vpos=\ycoord
\hbox to\pswidth pt{\hskip\xcoord pt
\hbox to Opt~\ifnum\justx>O\hss\fi
\vbox toopt{
\ifnum\justy<2\vss\fi
\copy\labox\kernOpt
\ifnum\justy>O\vss\fi>\ifnum\justx<2\hss\fi>\hss>
\repeat
\advance\vpos by-\psheight
\vskip-\vpos pt}\ifboxf igures)\f i\closein\labelf ile)

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

How to Combine Multiple Languages, Postscript and UTEX

Timo Knuutila
Dept. of Computer Science
University of Turku
Lemminkaisenkatu 14 A
SF-20520 Turku
Finland

Abstract

A solution on how to handle multiple languages - even the accented ones - with
correct hyphenation in standard U W (with the Mittelbach-Schopf font selection
scheme) is presented. Moreover, the solution proposed makes it possible to easily
switch between different languages and font families within the same document.

Introduction

Many of us are eagerly waiting for a new U7&X
with support for multi-lingual styles and interna-
tional characters. There have already been some
signs of the shape of things to come: the latest up-
dates for LATEX 2.09 have made it easier to inte-
grate standard MTJ$ with the babel style option of
Johannes Braams (1991), and the new font selec-
tion scheme (NFSS) (Mittelbach and Schopf, 1989)
is accompanied with styles (currently in beta-test)
to use the pre-release of the EC fonts defined in the
Cork meeting (Ferguson, 1990) (the DC font family).
However, while waiting for the official releases, the
casual m n i c i a n has to manage somehow - usually
with his own solutions.

This article concentrates mainly on the inter-
face between IPW, international characters and
languages using these. The language-specific ad-
justments used at higher levels (e.g., the name of
"chapter") can be done with the babel styles. We
begin the story with a section describing the rea-
sons I undertook this effort. The current solution to
the problems encountered is then presented in more
detail.

Working with an Accented Language

In theory, When typing a file, the typist
thinks of a glyph (shape of a character or a sym-
bol) and hits an appropriate key or key combination.
The glyph becomes a small integer number, say i,
in the file produced. For example, when working on
a PC-compatible computer, the glyph-integer map-
ping is often defined by the IBM code page 850 (IBM
coding hereafter). T@ reads the file and possibly
converts i to another code j, which is then used
with the precompiled hyphenation patterns. The
resulting dv i file then contains integers j serving as

pointers to glyphs in a font table. This glyph is fi-
nally made visible by the dvi driver that produces
the raster image associated with the output code j.

In practice. A Scandinavian typist wants to have
the glyph a in his/her text. He/she is forced
to continuously type the sequence \ "a instead of a
single kej: since the integer number produced by
the key a is not found from W ' s font tables, and
neither is the character itself. The glyph is then
constructed from two subparts: the accent " and
the letter a. One could perhaps stand this incon-
vinience, but accents cause an intolerable difficulty:
QX will not automatically hyphenate words con-
taining accents-we have to write explicit discre-
tionary breaks for them.

Modified versions of l&X do exist, like
I N R S W and M L W , which have the ability of
hyphenating accented words, but they just are not
TJ$L In order to make TEX hyphenate properly
words containing accented letters we have to create
font tables for their representative numbers. How-
ever, the mapping from codes above 127 to glyphs
(and vice versa) is not uniquely defined: there exist
(to mention a few) 8 different IS0 standards (Latin-
1,. . . ,Latin-8), numerous code pages from computer
manufacturers, and the extended W font encod-
ing scheme (Ferguson, 1990). The Iast scheme will
most probably be accepted as a future standard, but
many users of 7&X feel reluctant to adopt it be-
cause of its incompatibility with the current 'IQX
encoding.'

As the EC fonts have not yet been officia1Iy re-
leased, we describe a slight modification, which uses
the Latin-1 coding for the 'upper half' of a 256-letter
alphabet, but is downward compatible with current

documents. This encoding is referred as the

The Greek letters do not reside in text fonts.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 335

Timo Knuutila

Extended Computer Modern (~ ~ ~) . " h e s e XCM fonts
are totally based on the virtual fonts (Knuth, 1990)
and the standard CM family -no extra METAFONT
sources are used. The use of virtual fonts is further
justified by the sheer size of a set of new raster fonts
for a 256-letter alphabet and all magnifications (or
true sizes).

PostScr ipt . The distribution of the dvips driver
is accompanied with a program, afm2tfm, which is
able to translate the Adobe font metric files (afm)
to font metric (t f m) and virtual font (vf) files.
Given an afm file as input, af m2tfm creates a font
metric file for the raw PostScript characters (no
character remapping) and a virtual font property
list (vpl) file which defines the standard 7-bit char-
acter set using m ' s internal coding. The charac-
ters, whose codes are above 127, are mapped to their
corresponding Adobe positions. Needless to say, this
coding is different from both the Latin-1 coding and
from the IBM coding.

We thus have three different codings for a single
letter: one for input and two for the output. Because
of two output codings, the hyphenation patterns cre-
ate a further complication due to the need for dif-
ferent \language for Finnish in Computer Modern
and for Finnish in PostScript. The only difference
in the patterns of these 'languages' are the places
where the (codes of) characters a and 6 are used.

Style files for PostScript. The new font selection
scheme makes the definition of the PostScript fonts
particularly simple since they are all generated by
scaling the same font metric file. There currently
exists many l3w styles illustrating this ease.3 We
have used as a starting point psf onts . s t y written
by Dick van Soest.

Documents should be written by using only a
few different font families -just recall the guidelines
for these Proceedings. As an example, we could use
Times Roman for plain text, Helvetica for sans serif
and Courier for typewriter. Thus, it is not practi-
cal to always define all the different PostScript font
families, regardless of what fonts are actually used.
Therefore, the fonts should be declared on demand.
The current implementation of NFSS makes the on-
demand definition hard or impossible, because all
the font declarations have to be made in the pream-

It is an unfortunate coincidence that the Rus-
sian project has adopted the same naming for
their Cyrillic fonts (Malyshev et al, 1991).

The definition of the CM fonts I4'I)jX uses would
be almost as easy if one used the sau te r fonts (avail-
able from f t p . cs . umb . edu).

ble of the document. Thus, one should either hack
NFSS or explicitly define the fonts to be used in a
style file. We have chosen the latter approach, but
in order to keep the number of different style files
minimal, one file contains all the commands needed
to define the different families. The actual definition
is made by a single command in the preamble.

Another reason to have one's own style for Post-
Script is the intermixing of Postscript, multiple lan-
guages and standard T@ fonts. Suppose that one
writes documents in English and Finnish, both with
Computer Modern and New Century Schoolbook (I
do it all the time). Since it is faster to process dv i
files containing real rather than the virtual fonts,
we should use the CM fonts for English, and switch
to XCM only when necessary, i.e., when changing the
language. This approach also has the extra advan-
tage of compatibility: the dvi files created for docu-
ments not using the language switching capabilities
remain the same. However, when the XCM encoded
PostScript fonts are used, no switching has to be
done. Thus, the language switching device must be
aware of the font family currently used.

The Evolution of M W W
How XCM was chosen. My first attempt to make
TjjX hyphenate Finnish text (this happened when
T)$X was younger than three years) was to create the
extra glyphs by modifying the METAFONT sources
of the Computer Modern font family, replacing some
of the Greek characters with the new glyphs, and
adjusting the hyphenation patterns according to the
coding. Although the solution worked, it was clear
that it was a non-portable hack; moreover, the hand-
editing and testing of the METRFONT files was very
time-consuming - especially for a person who does
not know a bit about the programming language
used!

Since I was working on a PC-compatible com-
puter, the glyph-integer mapping was defined by the
IBM code page 850. These integers (e.g., --84 for
a) were then mapped via macros to the codes
in the font tables. Knuth actually suggests ligatures
(defined in the font property list file) to do the job
(The W b o o k p. 46). However, this attempt im-
plies key sequences such as a" should be used, which
is not what was wanted.

Then came 3.0 with 8-bit input and the
facility of virtual fonts (Knuth, 1989). An instant
idea was to exploit these facilities and create a vir-
tual font on the top of each font by adding
the Scandinavian letters somewhere above the 7-bit
barrier. At that time it seemed natural to use the

336 TUGboat. Volume 13 (1992). No. 3P roceed ings of the 1992 Annual Meeting

How to Combine Multiple Languages. Postscript and I4W

IBM coding for the foreign letters, because no ex-
t ra transformations were then needed to process the
documents. The process itself was straightforward:
take a tfm file, convert it to a property list file (p l)
with t f top l , hand-edit the result and create the vpl
file, and finally run vptovf which gives the vf and
tfm files needed. The hand-editing could have been
done automatically, but I did not have the time (and
skill?) to construct a program to do it.

As time passed, I became aware that there is
a standard for the &bit character codes, namely
ISO8859-1 also known as Latin-1. Tor Lillqvist
(tmlat i k . v t t . f i) from the Finnish Technical Re-
search Center had created a set of virtual fonts,
Extended Computer Modern. which used this stan-
dard. Actually, these XCM fonts do not contain all
characters of Latin-1. Only the ones that can be
constructed from the accents and characters of Com-
puter Modern are i n ~ l u d e d . ~ Moreover, the letters
z, ae and fi are located in their traditional places.5
Tor had also written an Emacs Lisp macro which
extends any property list file of CM fonts to a virtual
property list file using the aforementioned XCM cod-
ing. The XCM fonts, which contain the standard font
family of TEX, are created with this program.

Mapping input to XCM. The following problem
was to remap the IBM codes to the XCM codes, but
this was easily solved by declaring the extra charac-
ters as active. For example, the following definitions
were needed for the letter a:

Later, I learned to utilize the TEX code page util-
ity (TCP) of the emw-package (Mattes, 1990), and
these kinds of macros were no longer needed.6

In 7-bit editor environments (e.g., a UNIX work-
station and Gnu Emacs) there were two possibilities.
In the first one the text is edited on a personal com-
puter and then sent to the mainframe to perform
the 'l&X-processing (and possibly other duties such
as spell-checking). The character codes are mapped
as explained above with a style file. Another possi-
bility is to write documents as usual (using accents)
on the workstation and redefine W ' s accents ac-
cording to the XCM coding, again in a separate style

The DC fonts contain a full implementation of
Latin-1.

The PostScript fonts created by af m2tf m locate
these letters similarly by default.

The code page facility of e m w can be used
to map character codes to others before they are
passed to W ' s mouth.

file. As an example, \ "a is translated t o -^e4 by
the following redefinition of the "-accent:

\gdef \"##I{%
\~f##laI"-e4)%
%slmllar \1 fJs for other
%"-accented characters
\else {\accent1'7F ##l)\f 1)

Actually, there is also a third way to write
Finnish documents. The Scandinavians are used
to replacing their national characters with letters
found on a US keyboard. For example, C stands for
a, I stands for 0, etc. There exists a Scandinavian
I 4 W , S M W , designed with this coding in mind.
Our system supports this implementation by map-
ping the SIP-TEX characters to the XCM coding via a
macro file.

Unifying PostScript and XCM. The first attempt
to unify the PostScript and XCM codings was based
on macros and character remapping: whenever Post-
Script fonts were used, each XCM code of a Scandi-
navian letter was defined to be active and mapped
to the Adobe coding. Each PostScript font family
(e.g., Times Roman) was associated with a I 4 W
environment in which this mapping took effect. In
7-bit environments the accents had to be mapped
similarly to their correct values.

Analogous to the character mappings, whenever
a transition from the usual coding to the Adobe
world was made, the \language had to be adjusted,
too. The resulting system, though working, was ap-
parently quite clumsy and ~ ~ a c e - w a s t i n ~ . ~

In order to have only one (XCM) set of hyphen-
ation patterns for each language used, the Adobe
codes had to be mapped somehow to their Latin-1
codes. The best solution was to modify afm2tfm in
such a way that it mapped the characters (above
127) in the vp l file to their XCM codes, not to the
Adobe ones. Actually, only a very slight modifi-
cation to this program was needed. It should be
noted that the latest version of af m2tf m (v7.0) (dis-
tributed with dvips v5.485 and up) allows different
encodings for PostScript fonts. However, this facil-
ity seems to be still under developement and "for
wizards only".

An Overview of the M U ! System

The MIP'I'EX system consists of the following parts:

Fortunately, the Finnish language is very or-
thogonal with regard to hyphenation: the pattern
file takes less than 4 kilobytes in ASCII. The situa-
tion is much worse for more complex languages such
as German, which needs over 40 kbytes of hyphen-
ation patterns.

TGGboat. Volume 13 (1992). No. 3 -Proceedings of the 1992 Annual Meeting

Timo Knuutila

0 files needed to create a new format,
0 I 4 m styles for multiple languages and Post-

Script fonts,
0 XCM encoded virtual fonts for Extended Com-

puter Modern and Postscript, and
0 miscellaneous utility programs and files.

The main design principle has been compatibility
with existing styles (babel, SLAW) and documents;
no changes are needed for old I 4 m documents writ-
ten in English. In addition, the dv i files for old
documents remain iden t i~a l .~

MI&= format files. The files used in the con-
struction of the M I 4 m format can be divided
in two parts: the font definition files (for NFSS)
and the files needed for hyphenation. We cur-
rently have two replacements for fontdef . tex:
f ontdef .xcm and f ontdef . x c m - ~ a u t e r . ~ They
both define a corresponding XCM font family and
shape for each CM font (excluding the symbol fonts,
of course).1° The difference between these files
is that fontdef .xcm-sauter uses true point sizes
whereas fontdef .xcm uses the traditional scalings.
For example, cmcsc20 is used instead of cmcsclO
a t 20.74pt.

The hyphenation files contain a replacement for
the master hyphenation file of LAW, lhyphen. tex,
named lhyphen .mlatex. It defines the languages
used and loads their hyphenation patterns. The
languages are named in the form l@language, e.g.,
lQengl ish, for compatibility with the babel styles.
Currently, there are patterns for English, Finnish,
German and Swedish. The pattern files are named
hyphen. engl ish, etc.

Files l a t in- I . t ex and latin-I-xcm. t ex con-
tain the definitions for the \charcode, \uccode
and \ lccode of each Latin-1 character. In the
latter file, only the characters contained in the
XCM fonts are considered. It should be noted that
l a t i n -1 . tex is of use with a n y implementation us-
ing Latin-1 encoded fonts (such as the DC fonts).
The master hyphenation file loads either one of these
files before the hyphenation patterns. Currently,
latin-1-xcm. t ex is the default. The essential con-
tents of l a t i n -1 . tex are shown below.

It would be technically easier to always use the
XCM fonts regardless of the language used, but then
we would lose this property.

Different names must be used for systems with
a restricted length for file names (e.g., MS-DOS).

lo The AMS symbol fonts, Euler fraktur fonts and
the Cyrillic fonts from the University of Washington
are declared, too. The user may comment out these
declarations in the event these fonts are not needed.

\begingroup% save counters
% Make a loop from #1 to #2,
% change case at #3.
\def\setrange#l#2#3{%

%We are in a group, hence global.
\global\catcode\isochar=ll%
\casechar=\isochar%
\ifnum\isochar<"#3% uppercase?

\advance\casechar by "20%
\global\lccode\isochar=\casechar%
\global\uccode\isochar=\isochar~

\else%
\advance\casechar by -"20%
\global\lccode\isochar=\isochar~

Style files. The styles are named multi (for mul-
tiple languages) and ps-nfss (for Postscript fonts
with NFSS). Loading the muiti style defines a
macro \ se t <language> for each language defined
in 1hyphen.mlatex1l (for example, \setswedish).
The default language is English.

Style ps-nfss provides two commands for each
Postscript font to be used - one for the declaration
and one for the actual use. Fig. 1 contains a table of
the commands currently defined.'' Each font used
in the document must be declared with a \ load com-
mand in the preamble. However, Courier and Hel-
vetica fonts are always defined, since they are com-
monly used for \tt and \ s f . For changing back to
Computer Modern, the command \computermodern
is provided.

Both the commands for changing the font fam-
ily and the language are designed to work properly
with grouping i.e., they are in effect only within the
group they are actually used. Below is an example
on the use of these styles.

l1 If the user of this system modifies the mas-
ter hyphenation file by adding and/or removing lan-
guages, the style file should be edited, too.

l2 The lengthy names have been chosen on pur-
pose in order to inhibit wild font abuse.

338 TUGboat, Volume 13 (1992). No. 3 - Procertfings of the 1992 Annual Meeting

How to Combine Multiple Languages, PostScript and I 4 m

Font family
Avantgarde
Bookman
Courier
Helvetica
NCS
Palatino
TimesRoman
ZapfChancery

Loading Using
\ loadavantgarde \avantgarde
\loadbookman \bookman

\cour ier
\he lve t i ca

\loadnewcentury \newcentury
\ loadpala t i no \pa la t ino
\loadtimesroman \t imesroman
\loadchancery \chancery

Figure 1: PostScript fonts supported by the ps-nfss
style.

\begin{document)
This t e x t i s output i n Times Roman.
{\avantgarde
This t e x t i s output i n Avantgarde.
\ s e t f i n n i s h
Here we a r e , t r y i n g t o hyphenate
Engl ish with F inn ish p a t t e r n s .
But s t i l l Avantgarde.
\computermodern
We won't g ive up t r y i n g t o hyphenate
Engl ish with F inn ish p a t t e r n s .
Extended CM is used.)
Engl ish t e x t , output i n Times Roman.
\end{document)

Font files. The fonts consist of virtual font files and
font metric files both for the extension of the stan-
dard I4w set of CM fonts and for the raw PostScript
fonts distributed with the dvips driver. The XCM
fonts contain the font families corresponding to the
CM families cmr, cmti, cmsl, cmcsc, cmbx, cmbxsl,
cmbxti, cmss, cmssbx, cmssi and cmtt with point
sizes 5-12,14,17,20 and 25. One can always create
his/her own new virtual font from an existing tfm or
afm file by using the utility programs extend-cm. el
and afm2tfm-iso described in the sequel. The tfm
and vf files for the non-raw PostScript fonts found
in the dvips package should be replaced with the
new ones.

Utility files. The following is a brief description
of the miscellaneous utility files. Some of them are
usable only with a certain style package or with a
specific T@ implementation.

mapacc.sty: A style file which redefines w ' s ac-
cents and maps them to the XCM character
codes.

afm2tfm-xcm.c: A modification of af m2tf m using
the XCM instead of the Adobe coding.

extend-cm.el: An Emacs Lisp macro package
which can be used to create an extended vpl
file from an existing pl file.

850-xcm.txt: e m m code page for the translation
from the IBM code page 850 to the XCM codes.

ibm2iso.tex: A macro file defining a mapping from
the IBM code page 850 to the XCM codes.

ml-swedish.tex: A macro file to be used with
the SWT@ package (a replacement for
swedish. tex).

ml-babel.hyphen: A multi-aware master hyphen-
ation file for use with the babel styles. A similar
ml-babel. switch is also provided.

Technicalities of the Style Files

We explain in more detail the implementation of the
most important commands of multi and ps-nfss. The
central thing is the co-operation of these styles. Be-
fore that, let us describe the stand-alone commands
of ps-nfss.

Suppose that the command

\declareQpsfont#l#2#3#4
defines the font family #I with shape #3 and se-
ries #4 by using the font metric file #2. tfm for all
standard W m magnifications. Then the macro
\declareQstd below can be used to declare all the
standard shapes and series for a usual PostScript
font.
% declare@std{f ami ly) {normal)Ci ta l ic~
% {slanted){smallcaps)Cbold)
\def\declare@std#l#2#3#4#5#6{%

\declareC!psf ont{#ll{m}{nl{#2)%
\declare@psfont{#l){rnl{it)I#3)%
\declareQpsfont{#1)Cm)Isl)C#4)%
\declare@psfont{#1)Im)Csc)I#5)%
\declareQpsfont{#l}{b}{n>{#6)%
\extra@def {#1){){))

For example, the command \loadavantgarde
is defined as follows:
\def \loadavantgarde{%

%Prevent double declaration.
\@ifundefined{ava@loaded){%

\declareQstd{ava){pagk){pagko)%
Cpagdo)Cpagkc)Cpagd)%

\def\ava@loaded{)){))

When a PostScript font is to be used, we usu-
ally set the \sf def ault to Helvetica, \ttdef ault
to Courier and bf def ault to b. l3 This is done by
macro \setQdef s. The command goQPS#l shown
below switches to a given Postscript font family:
\def\goQPS#l{%

\ l e t \ i n @ p s = l %
\def \def au l tQ f amily{#l}%
\def\rmdefault{#l)%
\set@defs%

l3 For the other default values, we use the ones
defined by NFSS.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 339

Timo Knuutila

The previous macro is then used to implement
most of the font change commands, for example:

The two styles are aware of each other by check-
ing the existence of certain macros. The style rnulti
defines a macro inQxcm, which indicates whether we
are currently using a language exploiting the XCM
fonts or not. Similarly, ps-nfss defines an indicator
inQps which tells if we are currently using a Post-
Script font family.

These flags are used in the following two situa-
tions.

1. Changing a language may cause a switch be-
tween CM and XCM, but this kind of action is not
needed when a XCM encoded Postscript font is
used. Thus, the \se t commands check whether
the ps-nfss style is loaded and, if so, the value
of inQps tells the current situation.

2. The command \computermodern switches to
CM or XCM depending on the current language.
However, if the multi style is not loaded, we al-
ways change back to CM.
The implementations of the commands

\computermodern and \se t f inn ish are given be-
low. Commands goQcmr, setQcm and setQxcm set
the default values likewise to \goQPS.
\def\setfinnish{%

\setBlanguage{\lQf innish)(2}{2}%
\let\inQxcm=l%
\Qifundefined{inQps)(\setQxcm}{%

\ifO\in@ps\setQxcm\fi}}%
\def\setenglish(%

\setQlanguage(\lQenglish){2}{3]%
\let\inQxcm=O%
\Qifundefined{inQps}~\setQcm)I%

\ifO\inQps\setQcm\fi}>%

The actual change of the language is accompa-
nied by the setting of the left and right hyphenmins
(see below). It is the author's opinion that the val-
ues 2 and 3 are not the best possible for all languages
on earth.

Conclusion

We have presented an extension of L4w capable of
handling multiple languages and Postscript fonts.
The system is compatible in many ways, and even
an English-speaking (and writing) IPQjX user might
be tempted to install and use it. This is because the
files for the XCM fonts do not take much space,14 and
the old documents do still turn into the same dvi
files they used to. Yet, changing to international
and/or Postscript is just a flip of a switch.

The development of a fast multi-lingual I4W
(M U W or not) would be much easier if we
had the capability to load hyphenation patterns
without in i tex . An even better solution would
be to precompile the patterns (something like
\dumppatt erns) and then load and unload the pre-
compiled hyphenation files dynamically. I also wish
that we could adopt the sau te r fonts as a standard
for U r n . This would make the documents look
better, and the definition and usage of all the CM
fonts could be done in an orthogonal manner.

Bibliography

Braams, Johannes. "Babel, A Multilingual Style Op-
tion for Use with I P W ' s Standard Document
Styles." TUGboat 12(2), pages 291301 , 1991.

Ferguson, Michael. "Report on Multilingual Activi-
ties." TUGboat 11(4), pages 514-516, 1990.

Knuth, Donald E. The W b o o k . 15th ed. Reading,
Mass.: Addison-Wesley, 1989.

Knuth, Donald E. "The New Versions of and
METAFONT." TUGboat 10(3), pages 325-328,
1989.

Knuth, Donald E. "Virtual Fonts: More Fun for
Grand Wizards." TUGboat 11(1), pages 13 -
23, 1990.

Malyshev, Basil, Alexander Samarin, and Dimitri
Vulis. "Russian W." TUGboat 12(2), pages
212 - 214, 1991.

Mattes, Eberhard. e r n m 3.0 User Manual. 1990.

Mittelbach, Frank, and Rainer Schopf. "A New Font
Selection Scheme for W Macro Packages-
The Basic Macros." TEX Users Group 10(2),
pages 222 - 238, 1989.

l4 The total amount of space taken is about 330
kbytes.

340 TUGboat, Volume 13 (1992). No. 3- Proceedings of the I992 Annual Meeting

Just Give Me a Lollipop (It makes my heart go giddy-up)

Victor Eij khout
Department of Computer Science
University of Tennessee at Knoxville
Knoxville TN 37996-1301
Internet: eijkhout@cs .utk. edu

Abstract

The Lollipop format is a meta-format: it does not define user macros, but it
contains the tools with which a style designer can easily implement such user
macros. This article will show some of the capabilities of Lollipop and will give
the reader a small peek behind the scenes of the implementation.

is intended to support higher-level lan-
guages for composition

Donald Knuth

Introduction

One of the reasons that 7QjX is not widely accepted
outside the scientific world is that the effort needed
to create new visual designs, or even to make mini-
mal modifications of a given design ("this article is a
bit too long, but since we have rather generous mar-
gins, why don't we put the title in the margin next to
the abstract. instead of over it") is disproportionally
large. In Eijkhout and Lenstra (1991) it was argued
that one way of solving this problem would be to
implement powerful tools that a style designer could
use to program macros without ever programming in

itself. In effect, the style designer "needs only
say what she wishes done" (Perlis) and the meta-
format creates the macros that do this. This article
describes such a meta-format: L01l i~op.~

Now, for those who wondered at the title of this
article, the first half refers to an epigram by Alan
Perlis, to be found on page 365 of The w b o o k ;
the second half derives from a sixties ditty by Mil-
lie Small. All other etymologies are erroneous, and
severely frowned upon.

The Structure of Lollipop

The Lollipop format tries to provide tools that make
programming macros as hard as using them. I will
not discuss the use of the resulting macros in detail,
but will focus on implementational matters.

Working with Lollipop. In order to process a
document in Lollipop there has to be a 'style defini-
tion' for that document. This definition, a sequence

The Lollipop format is available for anonymous
ftp from cs . u t k . edu.

of Lollipop macro calls, can be in the document it-
self, it can be \ input. or it can be contained in a for-
mat. The latter option of loading a style definition
in Lollipop and dumping the result as a new format
is encouraged for two reasons. First of all, it indi-
cates better the separation between the work of the
style designer and that of the user. Secondly - espe-
cially on old computers (say of the order of a 286) -
processing the style definition for a complicated doc-
ument can easily take one or two minutes.

The basic Lollipop macros. The Lollipop for-
mat is partly a macro collection-and some of the
more interesting utilities will be discussed below -
and partly a tool box for defining macros. The tools
are four macros for defining

headings (\Def ineHeading): the main charac-
teristics of a heading are that it has a title, and
that it should stay attached to the following
text;
lists (\Def i n e ~ i s t) : a list is characterized by
the fact that it has items;
text blocks (\Def ineTextBlock): a text block
is basically just a group, however, it is so gen-
eral that lists and headings are really special
cases of text blocks; and
page grids (\Def i nepage~ r i d) : a page grid is
(a macro that installs) an output routine.

Each of these macros2 can have a large number of
options.

An example of the use of Lollipop. Although
a large number of examples would be necessary to
give a representative sample of the possibilities of
the Lollipop tools, here is one example to give the

There is in fact a fifth macro \Define-
ExternalItem, closely related to \Def ineL is t ; it
will be treated below.

TUGboat, Volume 13 (1992), No. 3-Prcceedings of the 1992 Annual Meeting 341

Victor Eijkhout

reader the basic idea. The following macro defines
a heading \Subsect ion.
\DefineHeading:SubSection coun te r : i

whitebefore:l8pt wh i tea f te r : l5p t
Points ize:14 Sty1e:bold
b1ock:start Sectioncounter l i t e r a l : ,

Subsectioncounter l i t e r a l : .
f i l 1up to : leve l inden t t i t l e

externa1:Contents t i t l e externa1:stop
Stop

(The terms 'block', 'external ' , et cetera, are called
'options'.) This definition specifies that subsections
have a counter that counts in lowercase roman nu-
merals, that there should be a certain amount of
white sfiace above and below it, and that it should
be formatted in 14 point bold as the section counter,
a comma, the subsection counter, a full stop, filling
these counters up to the \ level indent width (to
be explained below), and following this by the ti-
tle. Also it specifies that the title should go to the
contents file.

This macro \Def ineHeading must be a pretty
complicated object, don't you think? Well, here is
the full def in i t i~n:~

where the auxiliary macro \csarg is defined as

Definition of the \Define macros. Since
the \Def ine.. . macros are so much alike-
many options are common to all of them I let
all of them be defined automatically by the
same macro \@Genericconstruct . This defines
\Def ineHeading as a macro that will process a list
of options (this part contains the common work for
all constructs), and then call \@Def ineHeading to
do the actual definition.

A call \DefineHeading:Section will expand
first of all to a call
\def\@nameCSection)
-4s can be seen in the example above, this macro is
then used to define \Section with an \edef. This

Several pieces of code in this article have been
simplified. Others however, such as the following,
have been left intact to convey to the reader the
idea that Lollipop is a sophisticated format.

\edef unpacks the token list \@main@option@list
that has been constructed during option processing.
Also, the macros \@GEN@OPEN and \@GEN@CLOSE con-
tain lots of conditionals that may or may not cause
code to be included in the definition of \Section de-
pending on values of parameters that were set during
option processing. This is explained further below.

Options. Clearly, a large responsibility rests on
processing the options. For instance, in the ex-
ample above the option 'counter' has to allo-
cate the appropriate counter, but also set the test
\has@countertrue.

Options can be general, such as the 'counter'
option (here \xp is \expandafter):

\@GenericOption{counter){\has@counteryes
\NewCounter:\Qname
\xp\add@mark@item\xp{\Qname Counter)

or they can be specific, such as the option controlling
white space between items in a list:

\@ListOption{whitebetween){)
Generic options are defined as follows:

\def\@GenericOption#l{
\append@to@list

{@GenericOptions){\\#I;)
\csarg\def{Opt ion@#l)##2)

for instance, for 'counter' a macro \Option-
@counter is defined. The definition

\@GenericConstruct{List)

causes the definition of \ Q L i s t Opt ion:

\def\@GenericConstruct#lC
\csarg\def {@#lOption)##I%

~\csarg\def{#l@##l)####l####2}

so that the 'whitebetween' option causes the defi-
nition of a macro \@List@whitebetween.

Now let's say we are defining a heading, and
we find the option .foe'. We then check whether a
macro \Heading@f oo is defined. If so, we execute it;
if not we check for the existence of a more general
macro \Option@f oo. This is executed if it exists,
and if it doesn't, we check whether \f oo is a defined
control sequence. If it is, we include the command
\foo in the \@main@options@list, so that it will
later be part of the definition of the heading we are
defining; if it is not, we generate an error message.

The Basic Tools

In this section I will give a short overview of the
capabilities of the four basic macros. First the block

TUGboat, Volume 13 (1992), No. 3- Proceedings of t,he 1992 Annual Meeting

Just Give Me a Lollipop (It makes my heart go giddy-up)

structure macros used in all of them are explained
briefly.

Block structure. Text blocks and lists are obvious
candidates for environment macros that do group-
ing, so that values of \ l e f t sk ip , \par indent, and
whatever more can stay local. As I've argued in (Ei-
jkhout, 1990) such macros can also handle spacing
above and below the environment. Thus, Lollipop
has two macros

that induce grouping, and that perform the various
actions needed at the boundaries of an environment.
This also includes such common actions as handling
counters and titles, placing marks, and defining la-
bels for symbolic referencing.

For instance, if the macro currently being de-
fined (if this is \Sect ion, the macro \@name has that
value) has a counter, that should be incremented.
Therefore the macro \@GEN@OPEN contains a line

Recall that these macros are called inside an \edef,
so \Sect ion macro contains the line

only if the macro has indeed a counter.
In general, a macro \foo opening the en-

vironment will contain the code generated by
\@genQopen, while a corresponding command
\f oostop contains the \Qgen@close code.

Headings: Maybe somewhat surprisingly, a head-
ing can be considered as an environment,
namely as one where the heading command con-
tains both the opening and closing commands
of the environment. Titles are treated below.

Text blocks: Text blocks are environments that
can span several paragraphs. They have ex-
plicit open and close commands. Text blocks
are, for instance, a way of having a chunk of
text be indented and perhaps labeled. As an
example, here is the specification of the exam-
ples in Q + X by Topic (Eijkhout, 1992): they are
indented, and the word 'Example' is set in italic
over them.

\Def ineTextBlock: example
breakbefore:500 b reaka f t e r : l
PushListLevel
noindent begingroup S t y 1 e : i t a l i c

1iteral:Example endgroup
par nobreak 1ndent:no
t ex t
Stop

The option ' tex t ' indicates where the text of
the block fits in the specification. Any options
appearing after this option will result in code
in the macro that closes the environment. For
instance, here is a possible way of defining left-
aligning display equations:

\DefineTextBlock:DisplayEq
whitebefore:abovedisplayskip
whiteafter:belowdisplayskip
white1eft : level indent
l i t e r a l : $ d isp laysty le t e x t
l i t e r a l : $
Stop

The closing macro will be defined as

\def\DisplayEqstopC . . .
$
\endgroup . . .

where the dollar corresponds to the one after
the ' tex t ' option.

Lists: The main point of interest about lists is the
formatting of the item labels. The two main
choices are

i t em: l e f t . . . i tem:stop

for left-aligning, and

i tem:r ight . . . i tem:stop

for right-aligning labels. The label can for
instance contain an 'itemCounter'. or an
'itemsign', or even both. The item sign and
the representation of the item counter are de-
pendent on the level, and can be set by the
designer.

An interesting option is 'descr ipt ion' . If
this option is used, all text following \ i tem to
the end of line will be taken as the label text.
The IPw style description list can be imple-
mented as

i t em: l e f t Sty1e:bold
descr ip t ion Spaces : 2
i tem: s top

which is used as

\ i tem The l abe l
and the next l i n e i s again normal

Abbreviated closing: Both lists and text blocks
have an explicit closing command. Since such
phenomena are properly nested. the format can
very well figure out what to close if I tell it to

TUGboat, Volume 13 (1992). No. 3-Proceedings of tlw 1992 Anrn~al hlccting 343

Victor Eijkhout

close the current block. Therefore, the macro
\> closes whatever list or text block is opened
last, and \>I closes all lists and text blocks that
are currently open.

Page grids: Definition of output routines is much
easier in Lollipop than in plain m, but still
it is the hardest part of working with Lollipop.
Hence I will not go into full detail.

The most important option for page grids is
'text'. It indicates that a page will use part
of \box255. If this option does not appear, we
are defining an output routine that does not use
\box255. For such output routines the option
\nextpagegrid is crucial: it tells what
output routine to take when the current one
has output a page.

For instance, if left and right hand pages have
a different layout, we could implement them as
separate output routines:

\DefinePageGrid:leftpage
nextpagegrid:rightpage

The 'text' option usually appears inside

band: start text band: end

and it can occur several times there. For in-
stance

band: start text
white:20pt text
band: stop

defines a two column layout with a gutter width
of 20 point.

Some of the options for page grid (height and
width for instance) have a global significance,
but for others it is recorded whether they ap-
pear before or after the 'text' options. Depend-
ing on this, they become part of the header or
the footer of the page.

When the output routine is invoked, Lollipop
assembles any header or footer, and computes
the remaining space for text. If this is not equal
to the size of \box255, \vsize is reset, and
\box255 is thrown back to the main vertical
list. This mechanism is an easy way to get pages
with the same size if the size of the header or
footer can vary.

Definition of output routines is in fact so easy
in Lollipop that for title pages of chapters it is
easier to write a special page grid, than to mess
around with a lot of macros. Thus the line

\Chapter The second chapter\par

may look to the user as calling a macro, whereas
in fact it installs a new output routine for the
chapter title page. The way the title is handled
is explained below.

Titles and References

The perceptive reader may have noticed in the defi-
nition of \Def ineHeading above that the macro de-
fined is not declared with a parameter. How then
are titles handled?

Well' since in Lollipop not only headings, but
also lists, text blocks, and page grids can have ti-
tles (but need not; every once in a while a head-
ing without a title can be convenient, and output
routines with titles are surprisingly useful, as I in-
dicated above), the option 'title' controls whether
a construct actually has a title by setting a switch
\ifhas@title to true. Definition of the actual
heading macro then executes a line

\if has@% it le \QTitelize(\@name)\f i

where \QTitelize is a macro that takes a macro,
and redefines it with an argument.

This redefinition trick can even be performed
twice: if the macro has a counter, this should be ref-
erenceable. For some reason I decided against the
I4m approach of using \label commands: any
command that can be referenced in Lollipop4 ac-
cepts an optional parameter with the label key. For
instance
\Section Cdef inition: section] Notations

and Definitions\par

gives the key 'definition: sect ion' to a section.

Indentation Levels

If lists of various types are used in a nested fash-
ion, each next level is indented with respect to the
previous one by a certain amount. Specifying these
amounts can be done quite flexibly in Lollipop, and
it is also made easy for the designer to have other in-
dented material line up with these implied left mar-
gins (Braahms, Eijkhout and Poppelier, 1989).

On each level, a control sequence \levelindent
indicates the amount by which the next level will be
indented. Thus, letting \parindent be set equal to
\levelindent at the start of a text block, will give
nicely aligning indentations no matter at what level
the block appears.

Not explained in this article is that the way
something is referenced is also easily determined by
the user. This makes it possible for instance to refer
to chapters by name instead of by number.

344 TUGboat, Volurne 13 (1992)' No. 3 Procwciiiigs of' t,hc 1992 Almual Meeting

Just Give Me a Lollipop (It makes my heart go giddy-up)

The value of \levelindent is determined by
looking at the level number (say that this is 3), and
checking whether a macro \levelindent i ii exists.
If so, the value of this is taken, if not, some default
fraction of the value of \basicindent is taken. The
style designer can set this \basicindent, and adjust
individual levels by

or similar calls.
Lists are indented to the next level automati-

cally, but in order to provide this functionality for
other objects there exists an explicit

command. There is even a \PopListLevel com-
mand that has various uses. For instance, it can be
used to realise 'suspended lists': the effect of

\item Some text\par
(\PopListLevel
\noindent Some text.\parl
\item Again an item

is that the 'some text' aligns with the text outside
the list, instead of with the items in the list.

Popping and pushing list levels is also essential
for correct formatting of external files; see below.

Marks
W ' s marks are a means of communication between
routines that supply certain information (values of
counters, titles), and the output routine. Since there
is no way for the output routine to tell the rest of the
macros which ones should pass information through
marks, in Lollipop everyone puts their information
(that is, titles and counter values) in marks. The
output routine then selects with a simple call, for
instance

the value of \SectionTitle in the \botmark.
Let's look at the implementation of this. There

is a list \markQitems that has the names of every-
thing that goes in a mark. For instance, defining a
heading \Sect ion causes calls

These allocate token lists

which are to contain the title and the counter value,
and which get their value from a command such as

\refresh@mark@item
(SectionTitle){The title)

whenever \Section is called. Everytime a mark
item is refreshed, a new mark is placed on the
page which contains the values of all mark token
lists. The output routine then simply picks from
this structure whatever information it needs.

External Files

Formats such as I P W usually supply facilities for
a table of contents, and maybe lists of figures and
tables, but what if an author needs in addition a list
of notations, one of definitions, and one of authors
referenced? Lollipop takes the drastic approach, and
provides none of these.

But it makes it easy for you to define them your-
self.

User interface. An external file is characterized
by in an internal name, and a file name extension:
\DefineExternalFile:Contents=toc
This command does some initialization such as a
call to \newwrite. and it creates a switch so that
the user can specify with
\WriteContents:no
that the file is not to be overwritten in this run. A
global switch
\WriteExtern:no
prohibits all external writes.

Next, commands such as \Section have to
specify that they want to write out information.
This is done with the option 'external'. Usually,
all that is written out is the title

externa1:contents title externa1:stop
but other information can be written out too.

The hard part about external files is specifying
how their information is to be typeset. Telling that
a file needs to be loaded is simple:
\LoadExternalFile:Contents

For every command that writes information to an
external file, the style definition needs to contain a
call
\DefineExternalItem:Section file:Contents

item:left Sty1e:roman SectionLabel
item:stop

title Spaces:2 Sty1e:italic Page
Stop

where .SectionLabel' is the counter that was writ-
ten out automatically for \Section. and 'title'
is whatever information was specified with the
'external' option.

In effect. this defines the layout of a list that
has only one item. Now we see another use for push-
ing indentation levels: contents items for subsections

TUGboat. Volume 13 (1992), No. 3Proc .e rd inqs of the 1992 Annual Meeting 345

Victor Eijkhout

may need to be indented, but since they are a sep-
arate list on the outer level, we need to push them
explicitly to the correct indentation:

\DefineExternalItem:SubSection
file:Contents
PushIndentLevel Sty1e:roman
item:right SectionLabel literal:.

SubSectionLabel Spaces:l item:stop
title Spaces:2 Sty1e:italic Page
Stop

Note that a composite label is made here out of the
section and subsection numbers.

Implementation. External files are handled in
much the same way they are treated in I4': all
information is written to the main auxiliary file, and
this is loaded at the end of the run, in order to up-
date the other external files.

Writing out titles and such means that these
are subject to the usual expansion of \write. The
I4m approach of letting the user put \protect
commands has proved over time to be too error-
prone, so I've decided to inhibit all expansion in
titles.

Extendability of Lollipop

For each macro package, the question comes up 'but
what if I want something that it cannot do?' The op-
tion mechanism of Lolipop can cope with this quite
easily. Any option that is undefined is interpreted
as a control sequence. Thus the style designer can
incorporate arbitrary macros.

For instance, the title pages of T&$ by
Topic (Eijkhout, 1992) have quite elaborate head-
ings, for which I programmed a separate macro
\ChapterHead, which uses the (automatically gen-
erated) macro \ChapterTitle.

\def \ChapterHead
C\hbox(. . .

\PointSize:24 \Style:roman
\Chapt erTitle

. . .)
The macro \Chapter then uses this \ChapterHead:

\DefinePageGrid:Chapter
NextPageGrid:textpage HasTit1e:yes
. . .
Chapt erHead
. . . Stop

The undefined option 'ChapterHead' generates a call
to the macro \ChapterHead.

Goodies

It goes without saying that Lollipop has a sophisti-
cated font selection scheme, a verbatim mode, and
other assorted niceties. However, since these facili-
ties are rather pedestrian, if rather useful, I will not
discuss them here.

Conclusion

Lollipop is a long, complicated format. An arti-
cle about it can only give a taste of its philosophy.
I hope this piece has given the reader an idea of how
macros can be generated automatically, according
to the wishes of a style designer. People wanting to
use Lollipop can get the software and a user's guide;
people wanting to understand it will, for a while,
have only this article and the code to go on.

As yet there is no real experience with Lollipop.
I have used it myself for two books, but I am the au-
thor. I find it very easy to use, but if something goes
wrong the errors can be mystifying in the e ~ t r e m e . ~
Error messages are still a major concern. Recall that
macros are automatically defined and redefined, by
macros that are themselves never explicitly defined.
Still, I hope that the dynamic approach will catch
enough user mistakes already in the definition stage
for this format to be of value to non-Wnicians
wishing to use 'I$$.

Bibliography

Braams, Johannes, Victor Eijkhout, and Nico Pop-
pelier, "The development of national I P '
styles", TUGboat, 10(3), pages 401 -406, 1989.

Eijkhout, Victor, "A paragraph skip scheme", TUG-
boat, 11(4), pages 616-619, 1990.

Eijkhout, Victor, T&X by Topic, Addison-Wesley,
1992.

Eijkhout, Victor and Andries Lenstra. "The docu-
ment style designer as a separate entity" , TUG-
boat, 12(1), pages 31-34, 1991.

Perlis, Alan, "Epigrams on Programming", A CM
Sigplan Notices, 1 7 (9), pages 7 - 13, 1982.

And the macros themselves can become pretty
big. While debugging, I discovered that TEX will
'only' \show the first 1000 characters of a macro.. .

TUGl)o i~ t , Volll~ric. 13 (1992), No. 3 - Proceediugs of the 1992 Annual Meeting

F o i l m , A Urn- l i ke System for Typesetting Foils

James L. Hafner
IBM Research Division
Almaden Research Center, K53/802
650 Harry Road
San Jose, CA 95120-6099
Internet: hafneroalmaden. i b m . com

Abstract

F o i l m is a L4m-like system for typesetting foils. Its features include simplicity
of use, compatibility with I P m , large sans serif font as default, extra macros
to start foils with bold headings and special mechanisms to control the footer
and header. There are also facilities incorporated into F o i l m , when used with
compatible drivers, for one-pass multi-color printing. This article describes the
basic features and components of F o i l m .

The system F o i l m for typesetting foils with
TEX is a IPm- l ike system designed with a num-
ber of goals in mind. The first was simplicity for
the user and, in conjunction with this, compatibility
with I 4 w . It was part of the design plan that one
could take an article written in I P W , delete large
sections of the text and with minor modifications
make foils from this. One of the special features that
was incorporated into F o i l m , in conjunction with
some output drivers, was the ability to get one-pass,
multi-color output. In this article, we will describe
the basic features of F o i l w , how some of the fea-
tures were implemented and some aspects of the use
of color.

We should mention that "foils" is an IBMism
for transparencies or slides, in the sense of SLITEX.
F o i l m then is intended for preparation of video
materials for talks or other presentations (includ-
ing poster boards). In testing within IBM, F o i l m
has been used to prepare transparencies for over-
head projectors, 35mm slides and even materials for
teleconferencing.

The F o i l w Package

In the first column, the first two files are the
heart of F o i l m . The file f I t p l a i n . t ex defines the
basic set of macros (and includes a request to input
l a t ex . tex) and the second defines all the fonts used
by F o i l m . These are used to build a format (.fmt)
file.

We remark that F o i l m was built in the form
of a format file primarily because the basic font set
used is very different from either I 4 m or S L ~ .
For example, unlike I 4 m , F o i l w does not load
any font smaller than 12pt and unlike S L ~ , it uses
scaled lOpt fonts rather than scaled 8pt fonts. It also
has fonts available at larger point sizes than both of
these other packages. Consequently, to achieve the
same effect simply with style files would force almost
doubling the preloaded fonts and the redefining of a
large collection of macros. It was more efficient and
simplier to create a new format file.

The next group of files in the first column are
the style files that are used with Fo i lW. f o i l s . s t y
is the basic style file used for all foils. The other . s t y
files are used to change default font sizes. See the
sections on the \documentstyle command and on
fonts for more information about these files. There

The basic ~~ilm package consists of the following is no f o i l s .doc file because the . s t y file is already

files on top of the basic implementation of I P m . documented.
In the second column, fo i ldoc . t ex is the

f l t p l a i n . t e x f o i l doc . t ex source for the documentation which gives more de-
f l t f o n t s . t e x sampfoi l . tex tails about the use and installation of Fo i lW . -

sampf o i l . t ex is a fairly detailed sample foils docu-
f o i l s . s t y colordvi . Ctex, s ty] ment .
f o i l l i ' . s t y blackdvi . [tex , sty] When F o i l m was conceived, a suggestion was
f o i l 20 . s t y made to add one-pass color printing capability. This
f o i l 25 . s t y f o i l f o n t . t e x is more related to drivers, but we developed a de-
f o i l 3 0 . s t y vice independent (but driver dependent) scheme for

TUGboat, Volume 13 (1992), No. 3P roceed ings of the 1992 Annual Meeting 347

James L. Hafner

doing this. The necessary files are included in
this package. The files co lordv i . [t ex ,s ty l and
blackdvi . [t ex, s t y] contain device-independent
macros for using color in F o i l w (or any other m).
The . t e x and . s t y files are identical.

Finally, the file f o i l f o n t . t e x is a F o i l w file
which can be used to test an installation's font avail-
ability.

There are other files in the FoilTjjX package that
we have not listed here. For example, there are
system dependent scripts for invoking F o i l m and
some on-line manual or help files. There are also
some files for substituting Postscript fonts for the
CM fonts or for using some AMS-m fonts, msam,
msbm and eufm, with automatic scaling. These will
not be described here.

The \documentstyle Command

To create a F o i l m document, the user edits a file
very much like a I4m file. Instead of the stan-
dard I P W options specified in the \documentstyle
command, they would use

\documentstyle Copts1 { f o i l s)

Here, the opts list can include any style option that
one would normally use (and that doesn't corrupt
any macros defined by f o i l s . s t y) .

By default, f o i l s . s t y loads f o i l 20 . s t y and
sets up the normal size fonts at 20pt. Analogous
to U w ' s l l p t and 12pt style options, Foil'I]EX has
25pt, 30pt and 17pt options. For example, to make
normal size at 25pt the command

\documentstyle C25pt, opts1 { f o i l s)

will do the trick. Contrary to U m , the default
20pt zs an acceptable option. though it is redun-
dant.

The Basic Features

The current version of FoilQjX has the following
built-in features. The first is that the basic fonts
are in large size, approximately 20pt, (so you do
not need to do fontsize changing to get large type).
The default font is also sans serif as this look better
on foils than serif fonts like roman. We have im-
plemented U w ' s font and font size changing com-
mands, relative to this default. More information
about fonts and fontsize changing commands can be
found in the section "Fonts and Their Sizes".

In spite of the fact that the basic font is sans
serif, the numerals and other symbols from the ro-
man font used in math mode are still in the roman
font. Thus mathematics will look exactly the same

as in IPw (only larger) but numerals in text will
appear in sans serif.

In addition, almost all IPW macros are avail-
able including automatic referencing and citation,
table of contents, footnotes, and itemize (which will
probably be very popular for foils). The user is not
expected to have to do anything to control font types
or size changing, except as might be expected in a
typical UTpX document.

The following subsections describe a number of
additional macros and features that have been de-
fined to make foilmaking easier. In the appendix
is a small sample foil document in F o i l m source
and final output form to demonstrate the simplic-
ity and the beauty of the output. In the final few
subsections of this section we mention a few of the
differences between F o i l W and U W / S L ~ .

The \maket i t l e command. The use of F o i l w ' s
\maket i t le command is the same as for IPW.
That is, it reads the contents of \ t i t l e {) ,
\author(), etc., and produces a titlepage, actually
a title foil. The title itself appears centered and
down a small space from the top, in a \Large bold
sans serif font. The author's name with address
and date appear under the title, centered and in the
\normalsize font. If desired. this can be followed
by a (necessarily short) abstract with the word "Ab-
stract" appearing in bold and centered above the
text of the abstract. See the appendix for a sample.
The footer of the title page will contain some special
text. See the section on \MyLogo for more details.

The new \f o i lhead macro. The first new macro
is called \f oi lhead. Its use is described by

\f oilheadClength] {text)

This macro starts a new page and puts text in
\ l a r g e bold type at the top center of the new page.
After the header, a vertical space of approximately
1.0 inch is added providing an automatic cushion
between the header and the body of the foil. This
vertical space can be adjusted either up or down by
putting in the optional argument a W length. For
example, if the body of the foil should sit closer to
the header, the command

\f oi lhead[- . Sin] {This i s t h e Header)

would suffice.
This macro should be used to start any new foil,

especially if a new heading is needed. If too much
text is intended for a single foil, F o i l m will do its
own page break. This could cause some odd vertical
spacing since there is a fair amount of stretchability
in vertical glue, particularly in list environments.

348 TUGboat, Volume 13 (1992), No. 3- Proceedings of the 1992 Annual Meeting

This can easily be fixed simply by forcing a page
break with an empty \f oilhead{) command.

The new \MyLogo and \Res t r i c t ion macros.
Another new pair of macros, \MyLogo and
\Rest r ic t ion, each of which takes a single argu-
ment, are used to control the contents of part of
the footline. By default, the footline consists of
the contents of \MyLogo followed by the contents
of \Rest r ic t ion both left justified, with the page
number right justified1. On the main foils, the
default font size is \ t iny . The contents of these
macros can be an empty box as well. By default,
\Rest r ic t ion is empty and \MyLogo is the phrase
"- Typeset by F o i l w -" .

The declarations for these macros would nor-
mally be placed in the preamble to the document;
i.e., before the \begin{document> command. How-
ever, these macros can be declared or redeclared at
any place in the document. They (and all the other
commands that control the footer and header) are
sensitive to F o i l w ' s output routine, which is essen-
tially unchanged from I 4 w ' s . Consequently, care
must be taken in their placement to be sure they
act on the correct pages. In the preamble or imme-
diately after the \ fo i lhead command are best. In
addition, there are macro switches that can be used
to easily turn on or off the logo, without having to
do any redeclarations.

\MyLogo is really intended for something id-
iosyncratic to the speaker or his organization.
\Res t r i c t ion was included in case you want to have
each foil identified for a particular audience. For ex-
ample, at IBM, we have the option of displaying the
IBM logo and words like "Confidential" or "Internal
Use Only". The defaults are set in f o i l s . s ty .

The other three corners of the page. Since the
macros \Res t r i c t ion and \MyLogo control the bot-
tom left corner of the page, there are other macros
for putting text in the other three corners. These
are, not surprisingly,

They each take one argument, the text you want
to place in the associated corner of the page. These
can also be redeclared within the document with the
appropriate attention paid to the output routine.

By default the headers are empty and the lower
right footer is just the page number:

For the title foil, there is no page number;
\MyLogo and \Rest r ic t ion are centered and ap-
pear in \ footnotesize font.

\rightheader{>
\ leftheader{>
\rightfooter{\quad{\sf\thepage))

except on the title page where they are all sup-
pressed. You can easily suppress page numbering
by declaring \ r igh t f ooterC).

We did not add macros for centering text in
the header or footer because we felt this simply add
unnecessary clutter to the foils.

New Theorem and Proof environments. There
are a number of (both starred and unstarred)
\newtheorem environments built in. These are
for Theorem, Lemma, Corollary, Proposi t ion and
Def ini t ion. Note the uppercased first letter (to
avoid possible collisions with user-defined environ-
ments of this type). Each must begin and end with
\begin and \end commands as usual. Their text be-
gins with a bold sans serif label like Theorem and
the content of each is typeset in slanted sans serif
The unstarred forms are sequentially numbered and
support automatic referencing. The starred forms
suppress the numbering and referencing.

There is a Proof environment which opens with
the word Proof and ends with a 0. The contents are
printed in the normal font.

Mathematics in bold typeface. F o i l w uses a
modified form of U w ' s font definitions for bold
typefaced mathematics. In particular, a \bf com-
mand in math mode will switch to a bold sans
serif font (probably not desirable in mathematics
since the rest of mathematics is in serifed fonts).
In F o i l w , U r n ' s \boldmath command has been
modified also. Here, characters from the roman font
are emboldened by switching to the bold roman font
(cmbx family), not the bold math symbol font as in
U r n .

To make using bold mathematics easier some
new macros have been defined. The first is

\bm{formula)

This takes its argument (within mathematics mode)
and replaces it with the emboldened version. Un-
fortunately, it acts a little funny on characters like
summation signs and in super- or subscripts since
it reverts to W ' s text style (style T) first. Conse-
quently. this command should be used primarily on
individual characters or small parts of formulas.

The second method for getting bold mathemat-
ics is a pair of environments

\begin{boldequat ion)
formula (number)
\end{boldequation}

TUGboat, Volume 13 (1992). No. 3-Proceedings of the 1992 Ai111l1;tl Mcctiiig

James L. Hafner

\begin{boldequat ion*)
formula
\end{boldequation*)

They both set formula in bold (except for super- and
subscripts). The unstarred form has automatic ref-
erencing and is numbered; the starred form inhibits
the numbering and referencing.

The limitation on the super- and subscripts not
appearing in bold face is strictly to limit the number
of fonts loaded by F o i l w . It was felt this bold math
feature would have limited use and so it is not fully
supported. It could easily be extended if there is
sufficient demand.

List environments. The vertical spacing of items
in list environments is controlled by exactly the same
mechanisms as in I P W . We have set the defaults,
however, so that at the highest level there is a fair
amount of vertical space, but at lower levels this
shrinks to nothing. This seemed to produce the best
and most pleasing results, at least to the author's
personal taste.

This is not P W . At the heart of F o i l w is a
format file. Consequently, there is usually a sys-
tem dependent exec (or script or batch program)
which calls the main lJjX program with the nec-
essary F o i l w format file, f l t p l a i n . f mt. Test-
ing showed that users (especially hard-core I 4 W
users) tended to run I P w instead out of habit.
As a result, a special feature was implemented in
which, if I 4 m is called on a F o i l m file, the user
is prompted with a warning and given a choice of
continuing with some unpredictable consequences or
aborting.

Differences with MQijX. One simple difference
is that the IPlJjX command \em switches from any
unslanted font to slanted sans serif and from any
slanted font to unslanted sans serif, not to text italics
and roman, respectively.

Unlike m / I P W , numerals in F o i l W look
different when they are in ordinary text from when
they are in math-mode. This means that 12345 in
text will print as 12345 and 12345 prints as 12345.

Hyphenation has been eliminated from F o i l w .
It was felt that this improves readability. Because
of this, F o i l w might have problems fitting things
nicely on a line. Overfull and underfull \hboxes
might occur more often than in I P m but the tol-
erances are set to reduce their frequency. Since the
fonts are so large, F o i l w can be more tolerant of
white space without being unaesthetic. If they do
occur with no obvious fix, a discretionary hyphen
strategically placed can resolve the problem.

Some user's felt that \ raggedright is prefer-
able for foils. It was decided not to make this the
default, but to leave this to the user's discretion.

The following features of I P m have been dis-
abled in Foil'I'@ because they seemed unnecessary.
They can easily be added if there is sufficient de-
mand: lists of figures, indexing, glossary.

Major differences with S L ~ . There are many
differences between S L ~ and Foil=. The most
glaring feature not supported in Foil= is invisible
fonts. Also, as indicated in Table 1, \ r m and \sf do
what you expect, that is switch to roman and sans
serif, respectively. In S L ~ , they reverse roles.

The basic features: future versions. A possible
new feature might be an automatically-generated
"Summary of the Talk", akin to a table of contents,
where the user could tag some of the \ fo i lhead
macros and have them collected in a special foil fol-
lowing the title foil.

Fonts and Their Sizes

As noted earlier. the default font at \normalsize is

a sa n S serif font at size 20pt, unless one of
the C17pt1, C25pt1, or C30ptl options have been
declared in the \documentstyle command. Table 1
shows the control sequences for other accessible text
fonts and the name of the font in a sample of its type.
These control sequences give the font at the current
size. Font size changing commands for each of the
normal point size options are described by Table 2.
Note that \bf and \ s l yield sans serif fonts, not the
usual variations on roman.

Mathematics is also automatically displayed at
normal size unless magnified by a size changing dec-
laration. Table 3 describes the font point sizes for
W ' s mathematics styles at each of the normal
point size options. F o i l w loads or knows about
enough fonts, particularly symbol fonts, that there
should never be a discrepancy between the size of
text and mathematics at any of the different sizes
(unlike I P W where some fonts at xxvpt are actu-
ally only 20pt fonts).

Since many of FoillJjX1s fonts are not in the
standard distribution, and so not available on most
systems, the installer will probably have to run
METAFONT to generate the necessary files. The file
f o i l f ont . t ex requires a sample of every preloaded
or load-on-demand font and so can be used to test
an installation's font availability. (Some drivers, like
Tom Rokicki's dvips program, will generate all the
missing fonts just by trying to process this file.)

350 TUGboat, Volume 13 (19921, No. 3 -Proceedings of the 1992 Annual Meeting

The I4w circle and line fonts have been
preloaded at magstep4 so that small I P ' pictures
should scale naturally to a foil.

Table 1: Available fonts and their names.

command font names

Table 2: Type sizes for F o i l w size-changing com-
mands for the different documentstyle options.

\sf
\it
\sl
\bf
\tt
\rm
\sc

Table 3: Mathematics type styles and their point
sizes at \normalsize for the different documentstyle
options.

Sans Serif
Text Italic

Slanted Sans Serif
Bold Sans Serif

Typewriter
Roman

SMALL CAPS

Making Color Foils

, , ,

‘9,s'
SS, Ss '

This feature is still in the development stage and
is very device-driver dependent. This last problem
is regrettable because it severely limits portability,
but this cannot be helped at the moment because
7&X was not designed with color in mind. In any
case, what we have incorporated into F o i l w are
sets of macros which are device independent. They
of course use w ' s \special command, but do not

use any syntax that is dependent on the physical de-
vice or output data stream. In this way, it is hoped
that more drivers can take advantage of the same
set of macros for color printing or display. The only
drivers we are aware of that fully support the macros
we provide here are Tom Rokicki's dvips program
(version 5.478 or later) and W v i e w o n the NeXT.
In the next few sections we will describe this imple-
mentation of color.

One other comment: these color macros are not
necessarily limited to F o i l w but can run under any
other m. However there are subtleties about how
footlines, headlines, and other special regions of the
text will handle the color changes. For very suc-
cessful use, some macros need to be modified with
implied color. We have not tested this explicitly but
foresee no special difficulties (provided the driver op-
erates compatibly). The relevant macros in F o i l w
already have these features built in. For example,
the footer and header macros wrap everything in
\Black so colors in the text that cross a page bound-
ary will not affect these regions.

14pt
12pt

The style file colordvi .sty and dvips. As we
see it, the "right" way to use color in Foil'
(or other W) files is with the colordvi.sty
file. These macros can be included in F o i l w ,
for example, by simply adding colordvi to the
\document style command:

\documentstyle[colordvi]~foils)

(In m s that don't have documentstyles, the appro-
priate \input command will work as well.) This file
defines all the color macros using ''s \special
command. The internal syntax has forms like

\special{color push Red)
Nested Red text.
\special{color pop)

\special{color Blue)
Base color now Blue.

depending on whether this is nested color or global
color changes (see the section on color macros).
Consequently, the driver must be able to recognize
the \special keyword color and process something
to the output file that signals the color change,
tracking the nesting level, etc. It is also impor-
tant that the driver be able to track the color state
across page boundaries or any other boundary where
the output state can change. The driver should ide-
ally also produce output where each page has self-
contained color state information, so that pages can
be printed in different orders, or by selected pages.

An additional macro in colordvi .ps can be
used to set the background color. For this macro,

12pt
12pt

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 351

17pt
14pt

20pt
17pt

James L. Hafner

the driver needs to recognize the \ spec ia l keyword
background and must be able to set the specified
background color on the current page and remember
that color until changed explicitly.

Furthermore, the actual color parameters need
to be set in some device dependent way, say with a
special prolog file that defines the color Red in terms
the output device can understand, and in such a way
that the parameters are tuned to the particular de-
vice. (Each output mechanism uses different color
renditions which makes it very difficult to set a uni-
versal standard.)

For Rokicki's dvips, we have done all of the
above. There is a color prolog file which dvips in-
cludes in its header list whenever it encounters the
keywords color or background. The particular one
we wrote has the color parameters tuned to the Tek-
tronix PHASER printer. We added code to dvips to
track the color history and states during the prescan.
In this way, it can initialize the color state on each
page of the output file during the final scan. (We
should mention that our original code for dvips and
our original set of macros where greatly improved by
Tom Rokicki. We are grateful for his help and for
including these features in his driver.)

Finally, we remark that we have used the names
color and black suffixed by dvi so as not to conflict
with Leslie Lamport's color . s t y which has become
somewhat wide-spread. We chose the suffix dvi be-
cause it reflects the device independent nature of the
macros.

Printing in blacklwhite, with or without
blackdvi .sty. A F o i l w (or other w) document
written with color macros can be printed in black
and white in two ways. If the device is a black
and white version of a color device (e.g., display
or PostScript printer) then it should print in cor-
responding grey-levels. This is useful since in this
way one can get a rough idea of where the colors
are changing without using expensive color printing
devices. The second option is to replace the call to
input colordvi with blackdvi. This "black" style
file turns all the color macros into no-ops, and so
will produce normal blacklwhite printing without
the user having to ferret out the color commands.
Also, most device drivers will simply ignore the color
commands and so print in normal black and white.

The color macros: user's viewpoint. There
are two kinds of color macros, ones for local color
changes to, say, a few words or even one chara,cter
and one for global color changes. All the color names
use a mixed case scheme. There are 68 predefined
colors, with names taken primarily from the Crayola

64 crayon box, and one pair of macros for the user
to set his own color pattern. More on this extra fea-
ture later. Users can browse the file colordv i . s t y
for a list of the predefined color names.

A local color command is in the form

\ColorName{this w i l l pr in t i n color)

As this example shows, this type of command takes
one argument which is the text that is to print in
the selected color. This can be used for nested color
changes since it should restore the original color
state when it completes. For example, suppose a
user was writing in green and wanted to switch tem-
porarily to red, then blue, back to red and restore
green. Here is one way to do this:

This t ex t i s green but here we are
\Red{switching t o red,
\BlueCnesting blue) recovering the
red) and back t o o r ig ina l green.

In principle the nesting level is unlimited, but it is
not advisable to nest too deep lest one loose track
of the root color or exceeds the driver's capacity.

The global color command has the form

This macro takes no arguments and immediately
changes the default color from that point on to the
specified color. This of course can be overridden
globally by another such command or locally by lo-
cal color commands. For example, expanding on the
example above, we might have

\textGreen
This t ex t i s green but here we are
\Red{switching t o red,
\B luehes t ing b lue ,) recovering the
red) and back t o o r ig ina l green.
\textcyan
The t e x t from here on w i l l be cyan
unless \Yel low~local ly changed
t o yellow). Now we are back t o cyan.

The color commands will even work in math
mode and across math mode boundaries. This
means that a color state going into math mode will
force the mathematics to be set in that color as well.
More importantly however, in alignment environ-
ments like tabu la r and eqnarray, local color com-
mands cannot extend beyond the alignment charac-
ters.

Because local color commands respect only
some environment and deliminator changes besides
their own, care must be taken in setting their scope.
It is best not to have then stretch too far.

User definable colors. There are two ways for the
user to specify colors not already defined. For local

352 TUGboat, Volume 13 (1992), No. 3P roceed ings of the 1992 Annual Meeting

changes, there is the command \Color which takes
two arguments. The first argument is a quadruple of
numbers between zero and one and specifies the in-
tensity of cyan, magenta, yellow and black (CMYK)
in that order. The second argument is the text that
should appear in the given color. For example, if a
user wants the words "this color is pretty" to appear
in a color which is 50% cyan, 85% magenta, 40% yel-
low and 20% black, they would use the command

\ColorC.5 .85 . 4 .2){this color i s
p re t ty)
For global color changes, there is a command

\ tex tco lo r which takes one argument, the CMYK
quadruple of relative color intensities. For example,
to make the default color to be as above. then the
command

\textColor{.S .85 . 4 .2)
The t e x t from now on w i l l be t h i s
p re t t y co lor .

will suffice.
If the intended output device does not treat

color in CMYK terms, then the device driver should
convert these values to the device dependent param-
eters, e.g., RGB.

Setting the background color. There is an ad-
ditional macro for setting the background color. It
takes a single argument, which can either be one of
the predefined color names or a quadruple of CMYK
values. For example,

\background{SkyBlue)

These should appear somewhere on the page (prefer-
ably near the beginning) where the background color
is to change. The background should stay this color
until explicitly changed by another such command.
It should be remembered that the placement of this
is sensitive to the output routine.

Default color regions in F o i l w . When
colordvi . s t y is loaded by F o i l w , the default
text color is black. The footline and headline
get defaulted color values as well. So, the con-
tents of \MyLogo, \Rest r ic t ion, \ r igh t f ooter
(the page number by default), \ le f theader and
\r ightheader will all appear in Black.

Overriding the color selection for any of these
regions of the text can be done by using local color
commands in their declarations. For example. a very
sensitive talk requiring the words "Need-To-Know"
in red would use the declaration

\Restriction{\Red{Need-To-Know)}

Installing \FoilTeX

Because installations of w/IPTj$ differ so much
from system to system and even within systems, the
installation instructions here are mostly just an out-
line of the general procedure and system require-
ments.

To install F o i l w , the requirements are:

the Tj$ program, including a version of
INITEX;
I P W , any version after Nov. 89 (The con-
cern here is access to the font metrics for
l c i r c l e l 0 and lc i rc lewl0, as opposed to
c i rc le10 and circlewl0. The installer can
modify f l t f ont s . tex if necessary.); and
the METAFONT program and related tools to
generate the necessary fonts (Foil'IQX uses es-
sentially all the basic CM fonts and some addi-
tional I 4 W fonts but at magnifications equiv-
alent to \magstep6, 7 and 8.).

The installation of F o i l w then involves

generating a f l t p l a i n . fmt format file by run-
ning i n i t ex (and installing this in the appro-
priate location for the system);
testing font availability by running w with
this format against f o i l f ont . t e x and trying
to print this;
generating all the missing fonts; and
installing the various style, macro, script and
on-line help files in the appropriate location for
the system.

Acknowledgements and Requests

We would like to thank and acknowledge the fol-
lowing people in IBM for their great assistance in
helping to put F o i l w together: Katherin Hitch-
cock, Myron Flickner, Ekkehard Blanz, Melanie Ful-
gham, Peter Haas. Rocky Bernstein and the many
users who contributed their constructive comments
on the early test versions within IBM.

A special thanks goes to Tom Rokicki for im-
plementing our color setup in his driver and another
to Sheri Gish of IBM for asking the right (or was it
wrong?) question that got this project started.

F o i i m is intended to be easy to use, useful and
to produce beautiful foils. Consequently, the author
welcomes any comments or suggestions.

TUGboat; Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

James L. Hafner

Sample Foils

Below is source for a short two page sample foil that demonstrates most of the features of Foi lw: followed
by a facsimile of the output from this source.
1 0 0 0 0 0 /,/,/,/,/0/, First we load the correct style file
\documentstyleIfoils)
O O O D O O /,/,/,/,/,/, This first section is for a title page; it is typical LaTeX
\titleIRock protocols for binary quarries)
%
\author(Fred Flintstone\\
Rock Quarry Research Center)
\dateC\today)
O a I o o O /,/./,/,/,/, This next command controls part of the footline.
OPI*O, /,/,/,/,/0/0 Note the "FoilTeX" logo will print automatically.
%\yourlogo(-- Typeset by \FoilTeX\ --)

\Restriction(TUG Use Only)
%
\begin(document)
\maket itle %
\begin{abstract) This is where an abstract might go.\end{abstract)
0 0 0 0 0 1 /,/o/,/e/,/, This next command starts a new foil with header.
\foilhead(Variability of Rock quality)
%
What can we prove using only marble rocks?
0 0 0 ~ 0 0 /o/o/,/,/,/o Itemize, mathematics, auto-referencing and footnotes are built-in.
\begin{itemize)
\item $\0mega(te2)$ rocks needed \cite(rocky)\footnote(What's that?).
\item Worst case structure uses

\beginIequation) \label(equation)
0 (n+t\sqrt(t)>

\end(equat ion)
\endCitemize)
0 0 0 0 0 P / , / , / , / ,A / , Here is a sample theorem with proof.
\begin(Theorem) Everything you know about rocks is false.
\endCTheorem)
%
\beginCProof) The proof is obvious from equation (\refCequation)).
\end(Proof)
0 0 0 0 1 0 /,/0k/0/,/, Bibliographies work even with BibTeX.
\begin(thebibliography)C993
%
\bibitem(rocky> Rocky and Bullwinkle, Open problems, in (\sl Mr.
Know-it-all's Rock Encyclopedia).
%
\end(thebibliography)
\endCdocument)

TUGboat. Volume 13 11992). No. 3 Procwtiings of the 1992 Annual Meeting

Rock protocols for binary Quarries

Fred Flintstone

Rock Quarry Research Center

September 2, 1992

Abstract

This is where an abstract might go.

- Typeset by F o i l m - TUG Use Only

TUGboat, Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting

James L. Hafner

Variability of Rock Quality

What can we prove using only marble rocks?

a 0(t2) rocks needed [lll.

Worst case structure uses

O(n + t h) (1)
-

Theorem 1. Everything you know about rocks is false.

Proof. The proof is obvious from equation (1). 0

References

[I] Rocky and Bullwinkle, Open Problems, in Mr.
Know-it-all 's Rock Encyclopedia.

lVVhat1s tha t?

- Typeset by FoiiTpX - TUG Use Only 1

356 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Typesetting a Magazine the Easy Way

Peter Abbott
Information Systems
Aston University
Aston Triangle
Birmingham B4 7ET
United Kingdom
Phone: f44 (0)21 359 5492;
FAX: +44 (0)21 359 6158
Internet: p.abbottQaston.ac.uk

Abstract

'THE CORNISHMAN' is a quarterly publication in A5 format of some 56 pages
per issue. Text is mostly set in two columns with photographs and adverts which
may be column width or span two columns (at the top or bottom of a page).
During makeup it may be necessary to move photographs from the top to the
bottom of a page or vice versa. Changes have been made to the basic style file
to obtain the required text size and baseline spacing. Modifications to footnotes
coupled with multicolumn style achieves photographs at the bottom and the use of
the figure* environment at the top. Single column photographs are more difficult
to place. A number of macros have been written to automate the process as much
as possible.

Introduction

I edit and typeset a quarterly magazine, the contents
of which is text, display-adverts and photographs
(images). Currently the print run is 1750 copies
of between 52 and 64 A5 pages. The copydate is
normally one calendar month before publication.

I became the editor in the summer of 1989 when
the magazine was approximately 12-16 weeks late
with each issue, was only 44 pages and naturally
only tolerated by its readers. The editor submit-
ted handwritten or typed manuscripts to the type-
setterlprinter and had very little control over the
layout and presentation.

I agreed to take the editorship provided that:

0 I could print the magazine in house,
and

0 control the style and presentation.

In return I agreed with the GWR Ltd Board
(who publish 'The Cornishman') to:

0 eliminate the delays and PUBLISH ON
TIME (To date I have not missed a single
deadline and the March issue was 64 pages.);

0 increase the content and quality:
0 increase the photographic coverage and quality;
0 encourage the volunteers; and
0 make the publication more attractive to the

reader, and generally promote our Railway.

I have been using I4W for some time and this
seemed suitable for my needs. In 1989 I had a Mac
IIci (since then I have acquired a Mac IIfx). One
of the major problems I have encountered is storage
of data (especially images) and have found an op-
tical (multiple write) disc with 500mb cartridges a
slow but essential storage medium. Of course Post-
Script output has made my life easier (from my point
of view) in that proof copies can be printed on a
300 dpi laserwriter with camera ready copy on the
Linotronic at 1270 dpi via a RIP.

I use IPm for convenience and I am currently
using OzTeX version 1.41.

Basic Format

The magazine (called 'The Cornishman') is A5 sided
two column format.

I normally require photographs to be either sin-
gle column or full width with captions and acknowl-
edgments. I dislike (continued on page . . .) and
therefore once an article is started it must be con-
tiguous. This sometimes creates real problems in
making up the final copy. All the examples used are
from issue No. 40 which was published on 1st March
1992.

TUGboat, Volume 13 (1992). No. 3-Proceedings of the 1992 Annual Meeting

Peter Abbott

Processing Text

The magazine was produced in two column format
when under the control of the previous editor and I
therefore decided to continue with this format. The
options available are \twocolumn or the multicols
style. I selected mult icols and my standard pro-
cessing file is
\documentstyle[multicol,cornish,shadow~
,array, ifthen] {article)
\newcommand{\status){~
\setcounter{omitpic){1))
\begin{document)
\status\clearpage\input{:atext:class28)
\end{do cument)

I tried using \include but occasionally ran out
of space. It is a trivial matter to create a file in
the subdirectory atext called aaorder containing
all the input lines for an issue in the order in which
they should be processed. I can then process part
of the magazine or the whole issue (page references
do not cause problems with this method). A value
for omitpic of 0 draws a box where an image will
appear so that I can judge the overall effect before
including an image.

Changes to standard macros/styles

The normal lOpt size is too large for an A5 magazine
so I selected part of article. sty and included it in
cornish.sty
\def\@normalsize{\@setsize\normalsize(l2pt)%
\xpt\@xpt
\abovedisplayskip lOpt plus2pt minus5ptX
\belowdisplayskip \abovedisplayskip
\abovedisplayshortskip \zQ plus3pt%
\belowdisplayshortskip 6pt plus3pt
minus3pt\let\@listi\QlistI)
\def\small~\Qsetsize\small~llpt)\ixpt\@ixpt
\abovedisplayskip 8.5pt plus 3pt minus 4pt%
\belowdisplayskip \abovedisplayskip
\abovedisplayshortskip \z@ plus2ptx
\belowdisplayshortskip 4pt plus2pt minus 2pt
\def\Qlisti{\leftmargin\leftmargini %
\topsep 4pt plus 2pt minus 2pt\parsep 2pt
plus Ipt minus 1pt
\itemsep \parsep))
\def\footnotesize{\@setsize%
\footnotesize{9.5pt)\viiipt\@viiipt
\abovedisplayskip 6pt plus 2pt minus 4pt7,
\belowdisplayskip \abovedisplayskip
\abovedisplayshortskip \z@ plus 1pt%
\belowdisplayshortskip 3pt plus lpt minus 2pt
\def\@listi{\leftmargin\leftmargini %
\topsep 3pt plus lpt minus lpt\parsep 2pt
plus 1pt minus lpt
\itemsep \parsep))

\def\scriptsize{\@setsize%
\scriptsize{8pt)\viipt\@viipt)
\def\tiny{\Qsetsize\tiny{6pt)\vpt\@vpt)
\def\large<{\Qsetsize\largeC14pt)\xiipt\@xiipt)
\def\Large(\@setsize\Large{l8pt)\xivpt\Qxivpt}
\def\LARGE{\Qsetsize\LARGE{22pt)%

\xviipt\@xviipt)
\def\huge{\@setsize\huge{25pt~\xxpt\Qxxpt)
\def \Huge~\@setsize\Huge(30pt~\xxvpt\@xxvpt)

and modified some of the code (only the modified
lines are shown)
\def\Qnormalsize{\@setsize%
\normalsize{9.68pt)\ixpt\Qixpt
\def\small{\@setsize\small~pt)\viiipt\@viiipt
\def\tiny{\@setsize\tinyC7pt)\vipt\@vipt)
\def\large~\Qsetsize\large{llpt)\xpt\@xpt)
\def\Large{\Qsetsize\Large{14pt)\xiipt\@xiipt)

With an A5 format some of the spacing pro-
vided by environment changes in IPm are unac-
ceptable and therefore I have found i t necessary
to modify a number of parameters. This gives
me greater control over page layout but for larger
page sizes the default values are acceptable. I have
not included these parameters here as they are my
preferences and were arrived at by trial and er-
ror. I worked on the principle that although white
space can be used to improve output. in small for-
mats such as A5, the parameter values are too big.
There are two parameters which must be mentioned,
columnwidthandtextwidthand they are 59mmand
122.5mm. The reason for quoting these two values
becomes obvious when you see examples quoted.

My Additions

I decided to adopt a house style for the name of the
magazine 'The Cornishman' and currently have the
following macro defined.
\newcommand{\magazine)%
{{\bf\sf\mbox{'The Cornishman')))

Originally I did not have the rnbox but after a
number of issues where the word 'Cornishman' was
split over two lines of output text I added the \mbox.

Note that the use of the new font selection
scheme makes life much simpler. Before the arrival
of NFSS, inserting \sf meant that the type size in
use was lost. I found this most frustrating and con-
sequently how useful NFSS has proved.

Perhaps I should say at this point that the
macros have been in a state of development since
1989 and are not yet finalised, and I often make
minor adjustments to make my life easier. In fact.
since publishing issue 40. I have made a number of
changes to the macros and installed a new version
of multicols which Frank Mittelbach asked me to

358 TUGboat, Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Meeting

beta test. As a result of comments received from
issue No. 41, the inter-paragraph space has been re-
moved and par indent changed from zero to 5mm.

The previous editor (or printer) selected a va-
riety of styles for identifying articles. There was no
consistency in that sometimes the writer was cred-
ited and sometimes not. Some were reversed white
on black. Some titles were UPPER CASE but most
were mixed.

I selected a style of a greybox with a black line
top and bottom, either full width or column width
and the macros are therefore

where greybox and greyboxl are column width and
textwidth respectively and greybox is
72 2.54 div 72 2.54 div scale
% units are now cm instead of big points

newpath 0 -.O moveto 5.9 0 rlineto
0 1.1 rlineto

-5.9 0 rlineto

closepath %
gsave %
.75 setgray %

%
%

fill %
grestore %

complete rectangle
save current path
use very light shading
on Laserwriter
A(O=black, i=white)
paint interior of rectangle
restore current path

The macros give titles either column or text
width, with or without credit as appropriate.

Typesetting a Magazine the Easy Way

Using Macros which Exist

The magazine contains a table of contents and I de-
cided that I could use \t ableof con ten t s provided
that I removed the heading 'Contents' which is auto-
matically output. After using this for several issues
I decided that the white space to the left of the title
produced when using tab leof con ten ts was spoil-
ing the appearance of the column and I never num-
bered articles.

I preferred the contents to neatly fill the column
widthwise. I therefore extracted the relevant code
from a r t i c l e . s t y and inserted into c o r n i s h . s t y
\def \ tab leofcontents{%\sect ion*~NTENTS%

%\@mkboth{CONTENTS}(cONTENTS))
% NOTE THE % IN THE PREVIOUS TWO LINES
\@starttoc{toc))
\def\contentsline#l{\csname l@#l\endcsname)

\def\@dottedtocline#1#2#3#4#5(%
\ifnun #l>\cQtocdepth \else

\vskip \z@ plus .2pt
C%\leftsklp #2\relax

% NOTE THE % IN THE PREVIOUS LINE
\rightskip \@tocrmarg \parfillskip -\rightskip

% \parindent #2\relax
% NOTE THE % IN THE PREVIOUS LINE

\@afterindenttrue
\interlinepenalty\@M
\leavemode
\@tempdlma #3\relax \advance\leftskip

\Qtempdima \hbox{)\hskip
-\leftskip

#4\nobreak\leaders\hbox($\m@th \mkern %
\@dotsep mu.\mkern \@dotsep

mu$)\hf ill \nobreak \hbox to\@pnumwldthC%
\hfil\rm #5)\par)\fi)

The major problem revolves around dealing
with images (most, but not all, are photographs).
In fact, a display advert or other material can be
treated as an image.

A photograph will be either full width or col-
umn width with a caption in italics and the credit
to the photographer right justified.

I therefore wrote a macro using the one quoted
on page 106 of The W b o o k .

see page 106 of TeXbook
\def \photo#l{{\parskip=OptC\unskip\nobreak%
\hf il\penalty50\hskipiem\hboxC)\nobreak\hf il
#l\parfillskip=Opt\finalhyphendemerits=O\par)~~

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 .4nnual Meeting

Peter Abbott

There is one vital ingredient in the above code,
the assumption that the . eps file is stored such that
the bottom left corner of the image is represented by
the coordinates (0,O). To be able to put two single
column pictures side by side is easy.
\dtitle{The 1991 Sponsored Trackbed Walk)%
{Garry Owen)
\parbox [bl I59mrn)I%
\pict{tl.eps){59){45){The walkers assemble
on Race Course Platform.}%
{Steve Standbridge))\hfill%
\parbox [bl C59mm){
\pict{t4.eps){59){45){Gotherington Signal
Box.){Steve Standbridge))\begin{multicols){2)
The sponsored Trackbed Walk took \ldots

Following presentation of a similar paper to the
DANTE meeting in Hamburg in March 1992. I ex-
perimented with Frank Mittelbach's beta test ver-
sion of multicols. The code above then becomes
(and in fact at the start of a section could always
have been
\dtitle{The 1991 Sponsored Trackbed Walk)%
{Garry Owen)
\begin{multicols){2)
\pict{t 1. eps){59){45){The walkers assemble
on Race Course Platform.)%
{Steve Standbridge)

\pict{t4. eps){59){45){Gotherington Signal
Box.){Steve Standbridge)
\end{multicols)

\begin{multicols){2)
The sponsored Trackbed Walk took \ldots

If the text for the two photographs does not
occupy the same amount of vertical space, then an
adjustment to the height of the photograph is re-
quired. This is when the ability to draw a box to
represent the image is really useful.

I then needed to be able to put a picture at the
bottom of a page and decided to use the facilities of
footnotes. I extracted the following from latex. tex

\Qthef nmark)\@makef ntext
~\rule{\z@)~\footnotesep~\ignorespaces

#l\strut}))

I then modified the code and produced my own
macro \f ootpict as follows:
\def \f ootpict{\@f ootpict)
\long\def\@footpict#1{\insert\footins{%

\hsize\columnwidth \@parboxrestore
{#I)))

\let\footnoterule\@empty

This means that in the source code
The train continued to run along our line
until 7th September 1962 when it was
transferred to the Bromsgrove line
(see \magazine\ No.\ 38).

\footpict{\pict{eddieb.eps){122.5){78)%
{GWR \locono{5080) 'Defiant' storming up
the bank towards Greet Tunnel.){Dennis Bryan))

When the Gloucestershire Warwickshire Railway
was formed and \ldots

\f ootpict() is inserted at the first convenient para-
graph break on the page where it is desired to have
a photo at the bottom. This works in both single
column and multicol mode.

Placing two photos at the bottom of the page is
a trivial problem; simply insert the double parbox
code inside footpict. The beta test version of
multicols again provides for the use of multicols
within the footpict macro. Again, if the text de-
mands different height values, the use of omitpic
with a value of 0 makes life easy. It is also worth
noting that the width value within \pict is only
required when images are omitted. It would be pos-
sible to use a fixed value, but although I have tried
it, I do not find it a problem to specify the width of
an image and on occasions it is helpful.

Likewise, photos at the top of a page (as long
as they cross both columns) are a simple matter.
They can be either one image across both columns
or two images, each being a single column width and
using the parbox method. Again, variable heights
will work.

When the following code:
\begin{figure*)
% image code inserted here
\end{f igure*)

is inserted in the text at a suitable paragraph break
on page n. then the image will appear at the top of
page n+ l .

An image at the top or bottom of a column is
slightly more difficult and involves setting the item

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Typesetting a Magazine the Easy Way

somewhere in the column, noting where the column
break occurs and then moving it to the correct place.
It will probably need the following code as well
{\parf illskip=Opt\par)

to ensure that the preceding column to the image
does not have a false paragraph break when none
is intended. Therefore, I have a wish list for an
improvement to mult icol . I would like to be able
to float a single column image to the top or bottom
of a column. Frank Mittelbach is aware of my wish
so all I can say is wait for future developments.

I must reiterate that images need not be pho-
tographs and, in fact, all of the display adverts used
in my magazine are created using the same code as
ponly.

Conclusions

I will admit to one failing, the cover(s) and center
page are NOT produced in I4m. This is one case
where page layout software on the Mac has a distinct
advantage. Frank Mittelbach has admitted that it
is unlikely that mult icols will be able to replace
my f ootp ic t . I know how to manipulate single col-
umn floats, the only penalty being an increase in the
processing time.

Is this method successful? We (my Assistant
Editor, Audie Baker, and I) spend around 100 to
120 hours of time to produce an issue of 60-64 A5
pages.

The answer must be yes as now the magazine is
always on time and is enjoyed by ALL the readers.
We usually have to hold material over for the next
issue and there are always more than enough pho-
tographs for each issue. I see magazines produced by
other DTP methods, and (I know I am biased) TEX
and I4m are still far and away the best for typset-
ting beautiful text which in fact, apart from frac-
tions (I naturally have written a macro for fractions
which appear pleasing to the eye at normalsize),
has no mathematics included.

I have learned a lot in the past three years
on image processing and how to include images in
printed material. The basic lesson is that large
amounts of storage are required but even more im-
portant is FAST processing. I have just invested
in a SUN IPX workstation with an additional 1.2
gigabyte disc to reduce the overall processing time.

Postscript

A number of changes have occured since issue 40.
For issue 42 (Autumn 1992), photographs were
stored in compress TIFF format and conerted to
Postscript on the fly by DVIPS. This method re-
duces the disk space requirements for each photo-
graph by more than 60%. The Postscript file used
to create the film for plate making for issue 42 was
almost 150 megabytes.

Developments continue and it is hoped that for
issue 43 the width parameter in \ponly will be made
redundant. Page imposition will, I hope, be changed
to A3 format with each A3 page made up of 4 A5
pages with heads set to the centre. Linotronic out-
put then be suitable for plate making without man-
ual make-up.

My style file, corn ish. s t y will shortly be avail-
able in the archives. They will. of course, require
modificaton dependent upon the dv i to output de-
vice program that the user employs. The file also
includes my parameter settings; these are

I will always be happy to answer queries about
CORNISH.STY but would prefer them to be sent to
the uktex0tex.ac .uk, as I am one of the reviewers
of that list.

Acknowledgements

I must acknowledge the help given by members of
the Aston Archive Group. They have made nu-
merous suggestions for improving the magazine and
unravelled the complexities of some of the existing
parameters and macros. Finally, I would like to
thank my Assistant Editor, Audie Baker, whose spe-
ciality is photo composition and arrangement.

TUGboat, Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Mccting

Using TEX for a Publications Database

Mimi Burbank and Donna Burnette
Supercomputer Computations Research Institute
Florida State University
Tallahassee, FL 32306-4052
Internet: m i m i a s m i . f su. edu; donnaC3scri. f s u . edu

Abstract

This article explains the impetus and chronology associated with the use of p l a i n
lJ$ at the Supercomputer Computations Research Institute (SCRI) to produce
multiple and varied reports, and the evolutionary process of the SCRI "publica-
tions database" into its current state. Why would one use lJ$ for a database?
Our reasons were simple: all of our publications were done in m, and the
versatility of as a programming language made it ideal. We have evolved
from using a single file using an \hal ign to a series of macros which utilize one
input file to produce a wide array of output formats according to preset infor-
mationldesign criteria. The reporting process is now quite complex though text
entry remains the same - inputting information into only one file!

Introduction

The Supercomputer Computations Research Insti-
tute (SCRI) is an interdisciplinary program set up
to do research in computational science, train re-
searchers from various academic disciplines and pro-
vide them access to a supercomputer. It is a co-
operative venture between Florida State Univer-
sity (FSU), the U.S. Department of Energy's Of-
fice of Energy Research, the State of Florida, and
several computer manufacturers. The SCRI base
consists of a 50-plus member group of application
research scientists, technicians, software specialists
and support personnel. However, this group is sup-
plemented by various numbers of long-term visitors
from other universities, collaborating faculty mem-
bers from other FSU departments and graduate and
undergraduate students.

During 1985 - 1986 approximately 94 publica-
tions were produced using TEX, which upon looking
back, were reminiscent of medieval times (scissors,
glue, copiers, black spots, white-out, etc.). At this
time, there was no resident lJ$pert -only a single
person trying to learn and use m. During 1986,
a computer science student was hired part-time to
assist in manuscript preparation, and at this time
we became officially responsible for the reporting of
publications at monthly and annual intervals. There
was no suitable database on-line, and fiscal records
were maintained in a variety of Macintosh-related
utilities. Since all of our publications were done in
T)$. it seemed time- and cost-effective to utilize the
programming capabilities of TQX.

We shall try to explain the underlying lJ$ con-
cepts involved in making our database work. While
reading through the details of our setup, it is im-
portant to realize that this concept could easily be
applied to any collection of information that is reit-
erated periodically with the only difficulty being the
design of the report document itself and the ability
to turn on/off the appropriate commands to feed it
accurate information.

Pre-Database Publications
With very little experience using 7l&X, we started
out with a three-column design for our publica-
tions report, using a variety of fonts to accentu-
ate the different areas required - preprint number,
month/year, title, author, and where submitted or
published. An example of the code used at that time
is:

%
\halign{%

\hbox{\vtop{\hsize=2in\raggedright #))
\ h f i l \quad
& {\hbox{\hsize=iin#))\hfil\quad
& \hbox{\vtop{\noindent\hsize=4in
\raggedright #)) \ h f i l \ c r

{\bf FSU-SCRI-85-Ol\break)
Bhanot, Duke \& Salvador
& 4/85
&FRACTALS AND INTERPOLATING
DIMENSIONS\cr
\noalign(\vskipl.3ex)
&& (\it Published Phys. L e t t . B .) ,

362 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Using TEX for a Publications Database

Vol. 165B, 12/26/85,
pp. 355--360.)l\cr
\noalignC\vskip3ex)
{\bf FSU-SCRI-85-02\break)
Hasenfratz, A. and P. Hasenfratz
& 4/85
& LATTICE GAUGE THEORIES\cr
\noalign{\vskipl.3ex)
&& {\it Published in Ann. Rev. Nucl.
Part. Sci., Vol. 35, 1985, pp. 559
--604.)\cr
1)
Modification of this data was an exercise in tor-
ture -readability was almost zero and time lost de-
bugging forgotten ampersands, \cr's, etc. was com-
monplace and costly. Excerpts from this file were
then copied into other files to represent partial list-
ings that met certain criteria. Our facility's publi-
cation rate quickly made manually sorting through
this list according to any criteria a cumbersome
task. We decided to delve into m ' s programming
abilities and see if there was a way to automate this
process. In 1987, we hired a programmer and of-
ficially began maintaining a "real" database, from
which we ran monthly reports, fiscal reports and
one cumulative report from 1985 onward.

Primitive Database Design

Having learned how to use temporary storage boxes
(i.e., \setbox) we decided that this was a place
to start our research into m ' s abilitieslinabilities.
We categorized all of our preprint information and
put each item (author, title, subject, date, journal,
volume, etc.) into its own box. A sample preprint
entry at this stage of our database follows.

\num{Ol)
\date 1/92
\author{D. Burnette)
\title{Using \TeX\ for a

Publications Database}
\ j ournalisubmitted to TUGboat}
\endref

\numC02)
\date 1/92
\author{Unknown)
\titleCThis is a Junky Title)
\journalCPublished in the Journal of

Unknown Works)
\volume{5)
\pageC1200--1204)
\endref

With the addition of a command to re-initialize
the contents of the boxes between preprint entries,
we had a legible list of preprints which we could
output in its entirety at any time. Though there
should be a less painstaking method to accomplish
this task, the code/command we use for initializa-
tion (\resetvars) is defined below. The additional
box \dummy is used as a mechanism for discard-
ing information that has already been processed or
is otherwise unused. The need for this command
arose because of the occasional omission of a field
by one of the many people entering information into
the publistnn . dbf file, which allowed information
from one entry to show up in the output of a consec-
utive item, and we preferred to have an empty field
rather than an erroneous field.

\newbox\dummy
\def\resetvars(%
% reset the ALL variables
%
\ifvoid\refnum{}
\else\global\setbox\dummy=%

\hbox{\unhbox\refnum)
\f i%

%
Each database entry contains some combination of
the above commands, based on the type of preprint
it is and the information we want to maintain, but
they are all delimited by the command \endref
which does all of the work.

\global\def\endref{%
\hsize=7truein\parindent=Opt

\baselineskip=12.4pt \parskip=6pt%
\if\currentptype\p

\vtop{\line{\okbreak%
\vtop{\hsize=2in\noindent\raggedright%

\ifvoid\refnumC)%
\else\bf FSU-SCRI-\unhbox\refyear%
\unhbox\refatype-%
\unhbox\refnum\break%
\f i%

\unhbox\refauthor\par
\unhbox\refsubject)\hfill%
\hbox to .Struein{\hfill

\unhbox\refdate\hfill)%

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Mimi Burbank and Donna Burnette

\hfill\vtop(\parindent=Opt
\hsize=4in\raggedright%

\ifvoid\reftitle{)%
\else\unhbox\reftitle\par%
\f i%

\ifvoid\refjournal(%
\ifvoid\refbook{)%
\else In: \unhbox\refbook%
\f i%

\ifvoid\refeditor{)%
\else,\ \unhbox\refeditor, ed.%
\f i%

\ifvoid\refeditors{)%
\else,\ \unhbox\refeditors, eds.1
\f 1%

\ i fvoid\refvolumeO%
\else,\ \unhbox\refvolume%
\f 1%

\ifvoid\refpage{)%
\else,\ \unhbox\refpage%
\f i%

\ifvoid\refpublisherC)%
\else,\ (\unhbox\refpublisher%
\f i%

\ifvoid\refpubyearO.)%
\else,\ \unhbox\refpubyear).%
\f i%
3 %

\else\unhbox\refstatus\unhbox\refjournal%
\ifvoid\refvolume{)%

\else,\ \unhbox\refvolume%
\f i%

\ifvoid\refpageC)%
\else,\ \unhbox\refpage%
\f i%

\ifvoid\refpubyear{.)%
\else\ (\unhbox\refpubyear).%
\f i%

\f i%
\ifvoid\refextra()%

\else\ \unhbox\refextra.%
\f i%
)I%

As you can see, we have replaced our \halign
scheme with \hboxes and \vboxes with defined di-
mensions.

Defining Our Criteria

Our next task was to examine each record
(\nun. . . \endref). set up logical collections of

records, and then mark them in some way. In
1989 our funding agency had expressed an inter-
est in a regular listing of our published papers as
well as a periodic report of the status of the pub-
lications during the reporting period. From that
suggestion, we decided that obtaining a listing of
papers in any one of the various steps toward publi-
cation might also be beneficial. We found that there
were three steps in the publication process (submit-
ted, accepted, and published). We also found that
we had papers that were submissions t o conference
proceedings, and another set that were technical re-
ports but otherwise unpublished. We assigned each
record a \papertype according to its category and
chose the letters \s, \a, \p, \ c , and \t as their
designat ions.

Beyond this collection, we also found it helpful
to know how much publishing each of our authors
have done (individually and as a group). Due to the
multidisciplinary/international nature of the insti-
tute we have authors whose publications appear in
more than one subject area.

We have a group of scientists that more or less
make up the core of SCRI. These scientists invite
scientists in their field to collaborate with them on
projects. Quite often these visitors publish papers
on their collaboration while they are here or after
they have left. These papers (\v) are added to our
database.

There are projects off-site that request alloca-
tions of supercomputer time which are granted by
our funding agency provided they agree to supply
us with the publications generated by their results.
Once a year we solicit the external users of the super-
computer for their publications and also add them
(\e) to our database.

We found that assigning an \authortype to
each preprint would enable us to generate a report
of work done by any particular type of author should
the need arise and chose the letters 'e', 'v', and
none (the default) as their designations. The de-
fault \authortype is used for members of the core
group of SCRI scientists.

Assigning the Criteria Commands

We created a set of commands to hold the char-
acters which would represent each paper category
(\s, \a, \p, \ z , \t , \e, \v) and a second set
of commands to associate those conditions with the
record 'type' in the database (\papertype corre-
sponded to \currentptype, and \authortype cor-
responded to \currentatype) for comparison at

TUGboat. Volume 13 (1992), No. 3- Procerdi~lgs of the 1992 Annual Meeting

Using TEX for a Publications Database

run-time. \z was substituted for \c (to avoid con-
flict with QX 's cedilla) for conferences papers.

%
\global\def \a{A) % to appear
\global\def\e{E) % external
\global\def\p{P) % published
\global\def\sCS) % submitted
\global\def\tCT) % technical
\global\def\vCV) % visitor
\global\def\zCC) % conf. proc.
%
Further refinement resulted in the following defini-
tions, which include the introductory remarks re-
garding publication status. This was done to main-
tain uniformity of entries.

\global\def\publishedC\papertype{P)%
\global\setbox\refstatus=\hbox~\it
Published in: 1)

\global\def\submitted{\papertype{S)
\global\setbox\refstatus=\hbox(\it
Submitted to:))

\global\def\acceptedC\papertype{A)
\global\setbox\refstatus=\hbox~\it
To appear in: 3)

\global\def\technical{\papertype{T)
\tech{SCRI Technical Report))

\global\def\conf{\papertype{C3}

Using the above samples, database entries
quickly changed to:

% SCRI author / submitted paper
\num{Ol)
\date 1/92
\submitted
\author{D. Burnette)
\titlefusing \TeX\ for a

Publications Database)
\journal{Submitted to the TUGboat)
\endref

% SCRI visitor / published paper
\numC02)
\date 1/92
\visitor
\published
\author{Unknown)
\title{This is a Junky Title)
\journal{Published in the Journal of

Unknown Works)
\volumeCS)
\page(1200--1204)
\pubyear{1992)

% External Author / accepted paper
\numC03)
\date 1/92
\external
\accepted
\author{Unknown)
\title{Another Junky Title)
\journal{Published in the Journal of

Something Else)
\endref

Finally, we incorporated conditional statements
into our definition of \endref to test for various
types of entries. It is important to note the con-
ditional statement \if\currentptype\p takes the
current value of \currentptype and compares it to
the current value of \p. From the previous defini-
tions, we know that \p should always be "P" . The
value of \currentptype is set in the record entry
by \papertype{<value>). If <value> = "P" also,
then this conditional equates to TRUE and the vari-
ous details about the preprint are unboxed accord-
ing to the macro. Otherwise, the information in this
record is not needed and no output is generated by
this entry. It is fairly easy to see that if you include
a conditional statement for each type of record that
you need to search for and vary the boxes that are
utilized according to the type of entry involved, over-
all control of the output generated is fairly simple
to tailor to your individual needs. We have con-
stantly rehashed our use of conditional statements
to remove unnecessary comparisons and to cut down
on the confusion caused by nesting too many condi-
tional statements. each of which has to be evaluated
anyway (tabbing can only do so much!).

Current Status

The refinement of the file has progressed to its
present state in which the following information is
maintained:

\num{<sequential = {l,2,3, . . . , N)>)
\date mo/yr
\author{<required>)
\external {or \visitor)
\submitted {or \accepted,

\conf, \published, or \technical)
\title{<required>)
\volume(<if published>)
\page{<if published>)
\pubyear{<if published>)
\extra{<optional comment>)
\reprinttrue

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meetirlg

Mimi Burbank and Donna Burnette

\journal-code <or \proc or \tech>
\SUBJECT-AREA-CODE
\AUTHORl-CODE\AUTHOR2-CODE

\endref

Our database files are called publistnn . dbf with
n n being the fiscal year -i.e., publist92. dbf.
The publistnn.dbf file for the current fiscal
year contains a list of \<author code>s and
\<subject code% for reference by the various peo-
ple who are allowed to enter information into this
file. The \authorname usually is the username of
the author, and we classify publications into four-
teen subject areas.

When a paper is published, \submitted is
changed to \published and the \volume(),\page()
and \pubyear{) information is added, and
\reprinttrue is appended before the \endref to
indicate we have received a published 'reprint' which
corresponds to the reference information. If no
reprint has been received, then \reprintf alse may
be appended (this is also the default).

A list of <journal code% and the journals
they represent is maintained on 183 different jour-
nals. Some of the abbreviations were adopted from
the Science Citation Index (1990) to ensure the
uniqueness of our commands. Journal abbreviations
that weren't found in this issue were created- there
were quite a few in this category.

With the above "counters" we can generate re-
ports by month, year, author, research area, and by
individual journal, plus we can report how many
have been published, how many were submitted,
how many are 'to appear', how many technical re-
ports (unpublished work), and published conference
proceedings have been done by our researchers.

\nameCBurnette, Donna E.)(burnette.prep)
(Not LGT, Local)

The output file name is the same as the author code.
Directing the output to the appropriate fiscal/super
file is done during execution according to the user's
interactive command.

jnlabbrv . tex and emptyjnls . tex contain the
definitions necessary to create uniform output for
each journal name. jnlabbrv.tex contains the ac-
tual meaning of the abbreviations.

sub j ectabbrv . t ex contains the definitions
necessary to create uniform output for each sub-
ject/discipline area.

Divider files. publist. tex is run interactively to
separate the preprints by author or to generate a
publications list since the beginning of SCRI, de-
pending upon the option you enter at the beginning
prompt. (See Appendix A for a definitive portion
of the macro for this file, and Appendix B for an
example of the interactive commands.) We simply
write out to 13 files at a time, close them and then
open another 13 files until the end of the run. At
the termination of a run, you have either \input
all of the database files and written out 178 author
files, or you have \input 178 files and written out
one file. Additional subsets can be created if the
need arises and requires little effort (a change in the
\input file) to produce the same information for a
different period of time.

subject. tex does the actual division of files
into the fourteen discipline areas.

journals. tex separates preprints by journal,
regardless of what state they are in (published, ac-
cepted, submitted). jnlspub . tex separates only
those preprints that have reached a published status.

Lists. allscrinames. list is a list of all SCRI au- An entry identical to that used in publist. tex is
thors (i.e., those included in the annual report and required to accomplish the separation (substituting
proposals to date). This file notes whether each the journal code for the author code.
author is still here [\localfalse or \localtrue
(which is the default)], and whether they are
a member of the Lattice Gauge Theory Group
[\latticetrue or \latt icef alse (which is the de-
fault)]. Other helpful notations can be added as they
arise. These conditions are noted above the author's
name in the input file. Some examples would be:

Report files. monthly. tex is used to run the var-
ious reports we do. An example of the interac-
tive commands to generate reports is shown in Ap-
pendix C.

The author files all perform the same essential
function, the only difference being in the usage of
the conditions talked about earlier f \localf alse

\global\latticetrue and \latticetrue). authors-lattice. tex ex-
\nameIBerg, Bernd A.)(berg.prep) tracts the preprints for the authors that are mem-

(LGT Member, Local) bers of the LGT Group; authors-local. tex ex-
tracts the preprints for the authors that are

\global\localf alse still at SCRI; authors-scriline. tex extracts the
\name(Berger, Mordechai){berger.prep) preprints for the SCRI-funded faculty line authors;

(Not LGT, Not Local) and authors-superpub . tex extracts the preprints

TUGboat, Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Meeting

Using TpX for a Publications Database

for everybody since the beginning of SCRI - it also
includes the preprints by external authors.

subject-superpub.tex reports the preprints
by subject area since SCRI began.

Running j ournals-superpub. t e x creates a re-
port based on the files generated by journals . tex
(everything since the beginning of SCRI regardless
of its status).

Designing a User Friendly Interactive
Environment for Generating Reports

One of our goals was to make using this setup as
simple as possible. We wanted this information to be
public and easy to access for those who might take
an interest. We also didn't want everyone at SCRI
to have to be a W p e r t to be able to benefit from
our development. To that end, we have created an
interactive menu which reads input from the screen
(see Appendices A and B), initializes another series
of conditionals, and generates the requested report
based on user input.

We have evidently been successful, for
some of our scientists are now using their
authornme.super files to update their own vitae,
as well as finding preprints in various subject areas.
We recently began posting our lattice field theory
publications to an on-line mail server.

Summary

We began using TEX to generate reports first in
1986, one year after first being introduced QjX. At
that time, our scientists used p la i n m, or submit-
ted handwritten copy; MT@i was not used much at
the time, or we might have tried to use BIBQ~X. We
have learned much about the programming capabil-
ities of p la in TEX over the years, and though the
present program might be much more sophisticated,
we have been satisfied with its simplicity. This sim-
plicity has allowed us to easily modify the programs,
often on short notice; and it brings to mind a quote
from The W b o o k (page 373):

. . . Always remember, however, that there's
usually a simpler and better way to do some-
thing than the first way that pops into your
head. You may not have to resort to any
subterfuge at all, since 7&X is able to do lots
of things in a straightforward way. Try for
simple solutions first.
One of the ever-present problems which con-

fronts those of us in "production" is that we are not
often given time to learn more, or simply to "play",
and unless we are lucky enough to have program-
ming support we are confined to "getting the job

done", rather than exploring avenues of getting the
job done easier, or prettier, or faster. For some rea-
son, our scientists almost universally wait until the
last minute and then send us a file that has a dead-
line of "a week ago".

In all, our programs total several thousand lines
and represent some seven report-generating files,
which input five definition or macro files, to generate
up to 13 reports. (No easy process to explain!)

It takes a little over two hours of cpu time to
run pub l i s t . tex , approximately 40 minutes to run
authors-superpub . t ex, approximately five min-
utes to run subject . tex , and approximately two
minutes to run the monthly report files. I n the world
of today's workstations, this overhead is negligible.

Bibliography

Institute for Scientific Information. "Lists of Source
Publications.'' pages 66-85 (arranged by IS1
abbreviations), Science Citation Index, vol. 1,
Philadelphia, PA, 19104: University Science
Center, 1990. (Also pages 86 - 106, arranged by
full title .)

Knuth, Donald E. The m b o o k . Reading, Mass.:
Addison-Wesley, 1984.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Mimi Burbank and Donna Burnette

A. publist. t ex Example
1 1 ~ 0 ~ 1 0 ~ * ~ l 1 ~ 1 l 1 1 0 ~ 0 1 I I 1 0 # I 0 ~ I 0 I 0 0 I 8 I I I I ~ ~ ~ 0 ~ ~ ~ ~ 0 ~ 0 B ~ ~ ~ 6 ~ ~ ~ ~ ~ ~ ~ ~ 0 8 ~ ~ 0 ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ LLLLLLLLLXLL
\input publist.macros
\input emptydef s
\input emptyjnls
\input jnlabbrv
\input sub jectabbrv
~ ~ O 1 1 l 1 ~ 1 # 1 1 O 1 1 O 8 1 1 I D I I O 1 ~ I I I I ~ I 1 ~ l I l I ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ l O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ LLL
\immediate\writelb()
\immediate\writelGCIS A PRINTOUT OF THE ENTIRE PUBLICATIONS LIST REQUIRED (Y/N)?)
\immediate\writelG{)
\message(--> 1)

%
\if \runtype\s%
\def \f dir{preprints : [superpub])%
% \def \fdir([. test])
\def\fextension{.super)
\f i%
\if \runtype\p%
\def\fdir{preprints:[fiscal])%
% \def\fdir{[. test])
\def\fextension{.fiscal)
\f i%
e 1 0 0 ~ 1 0 0 0 1 ~ e e e e 1 0 e 0 1 e e * ~ ~ 0 1 e 1 ~ e 1 1 1 1 1 ~ 1 ~ ~ e ~ e s 0 ~ ~ e ~ 0 ~ LL
\if\printout\y(\global\def\endref{%
\hsize=7truein\parindent=Opt\baselineskip=12.4pt \parskip=Gpt%
%
\if \currentptype\a\vtop{\line{\okbreak%

\vtop{\hsize=2in\noindent\raggedright%
\ifvoid\refnum()%
\else\bf FSU-SCRI-\unhbox\refyear\unhbox\refatype-%

\unhbox\refnum\break%
\f i%
\unhbox\ref author\par\unhbox\ref subject)\hf ill%

\hbox to .5truein~\hfill\unhbox\refdate\hfill)%
\hfill\vtopC\parindent=Opt\hsize=4in\raggedright%

\ifvoid\reftitle{)%
\else\unhbox\reftitle\par%
\f i%

\if void\ref journal{%
\if void\refbook()%
\else In: \unhbox\refbook%
\f i%

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Using for a Publications Database

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Mimi Burbank and Donna Burnette

\newcount\filesix \filesix=6
\newcount\fileseven \fileseven=7
\newcount\fileeight \fileeight=8
\newcount\filenine \filenine=9
\newcount\fileten \fileten=lO
\newcount\fileeleven \fileeleven=ll
\newcount\filetwelve \filetwelve=12
\newcount\f ilethirteen \f ilethirteen=13

The above 13 counters are used, emptied and reused until all publications have been written out to
individual files.

B. Interactive Commands to Divide Files
1 1 8 1 @ 8 0 0 * 1 ~ 0 1 * 0 0 ~ 1 0 1 1 1 ~ @ @ 0 1 (I 1 ~ 1 1 ~ ~ 1 1 1 1 1 1 1 1 1 ~ 1 1 1 1 1 ~ 1 1 1 1 1 ~ ~ ~ ~ 1 1 1 1 1 1 1 1 1 1 1 1 ~ ~ ~ ~ 1 1 1 LLL
% This preamble appears at the beginning and
% explain how to input data interactively.
(\obeyspaces\immediate\writel6{}
\immediate\writelb{)
\immediate\writelG{}
\immediate\writel6(FLORIDA STATE UNIVERSITY}
\immediate\writelb{ SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE}
\immediate\writelG{}
\immediate\writel6(SEPARATOR OF INDIVIDUAL SCRI AUTHOR'S PUBLICATIONS
\immediate\writel6{ (USING PUBLIST85.DBF -- present)}
\immediate\writel6(}
\immediate\writelGCIS A PRINTOUT OF THE ENTIRE PUBLICATIONS LIST REqUIRED (Y/N)
\immediate\writelG{)
\message{--> }}
%
* * 0 * 0 1 * * 1 1 * * * 0 0 8 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 ~ 1 8 1 1 1 1 1 1 1 1 1 ~ 1 1 1 1 1 1 1 1 ~ ~ 1 ~ 1 ~ 1 1 1 1 1 ~ 1 ~ 1 1 1 1 1 1 1 1 1 ~ 1 1 LLLLLLALL
\global\read-1 to \datain
%
\def\stripspace#l \next(#l}
\def \stripzeroO#l\next(#l}
\edef\datain(\expandafter\stripspace\datain\next% strip \datain's space
%
\def\next#l\endname{\uppercase(\global\def\printout{#l})) .,
I*

\expandafter\next\datain\endname ;/slake\datain uppercase
I,

C\obeyspaces\immediate\writel6C)
\immediate\writel6CEnter S if you want the SUPERPUB files separated}
\immediate\uritel6IEnter P if you want the file for the current fiscal year sep
\immediate\writelG{}
\message(--> }}

%
0 1 * ~ 1 * 0 ~ * 0 * * * * @ 8 1 1 8 I D I * I I 0 # 0 0 I ~ l L ~ 0 I I I ~ I 0 0 0 ~ ~ ~ 1 ~ ~ @ ~ ALL
\global\read-1 to \datain
%
\def \stripspace#l \next{#l}
\def\stripzeroO#l\next{#l)
\edef \datainI\expandaf ter\stripspace\datain\next}% strip \datain's space
%

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Using for a Publications Database

\def \next#l\endname{\uppercase{\global\def \runtype{#l)))
%
\expandafter\next\datain\endname '/Jnake\datain uppercase
%
\if \runtype\s%

\def \f dir{preprints: [superpub])%
% \def \fdir{[.test])

\def\fextension{.super)
\f i%
\if \runtype\p%

\def \f dirCpreprints : [fiscal])%
% \def \f dir{ [.test])

\def\fextension{.fiscal)
\f i%
. 1 1 , 1 1 1 1 . 1 1 . 1 . . l . . 1 , , , , l 1 I . , , , , , , , I . , , , , , , , , . . , , ~ , ~ o . , , , , , , . * , . . , , , * , , , ~ * o I o o ~ ~ * LL

C. Interactive Commands to Generate Reports
1 8 0 1 1 1 1 1 1 1 1 1 1 1 . 1 1 0 1 1 0 , 1 , 1 . 1 1 1 1 1 1 . 1 * * 1 1 1 1 1 , , , I . 1 I 1 1 . 1 ~ * 1 1 * * 1 LLL
% This preamble appears at the beginning and
% explain how to input data interactively.
{\obeyspaces\immediate\writel6{)

FLORIDA STATE UNIVERSITY)
SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE)

INTERACTIVE PUBLICATIONS LIST GENERATOR)

llql' FOR A
"R" FOR A
"Y" FOR A

"A" FOR A
"C" FOR A
"El1 FOR A
"Mu FOR A
"P" FOR A
"S" FOR A
"TI1 FOR A
"V" FOR A

MONTHLY REPORT)
COMPLETE PUBLICATIONS LIST)
COMPLETE LISTING OF ABSTRACTS)

LIST OF
LIST OF
LIST OF
LIST OF
LIST OF
LIST OF
LIST OF
LIST OF

PUBLICATIONS WHICH ARE "TO APPEAR")
CONFERENCE PROCEEDINGS)
EXTERNAL PUBLICATIONS)
MISCELLANEOUS PUBLICATIONS)
PUBLISHED PUBLICATIONS)
SUBMITTED PUBLICATIONS}
TECHNICAL REPORTS)
VISITORS PUBLICATIONS)

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

An Audio View of (L A) W Documents

T.V. Raman
Center for Applied Mathematics
Corneli University
Ithaca NY 14853-6201
Phone: (607)255-7421
Internet: raman@cs. cornell. edu

Abstract

Till now, (I 4) W has been used to generate typeset documents. This paper
points out an alternative view - the generation of audio renderings. The (I 4) W
typesetting source captures a lot of document structure which is then used to
typeset the document. This can be exploited to convey document structure in
audio renderings of the document as well. This becomes especially important
when dealing with mathematical documents. Our approach attempts to develop
notions of audio formatting similar to the well-understood notions of visual for-
matting and layout. Our goal is to do for the audio document what (I 4) W has
done for the printed document.

Introduction

Lack of ready access to current mathematical and
technical literature has been a major stumbling
block throughout my career. I first became inter-
ested in trying to use (I 4) w to overcome this prob-
lem when I received the I 4 W source for the lec-
ture notes in a course on the Design and Analysis
of Algorithms at Cornell. I use a talking computer,
since I am visually handicapped, and availability of
technical documents on-line meant that I could have
them read by my computer. However, I soon realised
the futility of having the computer read out (I 4) W
source directly. The only other effective solution
available at the time, namely to have the printed
text read aloud, was clearly inadequate. Of course,
I had the option of trying to get the printed output
read out using a reading machine, but in the case of
texts with heavy mathematical content, this contin-
ues to remain impracticable at present. Current OCR

(OPTICAL CHARACTER RECOGNITION technology
is incapable of handling typeset mathematics.

Using the (I4)W sources as a starting point
for generating audio renderings was a temptation
too hard to resist. (I 4) W captures a lot of syntac-
tic and sometimes even semantic information about
the document content, and this information can be
used for more than just typesetting the document.
It could be used equally well in producing high qual-
ity computer-generated audio renderings of the doc-
ument. This is especially true when it comes to
reading mathematical texts. Complicated mathe-
matical constructs, which prove a major stumbling

block for conventional OCR technology, present far
less of a problem, since the (I 4) W constructs that
are used to produce the final output capture a lot of
information about what is being laid out on paper.
Thus, this information can be effectively captured
at the (P) W source level and exploited in produc-
ing audio. I therefore started work on a system for
generating audio renderings of technical documents
presented in the form of (I 4) W mark-up source.

A First Attempt

I first worked on a program that would trans-
form (I 4) W source to a form more suitable to
be read out by a talking computer. Reading the
(I4)W source directly is impractical, since you
have to listen to a stream of "backslash" and other
extraneous utterances.

This first attempt resulted in the development
of TEXTALK (Raman, 1991), a program that I con-
tinue to use for my day-to-day work as a gradu-
ate student at Cornell. This program carries out
simple transformations on the (I4)W source and
the resulting text can be viewed using standard
UNIX tools. The text which is displayed on the
screen can then be effectively read out by the talk-
ing computer. Thus presented with the expression:

l + &
2

the program transforms the above text to:

The fraction with numerator 1 + square root
of 5 and denominator 2 end of fraction

372 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

An Audio View of (IP)W Documents

This is much more intelligible than the following
cryptic utterance which would be generated if the
(I 4) W source were being directly read:

dollar dollar backslash frac left brace one plus
backslash sqrt left brace five rzght brace rzght
brace left brace two rzght brace dollar dollar

 TALK modified (@)'I&$ mark-up source
corresponding to mathematical notation and gener-
ated text that would parallel what a human reading
out the printed result would say. See the Appendix
for a more detailed example. I obtained immediate
direct access to several text books whose authors
kindly agreed to make available the on-line sources.
Currently I also have access to the on-line sources for
the AMS bulletins. Thus, the program makes the
latest mathematical publications accessible to me.

This first attempt uncovered a lot of interest-
ing issues, which then led naturally to the next step,
namely, developing notions of audio formatting
analogous to the well-understood notions of vi-
sual formatting. Though the program as it works
is eminently usable, the audio renderings generated
are not as effective in conveying the complete struc-
ture of the document. Sub-expressions occurring in
a complicated expression make perfect sense when
handled by the system. but it is still difficult to com-
prehend extremely complicated mathematical ex-
pressions, especially in terms of understanding how
the various sub-expressions interact with one an-
other. The example in the Appendix, which shows
the text generated for a complex math expression,
makes these shortcomings explicit.

A Rigorous Approach

The initial implementation revealed the need for de-
veloping a rigorous approach to audio formatting.
It also became apparent that in order to do full jus-
tice to the audio, carrying out transformations based
on a linear scan of the (I 4) m source itself was
not adequate. Even though (@)w source con-
tains a lot of useful information about document
structure, the earlier approach of string substitu-
tion, i.e., scanning the source and applying simple
transformations fails to fully exploit all of this in-
formation. The transformations carried out tended
to be local in nature as string substitution ignores
global structure and this was identified as a principal
cause of the ineffectiveness in conveying global struc-
ture. The above becomes clear when we compare the
readings corresponding to a complicated expression
generated by a trained and experienced reader with
those generated by the system. See examples 2 and
3 in the appendix for a comparison. In fact even a

straightforward transcription of the text as present
in the recordings from the Recordings for the Blind
(RFB) loses a lot of information. This is because the
trained reader inserts appropriate pauses and uses
other prosodic cues to convey the nesting of com-
plicated sub-expressions. This shows clearly that a
system that attempts to read out the text result-
ing from carrying out simple transformations to the
(I4)m source will be unable to convey such struc-
tural information. The trained RFB reader is able to
insert appropriate cues into the spoken text only af-
ter having parsed and re-parsed the expression. This
shows a clear need for first constructing higher level
representations of the expression in order to improve
the quality of the audio rendering. Thus, there are
two steps to audio rendering:

generate the text to be spoken, and
"audio format" this text, i.e., insert appropriate
cues into the spoken text in order to convey
structure.

A two-step approach. The preceding discussion
shows that a better approach is to subdivide the
problem into:

1. building a high-level model of the document by
parsing the (I 4) W source, and

2. generating audio renderings by applying appro-
priate audio formatting rules to the resulting
structure.

Advantages. This approach no longer suffers from
the drawbacks alluded to earlier. This is because
the audio renderings that are now driven off a high-
level representation of the document can draw upon
global knowledge of document structure. Thus,
while sub-expressions continue to be formatted for
audio by applying transformations as before, the au-
dio renderings can now capture information about
how various entities appearing in the document re-
late to one another. The human reader conveys
such structural information using prosodic cues.
When using computer-generated speech, the range
of prosodic cues that we can use is limited in com-
parison. However, these can be augmented by using
non-speech audio cues. By non-speech audio cues,
we mean short chords of music, beeps etc. that can
be used to convey non-textual content. These can
prove extremely useful, since they can be used to cue
the listener to extra-textual content without intro-
ducing unnecessary verbiage in the audio renderings.
In addition, the audio documents generated from
such high-level document structures will be capable
of allowing the user to browse the document.

TUGboat; Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

T.V. Raman

Generating High-Level Document
Models from (M) w Source

This section details the approach we have taken to
solving the first of the two sub-problems outlined
in the previous section. Well-written (I 4) m doc-
uments capture document structure using macros
designed to reflect logical rather than layout struc-
ture. This fact is heavily relied upon when gener-
ating high-level models, given specific instances of
(@) m documents. This forces certain constraints
on the type of (I 4) m documents that such a sys-
tem will be able to handle. These constraints are de-
scribed in the following subsections. We then give
an approach for generating such high-level models
for (I 4) m documents satisfying these constraints.

Defining high-level models. We think of high-
level models of the documents as being given by ab-
stract syntax trees corresponding to a specific lan-
guage L. Different document types satisfy different
languages, and thus have different high-level rep-
resentations. The abstract models we define are
thus specific to a given class of documents. For the
present we will consider the a r t i c l e style of I P W .

A hierarchical structure. Documents conform-
ing to the a r t i c l e style of I 4 m have a clear hier-
archical structure. The document divides neatly
into a simple tree structure where the subtrees cor-
respond to various structural units such as section,
subsection, etc. I4m documents have this struc-
ture clearly tagged by the use of standard
constructs and this allows us to get at the high-
level structure (Lamport, 1986). Similar structures
are also easy to obtain from well-written rn doc-
uments where the structure is marked up using
macros from standard packages such as pla in rn
(Knuth, 1984). However, since rn does not always
insist on the use of predefined structures for mark-
ing up the document, this step can prove difficult
when dealing with raw QX documents.

Defining a recognizable class of (I4)T'X doc-
uments. as described by Knuth (1984,1986) is
a powerful typesetting language and embodies many
features of a programming language. By providing
primitives normally found in a programming lan-
guage it affords immense flexibility to the designer
of a document. However, with this flexibility come
a lot of problems, since such power in the hands of
an average user can prove dangerous.

All power corrupts and absolute power cor-
rupts absolutely!

This statement is true in the world of docu-
ments as well. A properly prepared document

uses the power of the language sparingly and avoids
mixing typesetting commands with document con-
tent. Using well-designed formats results in (U) m
source that clearly reflects the document structure.
However, the ease with which new constructs can be
defined in means that the above principles are
often violated.

Documents which rely on absolute commands
like \vskip to achieve document structure by pro-
viding the right visual effect present serious prob-
lems to a program that is trying to build a higher
level model of the document. This is to be expected
since the use of such absolute commands within the
text of an electronic document indicates an assump-
tion that the electronic source will be used only for
typesetting the document. Thus, the first and most
important constraint that we impose on the class
of (@)T@i documents that we handle is that doc-
ument structure be clearly tagged using only stan-
dard macro packages. Thus our current parser rec-
ognizes an enumerated list in I 4 W which is clearly
marked up, i.e., each new item is explicitly tagged
using \item. However, if an author chooses to
mark-up certain items in an enumerated list by us-
ing \item and other items by \f 00, where \foo has
been defined by the author to generate the right vi-
sual effects required to signal a new item, the parser
fails to recognize some of the items in the list.

Classifying (W) W macros. The level of com-
plexity present in constructing an abstract model
of a document given its (M) W source is directly
determined by the type of macros used by the au-
thor. Macros can be used to mark up document
structure, for laying out specific structures and ob-
jects, and for achieving visual effects. As pointed out
above, macros are also used to augment predefined
formats. In addition, macros are also widely used
to make the task of keyboarding easier. This multi-
ple use of macros causes some difficulty when con-
structing high-level models of a (I 4) m document.
In order to define the class of (I 4) W documents
we can handle, we need to classify TEX macros ac-
cording to how they are used. This will allow us to
clearly define the class of macros that we can handle
in our document recognition step and will, in effect,
define the class of documents that the system will
be able to recognize. Further, this classification step
will also indicate to what extent we should expand
macros during the recognition step and how the ab-
stract model is to capture macro calls.

In the following, M u is used to denote the uni-
versal set of all macros. The various subsets are
denoted by appropriate suffixes.

374 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

An Audio View of (I4)m Documents

Graphic. This subset will be denoted by M G .
Macros that provide primitive typesetting opera-
tions such as the \kern and \hru le control se-
quences in w are typical examples of such macros.
They are characterized by their visual nature. Ex-
plicit use of such macros in a document does not
provide sufficient information to allow for the con-
struction of an abstract model.

Graphic macros representing standard ob-
jects. This set of macros will be denoted by M o .

The term standard object is used here to re-
fer to commonly occurring entities such as integrals
and fractions. These objects have a standard vi-
sual template according to which they are typeset,
and a properly composed document renders these
visually by using specialized macros that take ap-
propriate arguments. Thus, by their very nature,
such macros capture a functional representation of
the object. When confronted by such macros in a
document, it is unwise to try and expand them any
further in terms of the lower-level control sequences
from which they have been constructed. Thus, the
\ f r ac macro of I4W contains all the higher-level
information we can get about the object it renders,
and the model we build should capture this call.

Another difficult subset of macros that belong
to this category are special symbols built up with
primitive control sequences. This is typical of com-
plicated combinations of primitive macro calls that
are used to create special visual effects. When build-
ing the higher-level model of the document, we need
to capture the essence of what is being conveyed by
the use of such macros, rather than the result of
expanding the macro call. Thus if \Real has been
built up using a set of primitive visual macros to
produce a real number symbol, the abstract model
should stop by capturing just the macro call \Real
rather than attempting to expand it any further.
In fact, expanding the call will actually eliminate
information.

In an ideal world the principal type of macros
one would encounter when parsing the typesetting
source would be elements of M o . However, life
is not so simple, and often electronic documents
abound with the use of lower level control sequences.
Further, MG nMo = 8 does not always hold. It can
be argued that the \Real control sequence discussed
earlier actually belongs to M G . This would be true
if we did not know what the author intended to rep-
resent by the use of the macro, which could often be
the case.

The above is also true of the use of 7JjX control
sequences such as \atop and \over, which often re-

quire some knowledge of the context in which they
are used in order to come up with a semantic in-
terpretation of their use. Thus, the use of \atop in
a nested subscript often means conjunction, while
it means something entirely different when used in
rendering a Legendre symbol. Consider the follow-
ing example (Knuth, 1984:145, 320 (ex. 17.9)):

aijbjkcki

which is produced by:

Macros for simple text substitution. This class
of macros will be denoted by M T . These macros
are typically used to make the task of keyboarding
easier. In most situations it is safe to expand these
macros since their expansion does not lead to loss of
structural information. However, once again Mo n
MT = 0 is not always true.

Consider the use of the macro \ reader in the
following sentence.

"We are working on a \ reader for electronic
documents."

where \ reader has been defined elsewhere as

\def\reader{new exc i t ing reading machine)

This macro clearly belongs to MT in the context
in which it is described. Expanding it directly will
lead to the text "We are working on a new exciting
reading machine for electronic documents." This
can now be easily rendered in audio.

However, viewed from a different perspective,
i.e., the use of \ reader as a logo, this macro could
well be said to be in M o . In the context of au-
dio formatting, we may wish to render the result of
the call to the \ reader macro differently.

Recognizing the type of a macro. Recogniz-
ing the class to which a given macro belongs is a
hard problem. In general, no universal classification
will always hold, as is clear from the previous de-
scription. However, we can use some simple heuris-
tics to classify a major subset of the commonly oc-
curring macros. Clearly all the primitive typeset-
ting operations provided by TEX in terms of putting
marks on paper belong to M G . Further macros that
are known not to be in Mc but take arguments are
typically in Mo, since the use of macro arguments
normally indicates that a template is being filled up.
Macros that which do not fall into either category

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual hleeting 375

T.V. Raman

now fall into M T . Given more information about
the context in which the macro is being used, it
becomes possible to further refine the above classi-
fication.

Summary of constraints. To summarize, here
are the constraints we need to impose on the class
of (U) W documents we can handle:

1. document structure should be clearly marked
UP,

2. explicit use of absolute commands should be
avoided, and

3. use of macros should reflect semantics and log-
ical structure rather than physical layout.

These constraints have been introduced while dis-
cussing the global document structure. However,
they hold equally well when considering specific
components of a document, such as mathematical
expressions occurring within the document.

Format-independent techniques of informa-
tion capture. The above discussion also reveals
the need for developing a framework for represent-
ing information in electronic documents indepen-
dent of any single "display" method. 7&X goes a
long way in achieving this for mathematical docu-
ments. However, since all the primitive operators
used to achieve this are also available to the av-
erage user, TEX documents do not always conform
to the constraint that information in a document
be represented independent of formatting details.
As these concepts become better understood, we
need to work towards the development of a language
for representing structured information in electronic
documents. Some of this has already been achieved
by SGML (Standard Generalized Mark-up Language,
ISO, 1990) and there is a clear need to carry over
this work to cover mathematical documents as well.
Development of such format-independent techniques
of information capture will allow us to provide alter-
native methods of accessing the same information
structures.

Reading Mathematics Aloud
The previous section pointed out the need for high-
level information capture independent of specific for-
matting techniques. Given high-level information
structures, we need to develop adequate techniques
for accessing this information using alternative per-
ceptual modalities such as audio. This section ad-
dresses the various questions that arise in develop-
ing an effective notational system for mathematics
in the audio world. In order to do this, we first ana-

lyze how visual notation works and attempt to apply
some of what we learn to the audio world.

Features of visual math notation. Traditional
math notation fully exploits the two-dimensional na-
ture of the visual tablet. It is therefore not linear but
achieves conciseness by using subscripts and super-
scripts. It relies on the eye's ability to move quickly
across the paper, and uses visual cues such as delim-
iters of different sizes to cue these structured move-
ments. Written mathematics is not linear in two
different senses of the term, i.e., space and time.

1. It; uses a two-dimensional display.
2. It is not linear in time since the eye is able to

move back and forth across the paper seemingly
at will.

Both of these features are absent in traditional spo-
ken mathematics. Spoken mathematics on tape is
linear in time. In addition, it tends t o be wordy
since there is no standard way of alerting the lis-
tener to complicated syntactic constructions other
than describing these verbosely.' This can be di-
rectly attributed to the apparent lack in audio of the
two-dimensional nature of the printed medium. This
lack of two-dimensionality is overcome by the reader
inserting words such as "open quantity" and "raised
to the quantity" in order to cue the listener to the
presence of complex constructions. Use of such cues,
though effective, causes the audio rendering to be
necessarily verbose, making it difficult to grasp the
essence of what is being conveyed. Mathematical
notation relies on conciseness to express high-level
concepts, and as the complexity of the expressions
being handled increases, the resulting verbiage in
the spoken equivalent of the written expression ren-
ders it practically unusable. We need adequate au-
dio substitutes for these features of mathematical
notation if we are to have any hope of effectively
conveying mathematics using audio.

Spoken mathematics. The previous paragraph
takes care to speak of mathemat ics in audio rather
than merely referring to "spoken mathematics".
This choice of terminology is intentional. One of the
ways traditional spoken mathematics conveys com-
plex inter-relationships between sub-expressions is
to use prosodic cues within the speech (see the ap-
pendix, example 2, for an explicit example). In order
to achieve the full expressiveness of a human reading
mathematics we need to use a lot of prosodic cues
in the speech. Though computers of today can talk
intelligibly they are still a long way from achieving

See Chang (1983), which is used as a guideline
by RFB for reading mathematical texts.

3 76 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

An Audio View of (I4)W Documents

this degree of expressiveness. We therefore need to
augment the computer's speech ability by a well-
designed system of audio cues which can then be
used to better convey extra-textual content when
reading complicated expressions.

Multiple channels of audio. Non-speech audio
cues can be synchronized with the speech output.
Thus, by using multiple channels of audio output,
i.e., by having both speech and non-speech audio
cues playing at the same time, and exploiting direc-
tionality of sound, we can offset the disadvantages
resulting from not having a two-dimensional display.
In fact, the audio document is not restricted to a flat
display, and proper use of audio cues can result in
effective communication of complex constructs.

Browsing in an audio document. The previous
subsection addresses the problems resulting from
traditional audio documents being linear in space.
This subsection in turn addresses the problems re-
sulting from the fact that conventional recordings
on tape have been linear in time.

A serious difficulty faced when listening to the
recording of a complex expression is that the listener
is forced to retain the entire expression. Thus, com-
prehending spoken mathematics demands a longer
attention span. In fact, often it becomes impossible
to remember the beginning of a complex expression
by the time one has reached its end. This is clearly
evinced by the reading of Faa de Bruno's formula
presented in the Appendix of this paper. Visual no-
tation, by using different sized delimiters, different
levels of subscripts, etc., cues these structured move-
ments, and thereby allows the eye to move around
the printed expression. Analogously, we need to al-
low the listener to move around the expression and
access parts of it at will. This will obviate the need
for the listener to retain the entire expression in
memory.

These structured movements can be performed
using the high-level model for the expression that
has been constructed at the recognition step. This
is one of the major advantages of first recognizing
the structure before generating audio renderings.

Conclusion

This paper describes an audio view of (I4)m doc-
uments. Electronic typesetting source can be used
to generate audio documents as well. In order to
do this effectively, we need to recognize document
structure from the electronic source. Audio render-
ings will then be driven from this high-level struc-
ture. There is a need to develop notions of audio for-
matting analogous to the well-understood notions of

visual formatting. Finally, we need to better under-
stand how visual browsing works in order to build
into the system the ability to provide the same func-
tionality in the audio setting.

Acknowledgements

I would like to thank Prof. David Gries for his help
and advice in my work. I would also like to acknowl-
edge Xerox Corporation for supporting this work
both in the form of summer support during 1991
and 1992 and an equipment grant that enabled the
project to acquire a MultiVoice speech synthesizer.
I would also like to thank Prof. Bruce Donald for his
advice and help and the Cornell Computer Science
Robotics and Vision Laboratory for their support
during the last year.

Bibliography

Chang, Larry A. Handbook for Spoken Mathemat-
ics. Livermore, CA: Lawrence Livermore Na-
tional Laboratory, 1983.

Knuth, Donald E. The Art of Computer Program-
ming, Vol. I , 2nd ed. Reading, Mass.: Addison-
Wesley, 1973.

Knuth, Donald E. The m b o o k . Reading, Mass.:
Addison-Wesley, 1984.

Knuth, Donald E. QJX: The Program. Reading,
Mass.: Addison-Wesley. 1986.

Lamport, Leslie. LAW: A Document Preparation
System. Reading, Mass.: Addison-Wesley, 1986.

International Standards Organization. Informa-
tion Technology - SGML Support Facilities -
Techniques for Using SGML. Draft, 1990.

Raman, T.V. TALK. TUGboat 12(1). page 178,
1991.

Information Processing-Text and Office Sys-
tems-Standard Generalized Markup Lan-
guage (SGML). October 1986. IS0 8879-
1986 E.

TUGboat, Volume 13 (1992). No 3 - P r o c v d i n g ~ of tho 1992 .?n!ilial \ l ~ o t i n g

T.V. Raman

Appendix: An example of complex math expressions

This appendix gives the TpXsource for a complicated mathematical expression, the transformed text gener-
ated by 'TEXTALK, and finally the text as read on the RFB recording of the same expression.

Note: This piece of mathematical text is taken from Knuth (1973:50 (ex. 21)):

1. The w s o u r c e
C\bf 21.) (\em CHM251) (Faa d i Bruno's formula.)
Let $D-k-x u$ rep resen t t h e kth d e r i v a t i v e of a func t ion u wi th
respec t t o x. The "chain r u l e " s t a t e s t h a t $D^l-xw = D-1-u w
D-1-x u$. I f we apply t h i s t o second d e r i v a t i v e s , we f i n d $De2-xw =
D-2-u w (D-1-x u)^2+D^l-u w D-2-x u$.
Show t h a t t h e {\em genera l formula\/) i s
$$D-n-xw =
\sum-{O\le j \ l e n)
\sum-{\scriptstyle k-I+k_2+\cdots+k_n=j
\a top { \ s c r i p t s t y l e k-l+2k-2+\cdots+nk-n=n
\a top (\ s c r i p t s t y l e k-1 ,k-2, \ l d o t s ,k-n\geO)))
D-j-u w \fracCn!){k-l! ((I !))^{k-i) \cdots k-n!((n! 1)-(k-n))
{(D-I-x u))^(k-l) \cdots ((D-n-x u))-(k-n).$$

The above piece of T)jX code was keyed in while listening to the reading of the expression on the RFB

tape. This shows up an interesting fact about ordering of subscripts and superscripts. In this case the reader
has read the superscript first, and the w source reflects this in that it uses D-I-x rather than the more
standard D-x-I as recommended in The m b o o k . At this time, there seems to be no reason t o choose the
reader's order of speaking the subscript after the superscript in the general case as against the order one
would use if scanning the standard TpX usage linearly. In the case of Faa de Bruno's formula, the reader
has used his interpretation of D i in making this choice. In the interest of being able to easily parse the

source, we need to stick to either one of the two orderings when writing w documents. The order in
which the subscripts and superscripts are eventually read can then be decided at a later stage in the audio
formatting.

2. Text taken verbatim from RFB'S recording
Exercise 21 has a rating of cap h cap m 25
Faa de Bruno's formula.
Let D super k sub x of u represent the kth derivative of a function u with respect to x. The chain rule states
that cap d super 1 sub x of w equals cap d super 1 sub u of w cap d super 1 sub x of u. If we apply this to
second derivatives, we find that cap d super 2 sub x of w equals cap d super 2 sub u of w times the quantity
cap d super 1 sub x of u quantity squared plus cap d super 1 sub u of w times cap d super 2 sub x of u.
Show that the general formula is cap d super n sub x of w equals the summation from 0 less than or equal
j less than or equal n of the summation over k sub 1 plus k sub 2 plus and so forth plus k sub n equals j , k
sub 1 plus 2 k sub 2 plus and so forth plus n k sub n equals n, k sub 1 comma k sub 2 comma and so forth
comma k sub n greater than or equal to zero The quantity being summed is
cap d super j sub u of w times the fraction n factorial over k sub one factorial times one factorial raised
to the k sub 1 times and so forth times k sub n factorial times n factorial raised to the k sub n the entire
fraction times
the quantity cap d super 1 sub x of u closed quantity raised to the k sub 1 times and so forth times the
quantity cap d super n sub x of u closed quantity raised to the k sub n

3. Transformed text generated by WTALK
21. [HM25] (Faa de Bruno's formula.)
Let D super k sub x u represent the k th derivative of a function u with respect to x . The "chain rule"
states that D super 1 sub x w = D super 1 sub u w D super 1 sub x u . If we apply this to second derivatives,
we find D super 2 sub x w = D super 2 sub u w (D super 1 sub x u) super 2 + D super 1 sub u w D
super 2 sub x u . Show that the general formula is
D super n sub x w = sum sub 0 less than or equals j less than or equals n sum sub k sub 1 + k sub 2 +
ellipses + k sub n = j and below that k sub 1 + 2 k sub 2 + ellipses + n k sub n = n and below that k sub 1

378 TUGboat. Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

An Audio View of (IP)?&X Documents

, k sub 2 , and so on , k sub n greater than or equals 0 D super j sub u w fraction with numerator n factorial
and denominator k sub 1 factorial (1 factorial) super k sub 1 ellipses k sub n factorial (n factorial) super
k sub n end of fraction (D super 1 sub x u) super k sub 1 ellipses (D super n sub x u) super k sub n .

4. The resulting formatted output
21. [HM25] (Faa de Bruno's formula.)

Let D ~ U represent the kth derivative of a function u with respect to 2. The "chain rule" states that
Dkw = DhwD:u. If we apply this to second derivatives, we find D ~ w = D:uJ(D~u)~ + DAwD~u. Show that
the general formula is

TUGboat, Volume 13 (1992)) No. 3 -Proceedings of the 1992 Annual Meeting

Model-Based Conversions of Documents

Dennis S. Arnon
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304 USA
415-812-4425; FAX: 415-812-4241
Internet: arnonaparc . Xerox, corn

Isabelle Attali
INRIA Sophia Antipolis
Route des Lucioles
06565 Valbonne Cedex. France
Internet: 1sabelle.AttaliQsophia.inria.fr

Paul Franchi-Zannettacci
University of Nice
CERISI
Sophia Antipolis
06561 Valbonne Cedex, France
Internet: pf zQessi. cerisi .fr

Abstract

We are creating a document conversion system based on modelling the logi-
cal structures of two broad categories of document types: human-oriented and
machine-oriented. Each human-oriented, or user, type is a genre of documents
that is well defined and well known to human authors and readers; for exam-
ple, "scientific articles", "mathematical formulae" (eg.. *), or "limericks1'.
Each machine-oriented, or agent type, is the set of legal data objects of a doc-
ument processing tool, for example, "MT@ documents" or "troff/EQN docu-
ments". Our models specify the abstract, rather than the concrete (i.e., surface)
syntax, of particular documents. Thus we work with documents as tree data
structures, whose concrete presentations have a surface syntax of no intrinsic in-
terest. By so proceeding we hope to best utilize the computational sciences, and
sidestep what we believe to be the red herring of "markup language".

Introduction

In contemporary document management systems,
documents are often characterized chiefly by the for-
mat in which they happen to be represented at some
instant of time. A format is simply the document en-
coding convention of a particular document process-
ing agent; we thus prefer to refer to formats as agent
document types. Formats are often classified into a
rough hierarchy of "levels": image formats (TIFF,
SunRaster, Fax, etc.) are said to be the lowest level,
next are page description level formats (Postscript,
Interpress, etc.), and finally are high level, or struc-

tured, formats (TQX , SGML DTD (Goldfarb, 1990),
ODA DAP (Rosenberg, 1991). etc.).

For some classes of people, such as the imple-
mentor of such a document management system, the
format-centric approach to document taxonomy is
reasonable. These are people who in all likelihood
have no contact with either the creators or the con-
sumers of the documents, and their role is to be a
"middleperson", or broker, between a creator whose
output is in one format, and a consumer who wants
the document presented in a different format. The
document broker probably neither knows nor cares
what the document is about, how it is organized, or

TUGboat, Volume 13 (1992), No. 3 - Proceedings of the 1992 Annual Meeting

Model-Based Conversions of I P W Documents

what its actual content is; instead, accepting a char-
ter to render instances of one format in the other,
as "faithfully" as possible.

Document brokering is not an appropriate view
of another large class of document transactions,
however. A collection of individuals who use differ-
ent document processing tools may be co-authoring
a single document; or, an author and a sophisticated
reader; e.g., a colleague, may wish to share a docu-
ment. In these instances, the "sender" and the "re-
cipient" may have a good deal of common knowledge
about a document's organization and content. In-
deed, for optimal communication among themselves,
the individuals in such groups want their respective
document processing tools to fade into the back-
ground. They want instead to focus clearly on the
"abstract" document that is the object of their in-
teraction; i.e., an abstract intellectual entity that
is independent of the particular software tools used
to process concretizations of it. Furthermore, they
undoubtedly have a common model of this abstract
document (which we would say belongs to a user
document type) in their respective mind's eyes. To
convert the document from one format to another
in these situations, it may be advantageous to know
what the model is, and use it to "direct" or "govern"
the format conversions. In these model-centric con-
texts, there are likely to be aspects of one format
that do not map well to another format, in gen-
eral. However, there will most likely be some way of
encoding the relevant features of the abstract docu-
ment in the destination format. By having the un-
derlying abstract model in hand, and only in this
way, we can maintain "knowledge" of which model
features are encoded which way in which format,
and thereby accomplish higher-quality format con-
versions for a community of model-centric document
users.

In this paper we focus on a single user docu-
ment type, that of "technical articles" (which may
include mathematical formulae). We give a gen-
eral model-building methodology, then specialize it
to create models for the Article user type, and
for agent types. Currently our system deals with
two agent types, IPT@ documents and Tioga doc-
uments. (Tioga is a WYSIWYG editor for structured
documents in the Cedar programming environment
at Xerox PARC: see Swinehart, et al., 1986). We
have created a software tool that supports conver-
sions in which we are given a I4m or Tioga in-
carnation of a document asserted to be a technical
article, and we want to convert it to the other agent
type. We utilize distinct models for each user and
agent type, and precisely specify the rules of inter-

conversion for each (agentType. userType) pair. An
agentType -+ agentType conversion is then carried
out by agentType -+ userType -+ agentType map-
pings. Thus our tool converts a document from one
format to another, while explicitly seeking to pre-
serve its "technical-article-ness" as much as possi-
ble. This is what we mean by a model-based con-
verszon of a document: a document believed to be
a valid instance of some user type, and presented
as an instance of some agent type, is converted to
an instance of another agent type, in a manner as
faithful to its user type as possible. The choice of
particular agent types is secondary; the crux of our
methodology is the "direction" of document format
conversions by user type models.

The following section presents our general
model-building methodology, based on the notion
of a formalzsm, and our model for the Article user
type. Our model-based approach to format conver-
sion is divided into two steps: analyszs; i.e., creating
a valid user type model for the input document, and
syntheszs; i.e., rendering the model instance in the
desired output format. We also call these steps pars-
tng and unparstng. In subsequent sections, we dis-
cuss the parsing and unparsing of Tioga documents,
and the parsing and unparsing of I4W documents.
We concentrate on parsing Tioga documents to Ar-
ticles and unparsing Articles to IPm , rather than
the opposite direction. This reflects the fact that at
the moment the least developed link in our system
is our I P m to Article parser. a situation we are in
the process of rectifying.

Currently our system is implemented in the
Cedar programming environment (Swinehart et al.,
1986), which in turn runs on top of UNIX and X Win-
dows. Although we do not currently make actual
use of the Centaur system (Borras et al., 1988), we
are heavily influenced by the architecture and con-
cepts of Centaur, and of attribute grammars (e.g.,
see P. Franchi-Zannettacci & D. Arnon, 1989, and
A. Brown, H. Blair, 1990).

Modelling Articles with Formalisms

Terms. The first key component of our system is
a single. universal data structure and surface syn-
tax for labelled, n-ary, attributed trees. This we
accomplish with a general tree manipulation pack-
age we have written, called Scrimshaw. "First
order terms", "abstract syntax trees", "functional
forms", and "expression trees" are additional equiv-
alent names for the basic entities of Scrimshaw;
we refer to all of them simply as terms. Atomic
terms are identifiers, 32-bit integers. "reals" (i.e..

TUGboat, Volume 13 (1992), Xo. 3-Proceedings of the 1992 Annual LIreting 381

IEEE standard floating point numbers), and charac-
ter strings. Composite terms are "expression trees",
whose "operator names" are identifiers, and whose
"arguments" are (recursively) terms.

We implement document processing operations
(e.g., parsing, unparsing, conversion) as term rewrzt-
ing or tree transformation operations on Scrimshaw
terms. The particular "function", from terms to
terms, that any such operation represents, is not
a part of Scrimshaw itself. Rather, each document
type gives certain "interpretations", i.e., meanings,
to certain terms of interest, and its operations map
them to certain other terms which also have in-
tended interpretations. All document types can
equally make use of the general term data struc-
tures and operations that Scrimshaw provides, for
what it considers to be uninterpreted terms.

Here is a portion of a Scrimshaw term repre-
sentation of the Tioga form of this paper, which
we hope will suffice to illustrate the nature of
Scrimshaw Terms, in lieu of a full definition:
i n t ernalNode [
node l i s t [

leaf Node [
format [t i t l e] ,

contents C
r u n l i s t [
textLNModel-Based Conversions

of LaTeX Documents"]
I

1
1 ,

leaf Node [
format [authors] ,
contents [
r u n l i s t [
t ex t ["Dennis S . Arnon . . . "1

I
1

I ,
leaf Node [

format [abstract] ,
contents [
runList [
t ex t C

"Abstract: We are creat ing a
document conversion system
. . . formulae\'\ ' (e . g . , "1,

t e x t ["X",

prop l:
$MathNot a t ion,
"quotient [dif f [sumCpower [nameCx] ,
number C31 I , power [name Cxl ,
number [2] 11 , number [I]] ,

sum [power [name [XI , number [2l I ,
number [I] 11 "

I 1 ,
t e x t [

I t) , or " l imer icks \ ' \ ' .
Each machine-oriented "1

I
I

1
I

Formalisms: abstract vs. concrete syntax.
A document type is a certain family of labelled,
n-ary trees, or in other words, some subfamily of
Scrimshaw terms. There is some finite set of label
names (each of which is a Scrimshaw identifier) for
nodes; a node's label is called its "operator". The
set of label names is non-disjointly partitioned into
subsets called phyla; thus, each operator belongs to
one or more phyla. In addition, each leaf node has a
value that is either an identifier, an integer, a char-
acter, a string, a term of some other formalism, or
empty. For each operator, we specify the number
(arity) and phyla (types) of its descendants. An op-
erator is either atomic; i.e., it is a leaf node with
zero descendants and a value, or a fixed arity oper-
ator, with some fixed number n 2 1 of descendants,
whose root operators belong respectively to phyla
PI , ..., P,, or a list operator, capable of having zero
or more descendants whose root operators all be-
long to a single phylum P. Atomic operators in one
formalism, whose values are terms of another for-
malism, are our means of providing for the nesting of
document types one within another, e.g., mathemat-
ical formulae within technical articles. The terms of
a document type may be attributed, and the at-
tribute (i.e., property) values may be crucial to the
specification of the type model; in the limited space
of this paper, however, we have little to say about
attributes.

A family of terms specified as above is called a
formalism, and its constituent terms are called the
abstract syntax trees of the formalism. We imple-
ment each abstract type of documents (e.g., Article,
math formula) as a formalism. Thus the "canoni-
cal" abstract representation of a document in our
methodology is as an abstract syntax tree of some
formalism.

Let us now illustrate these concepts with ex-
cerpts from the Article formalism we use to model
technical articles. Owing to the limited space in this

Dennis S. Arnon, Isabelle Attali and Paul Franchi-Zannettacci

TUGboat, Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Meeting

Model-Based Conversions of I4m Documents

paper these excerpts will stand in lieu of a full def-
inition. Here are the specifications of the article
and header operators in the Article formalism:

article -+ HEADER BODY END ;

header -+ TITLE AUTHORS ABSTRACT KEYWORDS;

is a 4-ary operator; the first descendant of a header
must be of phylum TITLE, its second of phylum
AUTHOR, etc. These phyla happen to contain only
one operator each:

TITLE : := title ;
AUTHORS : : = authors ;
ABSTRACT : : = abstract ;
KEYWORDS : := keywords ;

so we are effectively requiring a single, 4-part struc-
ture in the header of an article. (We write operators
in lower case and phyla in upper case throughout
this section).

Our model of "text" in Articles is that it is a
"list of text items". Thus we have a list operator
"paragraph" defined by:

paragraph + TEXTITEM * . . . ;

which says that a paragraph node has zero or
more descendants, each belonging to the phylum
TEXTITEM. That phylum is defined by the lines:

TEXTITEM : := word specialchar formula . . . ;
word -, value is string ;

specialchar + value is string ;

formula -+ value is MathNotation.ANY ;

where MathNotation is a separate formalism for
mathematical formulae. These lines define our "ab-
stract", "logical", model of text. They say what
kinds of things we believe "text" to be comprised
of. The word, specialchar, and formula operators
are atomic, with their value types specified by the
object of the phrase value is.

We attach text to structural components of a
document with lines such as the following:

subsubsection + TITLE PARAGRAPHLIST ;

paragraphList -+ PARAGRAPH + . . . ;

PARAGRAPHLIST : := paragraphList ;

PARAGRAPH : : = paragraph ;

title : : = PARAGRAPH ;

These say that subsubsection is a binary operator,
whose first child is a TITLE, and whose second child
is a PARAGRAPHLIST, i.e., a list of paragraphs. A
TITLE node must have a title operator, which is
unary: its child is the PARAGRAPH that comprises
the text of that title.

Let us briefly consider the MathNotation for-
malism itself (c.f.. D. Arnon, S. Mamrak 1991. and

D. Arnon, et al., 1988). There, e.g., we define the
quotient notation with the lines:

quotient -+ FORMULA FORMULA;

FORMULA : : = quotient sum power . . . name ;

Thus quotient is a binary operator.
Thus we use the same definitional mechanism

for mathematical formulae as for Articles. As a com-
plete example of the Article formalism, here is an
excerpt of a representation of the present paper in
it. A more detailed version of this excerpt can be
found in the Appendix. Note that we see here how
the value of the formula operator, which is atomic in
the Article formalism, is a term of the MathNotat ion
formalism.

article [
header [

title [

paragraph [
word [

"Model-Based Conversions of LaTeX
Documents " 1

I
I,

authors [
displayItemList [
paragraph [

word["Dennis S. Arnon
. . . Palo Alto,

CA 94304 USA"
I

1 ,
1

1 ,
abstract [

paragraphlist [
paragraph [:

word["Abstract : We are creating"]
. . .

word["formulae" (e.g., " 1,
formula[quotient [

diff [sum[power[nameCx I,
number[3 1 1, power[name[
number[2 1 1 1 , number[1 1,

. . . I 1 I
I 1 1

Validation. Validation is the task of deciding
whether a given term belongs to a given formalism.
Obviously this is a fundamental consistency check
that we make frequently when using our system. For
example, we take it as a basic criterion for parsing
and unparsing steps that the output document, how-
ever perturbed it may seem from the input, should

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 383

Dennis S. Arnon, Isabelle Attali and Paul Franchi-Zannettacci

always be valid for the target formalism to which it
is supposed to belong.

We may define validation of a term for a for-
malism by means of a slightly more general notion:
the validation of a term t for a phylum P. This we
define recursively as follows: let rootop be the oper-
ator of the root node of t . If rootop is atomic, then
d is valid for P if rootop belongs to P, and if the
value of rootop is valid (this involves checking the
syntactic correctness of an integer, real, identifier,
or string, or recursively checking the validity of its
term value for the expected formalism). If rootop
is n-Ary, then t is valid for P if rootop belongs to
P , if the actual number m of children of rootop is
equal to n, and if for i = 1, . .., n, child Term, is valid
for childPhylumi. If rootop is a list operator the
definition is similar. Finally, we say that t is valid
for the formalism if t is valid for ROOTPHYLUM, where
ROOTPHYLUM consists of the allowable operators of
root nodes of terms in this formalism (ROOTPHYLUM
is analogous to the "start symbol(s)" of a grammar).
Often a formalism permits any operator to be a root
operator, i.e., its ROOTPHYLUM is ANY.

Converting Tioga Articles to I4w
In this section we first describe the main features of
the Tioga editor's document model, and then briefly
examine the actual formalism we currently use to
model Tioga documents. We then describe the tree
pattern matching functions we use to convert Tioga
documents to Articles, and finally we outline the ac-
tual Tioga-To-Article converter we have written us-
ing the tree pattern matching functions. For general
background on Tioga, and the Cedar programming
environment of which it is a part, the reader may
consult Swinehart et al., (1986).

The Tioga document model. Tioga is a true
structured document editor in the sense that its in-
ternal data structure for any document is a tree of
nodes, each of which has character string content.
Both entire nodes, and individual characters within
a node, can have properties, i.e., attributes. Each
node is labelled by an identifier that Tioga calls a
format. Typical formats are t i t l e , abst ract , head,
block, reference, etc. Tioga documents are for-
matted by associating a collection of style rules with
them. In particular, there should be a style rule
for each format that specifies, in a Postscript-like
language, how to graphically render nodes of that
format. Multiple fonts are provided via both special
character properties called looks; e.g., bold, i t a l i c ,
greek, plus a mechanism for using the full multi-
national range of the Xerox character code standard.

Mathematics and imbedded illustrations are accom-
modated via character and node properties.

There is no standard surface syntax for Tioga
documents. Virtually all authors of Tioga docu-
ments use a small number of standard styles.

A formalism for Tioga documents. As an in-
termediate step in Tioga to Article conversion, we
have defined a formalism which directly expresses
the Tioga document model. We call this the Medi-
umTioga formalism; we saw an example of it in the
subsection on Terms above. We have written Tioga-
to-MediumTioga, and MediumTioga-to-Tioga con-
verters. Thus we reduce the Tioga- Art icle conver-
sion problem to the MediumTioga-Article conver-
sion problem, which we can approach from com-
pletely within the Scrimshaw world. Thus, for ex-
ample, we implement Tioga-to-Article conversion
by appropriate tree transformations of Scrimshaw
MediumTioga terms to Scrimshaw Article terms.

Tree pattern matching functions. At present
our term rewriting capabilities are built on sim-
ple tree pattern matching, in which patterns are
just literal terms, possibly containing (any num-
ber of instances of) pattern variables of two kinds.
First, a variable which matches any term (which
we call ANYTERM). Second, a variable which
matches any list of one or more terms (which we
call ANYTERMLIST). For example, here is a list
of the patterns we use to search for t i t l e nodes in
MediumTioga documents:
leaf Node [format [t i t l e] , ANYTERM]
internalNode [format [t i t l e] , ANYTERMLIST]

Having matched patterns such as the ones above,
e.g. having found all the t i t l e nodes in a Medi-
umTioga document, we then perform a "rewriting"
action, e.g. to construct the (unique) title node we
must have in the output Article. For this example,
the action is to concatenate the text content of all
t i t l e nodes, and their descendant nodes, to make
the text content of the Article's title.

Tioga-to-article converter. Our goals are to not
fail on any legal Tioga document as input, and to
always produce a valid Article as output. Hence,
using the pattern matching functions, we traverse
the MediumTioga form of an input document and
apply a succession of rules to build a valid Article.

Unparsing Articles to MTEX. An Article term
can be unparsed to a l3.W source file through a
straightforward recursive descent tree traversal. A
sample of a I4T@ unparsing of an Article represen-
tation of this paper is shown in the appendix.

384 TUGboat, Volume 13 (1992), No. 3 -Proceedings of the 1992 Annual Meeting

Model-Based Conversions of I4W Documents

Converting I4m Articles to Tioga

The Article document model has been designed to
be highly compatible with typical I4T@ represen-
tations of documents that are in fact technical ar-
ticles. Thus at the moment it works well for us to
simply define the UT)$ agent model as being iden-
tical to the Article user model. Hence at present we
"convert" a I4T)$ document to an Article by sim-
ply "parsing" its I4m source file and "recognizing"
the Article that we consider to be encoded there.
As before, our goals are to not fail on any valid
I4W input, and to always produce a valid Article
as output. Once we have an Article, it is straight-
forward to unparse it to a MediumTioga document.
At present, we ignore unknown control sequences,
including macros. We are in the process of devel-
oping a separate U7&,X agent model, and upgrading
our I4m parser to use it.

Bibliography

Arnon, D., R. Beach, K. McIsaac, and C. Wald-
spurger. "Caminoreal: An Interactive Mathe-
matical Notebook." Pages 1 - 18 in Proceedings
of the International Conference on Electronic
Publishing, Document Manipulation, and Ty-
pography, J.C. van Vliet , ed. Cambridge: Cam-
bridge University Press, 1988.

Arnon, D., and S. Mamrak. "On the Logical Struc-
ture of Mathematical Notation." TUGboat
12(2), pages 479-484, 1991.

Borras, P., D. Cl6ment: T. Despeyroux, J. Incerpi,
G. Kahn, B. Lang, and V. Pascual. "Centaur:
The system." Proceedings of the S I G S O F T ' ~ ~ ,
Third Annual Symposium on Software Develop-
ment Environments. Association for Comput-
ing Machinery, Boston, Massachusetts, 1988.

Brown, A.. and H. Blair. "A Logic Grammar Foun-
dation for Document Representation and Doc-
ument Layout ." Pages 47 - 64 in Proceedings
of the International Conference on Electronic
Publishing, Document Manipulation, and Ty-
pography, R. Furuta, ed. Cambridge: Cam-
bridge University Press, 1990.

Franchi-Zannettacci, P., and D. Arnon "Context-
Sensitive Semantics as a Basis for Process-
ing Structured Documents." Pages 135 - 146
in Proceedings of WOODMAN'89. Workshop
on Object-Oriented Document Manipulation. J .
Andr6 and Jean Bezivin, editors, (BIGRE 63-
64), IRISA, Campus de Beaulieu, 35042 Rennes
Cedex, France, Mai 1989, ISSN 0221-5225.

Goldfarb, C. The SGML Handbook. Oxford: Claren-
don Press, 1990.

Rosenberg, J. , M. Sherman, A. Marks, and J . Akker-
huis. Multi-Media Document Tkanslation: ODA
and the EXPRES Project. New York: Springer-
Verlag, 1991.

Swinehart, D., P. Zellweger, R. Beach, and R. Hag-
mann. "A Structural View of the Cedar Pro-
gramming Environment." ACM Transactions
on Programming Languages and Systems 8(4)
419 - 490, 1986.

TUGboat. Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Dennis S. Arnon, Isabelle Attali and Paul Franchi-Zannettacci

Appendix

Examples of Conversions
Here is the beginning of the actual Article representation of the Tioga form of this paper

article [:
header [

title[
paragraph [

word[
"Model-Based Conversions of LaTeX

Documents I'
1

1
I ,

authors [
displayItemList [

paragraph [
word C

"Dennis S. Arnon"
1,

specialchar C
" (000 1012) "

I ,
word[

"Xerox PARC"
I ,

J

1
I,

abstract [
paragraphList [

paragraph [
word C

"Abstract: We are creating a
document conversion . . , for example,

"scientific articles\'\',
"mathematical formulae\'\' (e.g., "

1,
formula [

quotient [
diff [

sum[
power [

name [

X

I,

number [:

TUGboat, Volume 13 (1992), No. 3- Proceedings of the 1992 Annual Meeting

Model-Based Conversions of IPW Documents

power [

name [

number [

I ,
number [

I

9

I ,
sum[

power [
name [

number [

1 ,
number [

1

1
1 ,

word [
#I), or "limericks\'\'. Each

machine-oriented, . . . sidestep
what we believe to be the red

herring of "markup language\ ' \ ' . "
1

I
I

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Dennis S. Arnon, Isabelle Attali and Paul Franchi-Zannettacci

I ,
keywords [

paragraph [
word [

"Keywords: Structured Documents,
Electronic Documents, Document Conversion "

I
I

I
1,

body [
sectionlist [

sectionIntroOnly[
title[

paragraph [
word[

"Introduction"
1

1
I ,

paragraphList [

paragraph [
word C

"In contemporary
document management systems, . . .

Example of Unparsing

Here is the beginning of the IPm unparsing of the document that our system actually produces:

\documentstyle [12ptI {Article}
\title(Model-Based Conversions of LaTeX Documents }
\author(
Dennis S. Arnon
%Article% specialChar["(OOO
\ \
Xerox PARC
%Article% specialChar["(OOO
\ \
3333 Coyote Hill Road
%Article% specialchar [I1 (000 1012) "1
\ \
Palo Alto, CA 94304 USA
\and
Isabelle Attali
%Article% specialchar [I1 (000 1012) "1
\ \
INRIA Sophia Antipolis
%Article% specialchar [" (000 1012) "1
\\
Route des Lucioles
%Article% specialchar C " (000 1012) "1
\ \
06565 Valbonne Cedex, France

TUG t)oat,, Volume 13 (l992), No. 3 -Proceedings of the 1992 Annual Meeting

Model-Based Conversions of LzW Documents

\and
Paul Franchi-Zannettacci
%Article% specialchar [I1 (000
\ \
CERISI
%Article% specialchar [" (000
\ \
Sophia Antipolis
%Article% specialchar [" (000 1012) "1
\ \
06561 Valbonne Cedex, France)

\begin{document)
\maket itle
\begin{abstract)

Abstract: We are creating a document conversion system based on
. . .
for example, "scientific articles", "mathematical formulae" (e.g.,

$C\f racIICCCCCCx))-CC3}})
)+CCC{x))-CC2)))
1)
)-CCl}))

CCC<CCx))-lC2)))
3+CII))l
) 1
$
) , or "limericks". Each machine-oriented, or {\em agent) type, is the set
. . .
sidestep what we believe to be the red herring of "markup language".

\end{abstract)
\begin{keywords)
Keywords: Structured Documents, Electronic Documents, Document Conversion
\end{keywords)
\section{Introduction)

In contemporary document management systems, . . .

TUGboat. Volume 13 (1992), No. 3 -Proceedings of the 1992 -4nnual Meeting

390 TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Reports from the 1992
I ~ n n u a l Meeting at Portland I
P'&jX 2.09 - @TJ~X~: An Update

Chris Rowley

The workshop on I P W 3 was basically a report on
activities of the project in the first half of 1992. This
report is an addendum to the article in TUGboat
(13(1):96- 101,1992), which contained a brief sketch
of the IPQ$3 Project: its history, its present state
and its future, as at the end of 1991. See also
and TUG News (vol. 1, nos. 1 and 2) for additional
updates.

1 The Continuing History

2 Visits and meetings: 1992

March - Workshop in Hamburg
April - Visit to CERN and EP92 conference
April- Alan Hoenig takes on the role of liai-
son between the project and the TUG Technical
Council.
May/June - Meeting of core team in Mainz
June- Special meeting of GUTenberg in Paris.
July- Presentation and mini-workshop at
TUG conference in Portland, Oregon.
July - Bowling fund-raiser in Portland.

We are pleased to be able to thank the TUG Board
for its unreserved support for the project - and the
TUG office for making this support a reality. With-
out such solid backing, many of our aims would be
much more difficult to attain. Since his appointment
(and also before it) Alan Hoenig has been enthu-
siastic in his encouragement and publicity for the
project and is now helping us in many ways includ-
ing the always vital fund-raising which is needed (see
below).

The meeting in Mainz was an especially impor-
tant occasion as it was the first time that the current
core team of implementors had all met face-to-face
rather than via the megabytes of e-mail correspon-
dence which had been their only previous contact.
This potentially traumatic experience was survived
by everyone and the outcome was a very useful, in-
tellectually stimulating and enjoyable ten days.

3 find-raising

Many thanks must go to Malcolm Clark and Doug
Henderson for organising the bowling fund-raiser in
Portland: a very enjoyable event at which one of us

discovered that the bowls do not seem to go in the
right direction as easily as they did 25 years ago.
Over $700 was raised by this event - many thanks
to all who contributed so generously.

We also wish to thank the European W or-
ganizations DANTE (Germany) and GUTenberg
(France) for their generous contributions and all the
many other contributors through whose efforts we
have been able to finance important aspects of the
work, such as the meeting in Gainz. These include
individuals, companies and the national user groups:
a list of organisations giving support of various kinds
appears regularly in Q$ and TUG News.

In addition to the bowling fund-raiser, at the
Portland conference we started to look at the pos-
sibilities for larger-scale fund-raising from medium-
sized and large companies and from trusts and foun-
dations. ETP Services has offered substantial sup-
port for this important work. One aspect of this
campaign with which anyone reading this may be
able to help is the supply of information-please
contact us if you have any ideas or knowledge about:

organisations which would be worth canvassing
for funds;
any individuals in medium-to-large companies
who would be a good initial contact point for
such canvassing.

4 Milestones: 1992

- Clarification of the internal mechanisms needed
for parameter handling and their consequences
for the processing of environment begin- and
end- tags.

- Establishment of the necessity of distinguish-
ing between 'author-defined' environments (and
commands) and those environments specified
and modified via the style-designer interface.

- Prototype of an enhanced mechanism for pass-
ing information from one run of I4m to the
next.

- Start of a discussion on the design and im-
plementation of the float-handling mechanism.
This discussion must involve as wide a range as
possible of people involved in typograhic design
and typesetting: please contact us if you have
experience in this area which could be useful to
the project.

- Setting up a network-accessible distribution,
maintenance and code-management system for
the project at the ZDV, Mainz (this will prob-
ably also take over as the source for I4w 2.09
system files).

- Release of a new version of I4Q$ 2.09 which,
in addition to bug fixes, is fully international

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting 391

(incorporating the functionality of I M W) and
is fully compatible with the NFSS.

- Setting up a validation system for testing new
versions of I P W 2.09.

5 Volunteers needed

There are many tasks needing to be done in support
of the lKt'~X3 project which can be worked on con-
currently with the development of the I P m 3 ker-
nel. Furthermore, some tasks require special exper-
tise not found among the core programming team.
Initial research, analysis, and work on these tasks by
volunteers can greatly speed up the process of inte-
grating a number of desirable features into M m 3 .
Many of these features can be extensively developed
and tested under I P W 2.09 even before the I P ' 3
kernel is available.

Therefore a list of volunteer tasks has been
drawn up, in the form of a M m article, which will
shortly (probably by the time you read this) be cir-
culated as widely as possible to the M!&X user com-
munity through various channels: mail lists such as
TeXhax, Inf o-TeX, Euro-TeX; newsgroups such as
comp. t e x t . tex ; anonymous FTP and mail servers
from major T&X archives; and publication in print
via TUGboat and any other journals and newslet-
ters that are interested to print it.

6 Bibliography

Frank Mittelbach and Chris Rowley WQX2.09 L,

D W 3 . TUGboat, l3(1):96- 101, 1992.

Works hop Summary
T@C Archives

Peter Abbott

Although not all the major archives were repre-
sented at the meetings, it was felt that the following
would be of advantage to the world community.

A site (not necessarily an archive) will 'own'
an item of software. That site will be the
definitive source for the current version of that
item. Archives will collect/receive items from
the 'owner'.
Every attempt will be made to keep the archives
in step and up to date.

* Authors will be requested to use standard
header formats in ASCII files, details of which
will be circulated later.
Read.Me files for collections of PK font files
will contain header details stating from which
MF sources they were generated (e.g., Aston

will move towards holding 300 dpi P K files for
Canon SX (write black), 180 dpi, and 240 dpi).
Aston may (probably will) move to a UNIX ma-
chine but VMS binaries will be retained and, if
possible, a VMS-like interface will b e provided.
Due notice will be taken of directory and file-
names to prevent them exceeding 80 characters
in total if possible, since many mailers will trun-
cate long lines.

0 Case of letters in names should be irrelevant.

Aston has also undertaken to make available

WAIS -Wide Area Information Server;
Gopher - The Internet Gopher Service;

0 ARCHIE- Archie entries (A VMS client has
been announced); and
WWW (W3) -World Wide Web.
Aston currently has its directory available for

search by WAIS (i.e., the ability to locate any file
name immediately). U K W and m h a x are also
available in indexed form.

Aston is aiming to make available a front end
to link the synthetic catalogues such as David Jones'
to the actual files in the archive. The same systems
can be used to access more developed books, such
as The W b o o k .

Aston already has a crude model of activity for
WAIS and files, whereby the * .dv i * are in-
dexed word by word. The user is returned a piece
of dvi representing a printed page.

Workshop Summary
Getting PostScript into and IY-
Documents

Anita Z. Hoover

Approximately 65 people came to learn and con-
tribute ideas on how to include Postscript files
into and MTEX using dvips. the popular
DVI-+PostScript driver written by Tomas Rokicki
of Stanford University.

The basic objectives covered:

1. What is a Bounding Box?
Tells how big the graphic is and where it is lo-
cated on the page. It represents the lower-left
and upper-right corners of a box which would
surround the graphic in the PostScript file.

2. What if I don't have a Bounding Box?
You need to use bbf i g or some other program
or calculate it by hand.

3. What is the page orientation for PostScript?
Looking at a portrait page, the lower-left corner
is the origin (0,O) and the upper-right corner is

TUGboat, Volume 13 (1992), No. 3

(612,792) for American letter size paper. The
upper-right corner will be different for other pa-
per sizes.
How do I include my PostScript pictures?
Two macro packages are available

epsf

w :
\input epsf

lxI&X:
\documentstyle [epsf 1 { s t y le)

psfig
m:

\input psf ig
urn:

\documentstyle {s ty le)
\inputCpsf ig)

A document was distributed that explained in
detail how to include PostScript in and I4m
documents. This was specifically written for the
UNIX environment at the University of Delaware,
but can easily be applied to all computer environ-
ments.

Eight examples were distributed that showed
specific Postscript files being included from a va-
riety of applications such as Macintosh Cricket-
Graph, Mathematica, Framemaker, Wordperfect,
Lotus, SAS Graphics, Macintosh MacDrawII, and
Macintosh Superpaint.

All examples and documentation are available
via anonymous ftp from

zebra.cns.udel.edu (128.175.8.11) in
pub/tex/workshoptug92/PostScript.

Workshop Summary
U r n : How to Use Style Options

Anita Z. Hoover

Approximately 45 people came to learn and con-
tribute ideas on how to use specific style options
available with I4m. Many of the names of style
files needed to be reduced to &character file names
with 3-character extensions. As a result the original
name taken off the archive is listed in parenthesis.

1. How to rotate a table (based on using dvips
written by Tomas Rokicki).

3. How to create a draft overlay for every page
using PostScript (based on using dvips written
by Tomas Rokicki).

4. How to produce tables/figures side by side.

0 Use the minipage environment.

5. How to modify your headings and footers.

6. How to number your equations, 1, 2a, 2b, 2c, 3,
4a, 4b, 5, etc.

7. Kow to continue a table across multiple pages
without having to do so by hand.

All examples and documentation are available
via anonymous ftp from

Workshop Summary
Modifying manmac to Suit the Publisher

Dan Olson

This was the second year for this workshop to be pre-
sented in conjunction with the TUG Annual Meet-
ing. It is not intended as an introduction to macro
writing. Instead, it is an introductory look at the in-
ner workings of macro packages. We looked at mod-
ifications made to the manmac macros (used in pro-
ducing The =book) to implement common pub-
lisher requests. Topics explained included modifying
the fonts used in a document, changing the page size,
and reformatting the running heads, footnotes, and
exercises. Examples included the use of such
commands as \llap, \rlap, and \hangindent. The
attendees had Macintoshes running Textures avail-
able for hands-on work.

2. How to create two-up pages without using
PostScript.

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

Participants at the
13th Annual TUG Meeting

July 27-30,1992 Portland, Oregon r
* indicates an exhibitor

Peter Abbott
Aston University
Birmingham, England, U.K.

Robert A. Adams
University of British
Columbia
Vancouver
British Columbia, Canada

Clifford Alper
QX Users Group
Providence, Rhode Island

Dennis Arnon
Xerox Palo Alto Research
Center
Palo Alto, California

Harry Baldwin
San Diego City College
San Diego, California

Frederick H. Bartlett
Bartlett Press Incorporated
Somerset, New Jersey

Charles W. Beardsley
American Society of
Mechanical Engineers
New York, New York

Nelson H. E Beebe
University of Utah
Salt Lake City, Utah

Barbara Beeton
American Mathematical
Society
Providence, Rhode Island

Larry Bennett
South Dakota State
University
Brookings, South Dakota

Chris Biemesderfer
National Optical Astronomy
Observatories
Tucson, Arizona

Angelika Binding
Springer-Verlag Heidelberg
Heidelberg, Germany

Antonio Bockh
Intevep
Caracas, Venezuela

Kathy Borg-Todd
University of South
Carolina
Columbia, South Carolina

Johannes Braams
PTT Research Neher
Laboratorium
Leidschendam
The Netherlands

Mimi Burbank
Florida State University
Tallahassee, Florida

William P. Butler
QX Users Group
Providence, Rhode Island

Katherine Butterfield
University of California,
Berkeley
Berkeley, California

Stephen Carlson
Williamsburg, Virginia

Christopher Carruthers
University of Ottawa
Ottawa, Ontario, Canada

Katharine S. Carter
Princeton University
Princeton, New Jersey

William Casselman
University of British
Columbia
Vancouver
British Columbia, Canada

S. Bart Childs
Texas A&M University
College Station, Texas

Daniel Christiansen
Albion College
Albion, Michigan

Malcolm W. Clark
Polytechnic of Central
London
London, England, U.K.

A.C. Conrad
Menil Foundation
Houston, Texas

*Betsy J. Dale
ArborText Incorporated
Ann Arbor, Michigan

Heather Dalterio
American Astronomical
Society
Washington, DC

Jackie Damrau
Superconducting Super
Collider Laboratory
Dallas, Texas

Donald W. DeLand
Integre Technical
Publishing Company
Albuquerque, New Mexico

Christine Detig
Technische Universitat
Darmstadt
Darmstadt, Germany

Luzia Dietsche
Universitat Heidelberg
Heidelberg, Germany

Andrea Domst
State University of New
York at Fredonia
Fredonia, New York

Faith Donaldson
TSI Graphics
Effingham, Illinois

Michael Doob
University of Manitoba
Winnipeg, Manitoba
Canada

Michael J. Downes
American Mathematical
Society
Providence, Rhode Island

*Ken Dreyhaupt
Springer-Verlag New York
Inc .
New York, New York

Rochelle Edmond
NASA Ames Research
Center
Moffett Field, California

Victor L. Eijkhout
University of Tennessee,
Knoxville
Knoxville, Tennessee

Michael J. Ferguson
Universite du Qu6bec
Verdun, Quebec, Canada

Peter Flynn
University College of Cork
Cork, Republic of Ireland

Jim Fox
University of Washington
Seattle, Washington

Harumi Fujiura
ASCII Corporation
Kawasaki, Japan

Edward A. Garay
University of Illinois at
Chicago
Chicago, Illinois

Mary Louise Garcia
Los Alamos National
Laboratory
Los Alamos, New Mexico

Ron Gardner
Gardner Indexing Service
Edmonton, Alberta, Canada

* Doug Garnett
Blue Sky Research
Portland, Oregon

Helen M. Gibson
Wellcome Institute for the
History of Medicine
London, England, U.K.

* Regina Girouard
American Mathematical
Society
Providence, Rhode Island

Philip Goldstein
Space Telescope Science
Institute
Baltimore, Maryland

Raymond E. Goucher
Detroit, Michigan

Geeti Granger
John Wiley & Sons Ltd.
Chichester, England, U.K.

Paula Gudder
Denver, Colorado

Rakesh Gupta
Techbooks Incorporated
Fairfax, Virginia

William L. Haberman
Rockville, Maryland

James Hafner
San Jose, California

Christopher Hamlin
American Institute of
Physics
Woodbury, New York

Yannis Haralambous
Villeneuve d'Ascq, France

* Robert L. Harris
Micro Programs
Incorporated
Syosset, New York

Richard N. Hayes
ETP Services Co.
Portland, Oregon

Doug Henderson
Blue Sky Research
Portland, Oregon

*Amy Hendrickson
Wnology Incorporated
Brookline, Massachusetts

Karin Hendrickson
University of Washington
Seattle, Washington

Matthew N. Hendryx
Academic Graphics
Typography
North Manchester, Indiana

Robert H. Hilbert
John Wiley & Sons
Incorporated
New York, New York

John D. Hobby
AT&T Bell Laboratories
Murray Hill, New Jersey

Alan Hoenig
John Jay College, City
University of New York
New York, New York

Stephanie Hogue
University of Pennsylvania
Philadelphia, Pennsylvania

Anita 2. Hoover
University of Delaware
Newark, Delaware

TUGboat, Volume 13 (1992), No. 3-Proceedings of the 1992 Annual Meeting

* Berthold Horn
Y & Y
Carlisle, Massachusetts

* Blenda Horn
Y & Y
Carlisle, Massachusetts

* Don Hosek
Quixote Digital Typography
Claremont, California

Calvin W. Jackson
California Institute of
Technology
Pasadena, California

Mimi Jett
ETP Services Co.
Portland, Oregon

Gordon C. Johnson
Interactive Composition
Corporation
Pleasant Hill, California

Thomas Judson
University of Portland
Portland, Oregon

Becky Kaluza
Blue Sky Research
Portland, Oregon

David Kellerman
Northlake Software
Portland, Oregon

* Linda King
ArborText Incorporated
Ann Arbor, Michigan

Timo Knuutila
University of Turku
Turku, Finland

Kresten Krab Thorup
Aalborg, Denmark

David H. Kratzer
Los Alamos National
Laboratory
Los Alamos, New Mexico

Candy Lafrenz
ETP Services Co.
Portland, Oregon

Francois Lambert
Universite de Montreal
Montreal, QuBbec, Canada

Joachim Lammarsch
Universitat Heidelberg
Heidelberg, Germany

Timothy R. Larson
Behrend College
Erie, Pennsylvania

Dan C. Latterner
Mathematical Reviews
Ann Arbor, Michigan

Warren Leach
Blue Sky Research
Portland, Oregon

Dan Levin
Educaide Software
Vallego, California

'?

Silvio Levy
University of Minnesota
Minneapolis, Minnesota

Frank Lusardi
New York, New York

Pierre MacKay
University of Washington
Seattle, Washington

David Marks
Imperial College
London, England

Elizabeth McCarthy
IBM T. J. Watson Research
Center
Yorktown Heights
New York

Robert W. McGafFey
Martin Marietta Energy
Systems Inc.
Oak Ridge, Tennessee

Wendy McKay
Universite de Montreal
Montreal, Quebec, Canada

Carol A. Meyer
Association for Computing
Machinery, Inc.
New York, New York

Lothar Meyer-Lerbs
Bremen, Germany

Cornelia M. Monahan
American Society of
Mechanical Engineers
New York, New York

Patricia Monohon
University of California,
Santa Barbara
Santa Barbara, California

Mary Jean Moore
University of California,
Oakland
Oakland, California

Norman Naugle
Texas A&M University
College Station, Texas

Florence Neuberger
East Setauket, New York

Arthur Ogawa
Palo Alto, California

* Daniel D. Olson
ETP Services Co.
Portland, Oregon

*Fred Osborne
TCI Software Research, Inc.
Las Cruces, New Mexico

Yoko Ozawa
NEC Research Institute, Inc.
Princeton, New Jersey

* George Pearson
TCI Software Research, Inc.
Las Cruces, New Mexico

Brett Perkes
Interactive Composition
Corporation
Logan, Utah

Bill Pikounis
Merck Sharp and Dohrne
Research Laboratories
Rahway, New Jersey

Craig R. Platt
University of Manitoba
Winnipeg, Manitoba
Canada

Jon Radel
Reston, Virginia

Pat Radnich
Personal 'I)$ Incorporated
Mill Valley, California

T. V. Raman
Cornell University
Ithaca, New York

Maria Ramirez
University of Washington
Seattle, Washington

Cynthia Rodriguez
University of Illinois at
Chicago
Chicago, Illinois

Chris Rowley
The Open University
London, England, U.K.

Beverly J. Ruedi
Mathematical Association
of America
Washington, DC

Jan Michael Rynning
Stockholm, Sweden

David Salomon
California State University,
Northridge
Northridge, California

Joachim Schrod
Technische Universitat
Darmstadt
Darmstadt, Germany

John T. Sheridan
Sheridan Printing Systems,
Inc.
Alpha, New Jersey

* Barry Smith
Blue Sky Research
Portland, Oregon

Jenny Smith
John Wiley & Sons Ltd.
Chichester, England, U.K.

Lee Smith
ETP Services Co.
Portland, Oregon

Lowell Smith
Salt Lake City, Utah

Michael Sofka
Publication Services
Champaign, Illinois

Friedhelm Sowa
Heinrich Heine University
Diisseldorf, Germany

Anthony Starks
Newark, New Jersey

David K. Steiner
Rutgers University
Piscataway, New Jersey

Christina Thiele
Carleton Production Centre
Nepean, Ontario, Canada

Marlene Thorn
BrooksiCole Publishing
Company
Pacific Grove, California

Margaret Thomas
Talaris Systems Inc.
San Diego, California

Lee E Thompson
University of Wisconsin,
Madison
Madison, Wisconsin

Thomas M. Thompson
Walla Walla College
College Place, Washington

Andy =nh
Beckrnan Instruments
Incorporated
Brea, California

Frank H. Ulmer
Grumman Melbourne
Systems Division
Melbourne, Florida

Walter van der Laan
PTT Research Neher
Laboratorium
Leidschendam
The Netherlands

Margaret L. Ward
Massachusetts Institute of
Technology
Cambridge, Massachusetts

Stacy Waters
University of Washington
Seattle, Washington

Neil A. Weiss
Arizona State University
Tempe, Arizona

Alan Wetmore
U.S. Army Atmospheric
Sciences Laboratory
White Sands Missile Range
New Mexico

Ron Whitney
'QX Users Group
Providence, Rhode Island

William B. Woolf
American Mathematical
Society
Providence, Rhode Island

* Ralph E. Youngen
American Mathematical
Society
Providence, Rhode Island

TUGboat, Volume 13 (1992), No. 3

The Donald E. Knuth Scholarship:
1992 Scholar and 1993 announcement

Jenny Smith, an employee of the Production De-
partment of John Wiley and Sons, Ltd., Chiches-
ter, England, was honored at the 1992 TUG Annual
Meeting in Portland, Oregon, as the 1992 Donald E.
Knuth Scholar. Ms. Smith is the seventh recipient
of the Scholarship. The award included all expenses
associated with attendance at the meeting. and at
the short course on advanced and macro writ-
ing which followed it.

The intent of the Knuth Scholarship is to en-
courage the increase of knowledge about TEX and
to sharpen the 'IkX skills of non-technical users.

The Committee reported that all entries showed
good to excellent standards of typography. The ma-
jor distinction of the winner's project was to demon-
strate skills in production of a wide range of docu-
ments, including modifying and writing macros for
some of the documents.

Thanks are extended to the 1992 Scholarship
Committee. Chris Rowley (chair), and David Sa-
lomon will remain on the Committee for 1993. Leav-
ing the Committee are Nico Poppelier, who will be-
come the liaison between the Committee and the
TUG Board of Directors, and Linda Williams, the
1991 Knuth Scholar. Jenny Smith will join the Com-
mittee for one year in her role as the current Knuth
Scholar.

Announcement of the 1993 competition

One Knuth Scholarship will be available for award
next year. The competition will be open to all 1993
TUG members holding support positions with du-
ties that are secretarial, clerical or editorial in na-
ture. It is therefore not intended for those with a
substantial training in technical, scientific or math-
ematical subjects and, in particular, it is not open
to anyone holding, or studying for, a degree with a
major or concentration in these areas.

The award will consist of an expense-paid trip
to the 1993 TUG Annual Meeting at Aston Univer-
sity in Birmingham, England, and to the Scholar's
choice from the short courses offered in conjunction
with that meeting. A cap of $2000 has been set for
the award; however, this does not include the meet-
ing or course registration fees, which will be waived.

To enter the competition, applicants should
submit to the Scholarship Committee, by the dead-
line specified below, the input file and final T)$ out-
put of a project that displays originality, knowledge
of m. and good W n i q u e .

The project as submitted should be compact in
size. If it involves a large document or a large num-
ber of documents then only a representative part
should be submitted, together with a description of
the whole project. For example, from a book just
one or two chapters would be appropriate.

The project may make use of a macro pack-
age, either a public one such as I4W or one that
has been developed locally; such a macro package
should be identified clearly. Such features as sophis-
ticated use of math mode, of macros that require
more than "filling in the blanks", or creation and
use of new macros will be taken as illustrations of
the applicant's knowledge.

All macros created by the candidate should be
well documented with clear descriptions of how they
should be used and an indication of how they work
internally.

All associated style files, macro-package files,
etc., should be supplied, or a clear indication given
of any widely available ones used (including version
numbers, dates, etc.); clear information should be
provided concerning the version of used and
about any other software (e.g. particular printer
drivers) required. Any nonstandard fonts should be
identified and provided in the form of . t f m and . pk
files suitable for use on a 300dpi laser printer.

While the quality of the typographic design will
not be an important criterion of the judges, candi-
dates are advised to ensure that their printed output
adheres to sound typographic standards; the rea-
sons for any unusual typographic features should be
clearly explained.

All files and documents comprising the project
must be submitted on paper; the input files should
be provided in electronic form as well. Suitable elec-
tronic media are IBM PC-compatible or Macintosh
diskettes, or a file sent by electronic mail.

Copies of this announcement and some addi-
tional information are available from the TUG of-
fice. To obtain a copy, or to request instructions on
e-mail submission, write to the address at the end of
this announcement, or send a message by e-mail to
T U G Q M a t h . AMS. org with the subject "Knuth Schol-
arship request".

Along with the project, each applicant should
submit a letter stating the following:

1. affirmation that he/she will be available to at-
tend the 1993 annual meeting;

2. affirmation of willingness to participate on the
committee to select the next Scholar.

396 TUGboat, Volume 13 (1992), No. 3

Each applicant should also submit a curriculum
vitae summarizing relevant personal information, in-
cluding:

1. statement of job title, with a brief description
of duties and responsibilities;

2, description of general post-secondary school ed-
ucation, T&$ education, identifying courses at-
tended, manuals studied, personal instruction
from experienced m users, etc.;

3. description of T&$ resources and support used
by the candidate in the preparation of the
project.

Neither the project nor the curriculum vitae should
contain the applicant's name or identify the appli-
cant. These materials will be reviewed by the com-
mittee without knowledge of applicants' identities.
If, despite these precautions, a candidate is identifi-
able to any judge, then that judge will be required
to make this fact known to the others and to the
TUG board members responsible for the conduct of
the judging.

The covering letter, curriculum vitae, and all
macro documentation that is part of the project in-
put should be in English. (English is not required
for the output of the project.) However, if English
is not the applicant's native language, that will not
influence the decision of the committee.

Selection of the Scholarship recipient will be
based on the project submitted.

Schedule

The following schedule will apply; all dates are in
1993:

March 1 Deadline for receipt of
submissions

March 15-May 10 Judging period
May 17 Notification of winner
July 26-29 1993 Annual Meeting,

Birmingham, England

The 1993 Scholarship Committee consists of
0 Chris Rowley, Open University, UK (Chair);
0 David Salomon, California State University,

Northridge;
0 Jenny Smith, John Wiley and Sons, Ltd.,

Chichester, England.

Where to write

All applications should be submitted to the Com-
mittee in care of the TUG office:

rn Users Group
Attn: Knuth Scholarship Competition
653 North Main Street
P. 0 . Box 9506
Providence, RI 02940-9506
U.S.A.
email: TUGbath . a m . org

o Barbara Beeton
Liaison to the 1992 Committee

Calendar

1992 Dec 15

Nov 17 TUGboat Volume 14,
lSt regular issue:
Deadline for receipt of technical 1993
manuscripts.

Nov 19 NTG Fall Meeting, Feb
" M m , M m 3, and font selection",
Meppel (near Groningen) ,
The Netherlands. For information,
contact Gerard van Nes
(vannes@ECN . NL) .

Nov 24 TUGboat Volume 13,
3rd regular issue: Feb 16
Mailing date (tentative).

TUGboat Volume 14,
lSt regular issue:
Deadline for receipt of news items,
reports.

UK Users' Group, London.
Topic: Front ends for m; how
successful are the WYSIWYG
packages for non-Tf$ users and
for wizards? For information,
contact Carol Hewlett
(hewlett@vax . l s e . ac . uk).

TUGboat Volume 14,
Pd regular issue:
Deadline for receipt of technical
manuscripts (tentative).

Status as of 15 September 1992

TUGboat, Volume 13 (1992), No. 3

Feb 23 rn for Publishers,
Boston, Massachusetts.

Feb 24 - 27 CONCEPPTS 93, The Prepublishing
Conference, Orange County
Convention Center, Orlando, Florida.
"International Conference on
Computers and Electronic Publishing
and Printing Technologies".
For information, phone:
703-264-7200, Fax: 703-620-9187.

San Francisco, California
Mar 1-5 Intensive I P W

Mar 8- 9 Practical SGML and w
Mar

Mar

Mar

Mar

A P ~

A P ~

A P ~

9 TUGboat Volume 14,
lSt regular issue:
Mailing date (tentative).

9 - 12 DANTE'93 and General Meeting,
Chemnitz, Germany. For information,
contact Dr. Wolfgang Riedel

(wolf gang. r iede l0hrz . tu-chemnitz . de)

May

May 25

TUGboat Volume 14,
Pd regular issue:
Deadline for receipt of news items,
reports (tentative).

UK W Users' Group, Glasgow,
Scotland. (Two days, just before the
BCS EPSG meeting; postponed from
April 1992.) Topics: METAFONT,
theoretical and practical; and
font selection schemes, virtual
fonts, multiple languages and
hyphenation, etc. -everything you
need to know to use T$$ to typeset
foreign languages. For information,
contact Carol Hewlett
(hewlettQvax . h e . ac .uk).

m for Publishers, Washington, DC.

BeginningIIntermediate r n ,
Boston, Massachusetts.

Intensive I P W ,
Boston, Massachusetts.

UK m Users' Group,
Chichester, England. Visit to
John Wiley & Sons Ltd. Host:
Geeti Granger. For information,
contact Carol Hewlett
(hewlettQvax. h e . ac .uk).

TUGboat Volume 14,
2nd regular issue:
Mailing date (tentative).

May-Jun

Jun 6-9

Jun 9

NTG Spring Meeting,
"Typography in past and future"
[location to be announced].
For information, contact
Gerard van Nes (vannesQECN . NL).

Society for Technical Communication,
4oth Annual Conference.
Dallas, Texas. For information,
contact the Society headquarters,
901 N. Stuart St., Suite 304,
Arlington, VA 22203-1822.
(703-522-4114; Fax: 703-522-2075)
Proposals for presentations due by
August 1, 1992.

w for Publishers, New York City.

San Diego, California
Jun 7- 11 Modifying I P w Style Files

Jun 14 - 19 BeginningIIntermediate

Jun 21 - 25 Advanced W and Macro Writing

Aug 9-13

Aug 17

Aug 23-27

Sep 14

Sep 22

BeginningIIntermediate m,
Boston, Massachusetts

TUGboat Volume 14,
Yd regular issue:
Deadline for receipt of technical
manuscripts (tentative).

Intensive U r n , Ottawa, Canada.

TUGboat Volume 14,
Srd regular issue:
Deadline for receipt of news items,
reports (tentative).

for Publishers, Orlando, Florida

Boston, Massachusetts

Sep 23 - 24 Book and Document Design with
w

Oct 25 - 29 Intensive

Nov 1 - 5 Advanced 7]EX and Macro Writing

Nov 8 - 9 Practical SGML and m
Oct 18 - 22 BeginningIIntermediate W ,

Chicago, Illinois

Nov 23 TUGboat Volume 14,
Yd regular issue:
Mailing date (tentative).

For additional information on the events listed
above, contact the TUG office (401-751-7760, email:
tugQmath . ams . com) unless otherwise noted.

TUG93 call for papers

World Wide Window on
14th Annual TE)(Users Group Meeting July 26th - 29th, 1993

Aston University in Birmingham, UK, will be the venue for the 1993 TUG
conference. Aston is the home of the 'Aston Archive', one of the largest collections of
electronic paraphernalia. This is the first time the annual meeting will have
been held outside North America.

The location of the conference at one centre of the electronic web and its movement
from North America encourages particular focus on the 'world-wide' aspects of TJ$
(IATEX, METRFONT.. .) . The marked rise in maturity of windowing systems
(Macintosh, Atari, Amiga, Windows3, X windows) also allows us to exploit more
straightforward and direct ways of employing the T)jX tools. It is hoped that there
will be a contribution to the conference from the Didot project, further extending the
range of topics to include digital typography and font creation.

The conference will feature the regular paper presentations, but workshops, poster
displays, courses, panels and 'birds of a feather' sessions will be integral components.

Contributions are being actively sought in the following subject areas: o archives o

electronic networks o formatting structured documents o UTEX~ o graphical user
interfaces to w w a r e o non-english issues o non-Latin scripts o digital typography o

editing structured documents o styles o other typesetting systems o document views o

Program coordinators
Chris Rowley
Parsifal College
Open University
Finchley Road
London NW3 7BG

phone: 071 794 0575
email: ca-rowley@uk. ac .
fax: 071433 6196

Conference committee

Malcolm Clark
IRS
University of Westminster
115 New Cavendish Street
London W1M 8JS
071 911 5000 ex 3622

open.acs.vax malcolmc@uk.ac.wmin
0719115093

Peter Abbott, Chris Rowley, Philip Taylor, Carol Hewlett, Sebastian Rahtz, David
Osborne, Malcolm Clark

l&X Users Group
1993 Course Schedule

Boston April 19-23
San Diego June 14-19
Boston August 9-1 3
Chicago October 18-22

Intensive Course in Ul)iJL
San Francisco March 1-5
Boston April 26-30
Ottawa August 2 3-2 7
Boston October 25-29

Modifying Latex Style Files
San Diego June 7-11

Advanced I)$ and Macro Writing
San Diego June 21-25
Boston November 1-5

Practical SGML and I)$
San Francisco March 8-9
Boston November 8-9

lj$ for Publishers
Boston February 23
Washington, DC April 14
New York City June 9
Orlando September 22

Book and Document Design with
Boston September 23-24

With the exception of TEX for Publishers and Book and Document Design with Q X , each
class will be run in laboratory style with computers provided for all students.

TUG courses are small with 8 to 15 students in most classes and are held at major hotels.

The dates and locations above are tentative - watch for the final schedule in the mail
this fall.

For more information about these courses, contact the '&X Users Group at
(401) 751-7760.

and . . .
On-site courses in QX and Ul&X

are also available from the l&X Users Group

Courses in 'QX, IP'QX, SGML and m, Postscript, or T)$ for Publishers at every level,
from beginning to advanced, can be arranged and tailored to your needs. The course fee
includes all instructor fees and expenses plus textbooks and other materials for up to 15
students. If a properly equipped training facility is not available, TUG will arrange
computer rentals and supply TpJ or L A W software.

Contact the '&X Users Group at (401) 751-7760 for more information.

TUGboat, Volume 13 (1992), No. 3

Institutional
Members

The Aerospace Corporation,
El Segundo, California

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc.,
Ann Arbor, Michigan

ASCII Corporation,
Tokyo, Japan

Beckman Instruments,
Diagnostic Systems Group,
Brea, California

Belgrade University,
Faculty of Mathematics,
Belgrade, Yugoslavia

Brookhaven National Laboratory,
Upton, New York

Brown University,
Providence, Rhode Island

California Institute of Technology,
Pasadena, California

Calvin College,
Grand Rapids, Michigan

Carleton University,
Ottawa, Ontario, Canada

Centre Inter-RCgional de
Calcul ~lectronicpe, CNRS,
Orsay, France

CERN, Geneva, Switzerland

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications
Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

Construcciones Aeronauticas, S . A.,
CAE-Division de Proyectos,
Madrid, Spain

Cornell University,
Mathematics Department,
Ahaca, New York

DECUS, Electronic Publishing
Special Interest Group,
Marlboro, Massachusetts

Department of National Defence,
Ottawa, Ontario, Canada

Digital Equipment Corporation,
Nashua, New Hampshire

E. S. Ingenieres Industriales,
Sevilla, Spain

Edinboro University
of Pennsylvania,
Edinboro, Pennsylvania

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

European Southern Observatory,
Garching bei Munchen,
Federal Republic of Germany

Fermi National Accelerator
Laboratory, Batavia, Illinois

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Fordham University,
Bronx, New York

General Motors
Research Laboratories,
Warren, Michigan

GKSS, Forschungszentrum
Geesthacht GmbH,
Geesthacht, Federal Republic of
Germany

Grinnell College,
Computer Services,
Grinnell, Iowa

Grumman Aerospace,
Melbourne Systems Division,
Melbourne, Florida

GTE Laboratories,
Waltham, Massachusetts

Hughes Aircraft Company,
Space Communications Division,
Los Angeles, California

Hungarian Academy of Sciences,
Computer and Automation
Institute, Budapest, Hungary

IBM Corporation,
Scientific Center,
Pa10 Alto, California

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Intevep S. A., Caracas, Venezuela

Iowa State University,
Ames, Iowa

The Library of Congress,
Washington D. C.

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Louisiana State University,
Baton Rouge, Louisiana

Macrosoft, Warsaw, Poland

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Brno, Czechoslovakia

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
fiir Mathematik,
Bonn, Federal Republic of Germany

NASA Goddard
Space Flight Center,
Greenbelt, Maryland

National Institutes of Health,
Bethesda, Maryland

National Research Council
Canada, Computation Centre,
Ottawa, Ontario, Canada

Naval Postgraduate School,
Monterey, California

New York University,
Academic Computing Facility,
New York, New York

Nippon Telegraph &
Telephone Corporation,
Software Laboratories,
Tokyo, Japan

Northrop Corporation,
Palos Verdes, California

The Open University,
Academic Computing Services,
Milton Keynes, England

Pennsylvania State University,
Computation Center,
University Park, Pennsylvania

Personal m, Incorporated,
Mill Valley, California

Politecnico di Torino.
Torino, Italy

T U G b o a t , Volume 13 (1992), No. 3

Princeton University,
Princeton, New Jersey

Purdue University,
West Lafayette, Indiana

Queens College,
Flushing, New York

Rice University,
Department of Computer Science,
Houston, Texas

Roanoke College,
Salem, VA

Rogaland University,
Stavanger, Norway

Ruhr Universitat Bochum,
Rechenzentrum,
Bochum, Federal Republic of
Germany

Rutgers University, Hill Center,
Piscataway, New Jersey

St. Albans School,
Mount St. Alban, Washangton,
D. C.

Smithsonian Astrophysical
Observatory, Computation Facility.
Cambridge, Massachusetts

Software Research Associates,
Tokyo, Japan

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Federal Republic of
Germany

Springer-Verlag New York, Inc.,
New York, New York

Stanford Linear
Accelerator Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Talaris Systems, Inc.,
San Diego, Californna

Texas A & M University,
Department of Computer Science,
College Station, Texas

UNI-C, Aarhus, Denmark

United States Military Academy,
West Point, New York

University of Alabama,
Tuscaloosa, Alabama

University of British Columbia,
Computing Centre,
Vancouver, British Columbia,
Canada

University of British Columbia,
Mathematics Department,
Vancouver, British Columbia,
Canada

University of Calgary,
Calgary, Alberta, Canada

University of California, Berkeley,
Space Astrophysics Group,
Berkeley, California

Gniversity of California, Irvine,
Information & Computer Science,
Irvine, California

University of California,
Los Angeles, Computer
Science Department Archives,
Los Angeles, California

University of California, Santa
Barbara, Santa Barbara, California

University of Canterbury,
Christchurch, New Zealand

University College,
Cork, Ireland

University of Crete,
Institute of Computer Science,
Heraklio, Crete, Greece

University of Delaware,
Newark, Delaware

University of Exeter,
Computer Unit,
Exeter, Devon, England

University of Glasgow,
Department of Computing Science,
Glasgow, Scotland

University of Groningen,
Groningen, The Netherlands

University of Heidelberg,
Computing Center ,
Heidelberg, Germany

University of Illinois a t Chicago,
Computer Center,
Chicago, Illinois

University of Kansas,
Academic Computing Services,
Lawrence: Kansas

Universitat Koblenz-Landau,
Koblena, Federal Republic of
Germany

University of Maryland,
Department of Computer Science,
College Park, Maryland

University of Massachusetts,
Amherst, Massachusetts

Universitk degli Studi d i Trento,
Trento, Italy

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Oslo,
Institute of Mathematics,
Blindern, Oslo, Norway

University of Salford,
Salford, England

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas a t Austin,
Austin, Texas

University of Washington,
Department of Computer Science,
Seattle, Washington

University of Western Australia,
Regional Computing Centre,
Aredlands, Australia

Uppsala University,
Uppsala, Sweden

Villanova University,
Villanova, Pennsylvania

Virginia Polytechnic Institute,
Interdisciplinary Center
for Applied Mathematics,
Blacksburg, Virginia

Vrije Universiteit,
Amsterdam, The Netherlands

Washington State University,
Pullman, Washington

Widener University,
Computing Services,
Chester, Pennsylvania

Worcester Polytechnic Institute,
Worcester, Massachusetts

Yale University,
Department of Computer Science.
New Haven, Connecticut

North America

Abraharns, Paul
214 River Road, Deerfield, MA 01342;
(413) 774-5500

Development of TEX macros and macro
packages. Short courses in QX. Editing
assistance for authors of technical articles,
particularly those whose native language is
not English My background includes
programming, computer science,
mathematics, and authorship of EX for the
Impatient.

American Mathematical Society
F! 0 . Box 6248, Providence, RI 02940;
(401) 455-4060

Typesetting from DVI files on an Autologic
APS Micro-5 or an Agfa Compugraphic
9600 (PostScript). Times Roman and
Computer Modern fonts. Composition
services for mathematical and technical
books and journal production.

Anagnostopoulos, Paul C.
433 Rutland Street, Carlisle, MA 01741;
(508) 371-2316

Composition and typesetting of high-quality
books and technical documents.
Production using Computer Modem or any
available Postscript fonts. Assistance with
book design. I am a computer consultant
with a Computer Science education.

ArborText, Inc.
1000 Victors Way, Suite 400, Ann Arbor,
MI 48108; (313) 996-3566

Q X installation and applications support.
RX-related software products.

Archetype Publishing, Inc.,
Lori McWilliam Pickert
F! 0 . Box 6567, Champaign, IL 61821;
(217) 359-8178

Experienced in producing and editing
technical journals with TEX; complete book
production from manuscript to
camera-ready copy; TEX macro writing
including complete macro packages;
consulting.

The Bartlett Press, Inc.,
Frederick H. Bartlett
Harrison Towers, 6F, 575 Easton Avenue,
Somerset, 08873; (201) 745-9412

Vast experience: loo+ macro packages,
over 30,000 pages published with our
macros; over a decade's experience in all
facets of publishing, both Q X and
non-QX; all services from copyediting and
design to final mechanicals.

Cowan, Dr. Ray E
141 Del Medio Ave. #134, Mountain
View, CA 94040; (415) 949-4911

Ten Ears of Q X ond Related Software
Consulting, Books, Documentation,
Journals, and Newsletters. TEX & WTEX
macropackages, graphics; PostScript
language applications; device drivers; fonts;
systems.

Electronic Technical Publishing
Services Co.
2906 Northeast Glisan Street, Portland,
Oregon 97232-3295;
(503) 234-5522; FAX: (503) 234-5604

Total concept services include editorial,
design, illustration, project management,
composition and prepress. Our years of
experience with TEX and other electronic
tools have brought us the expertise to work
effectively with publishers, editors, and
authors. ETP supports the efforts of the
Q X Users Group and the world-wide Q X
community in the advancement of superior
technical communications.

NAR Associates
817 Holly Drive E. Rt. 10, Annapolis, MD
21401; (410) 757-5724

Extensive long term experience in Q X
book publishing with major publishers,
working with authors or publishers to turn
electronic copy into attractive books. We
offer complete free lance production
services, including design, copy editing, art
sizing and layout, typesetting and repro
production. We specialize in engineering,
science, computers, computer graphics,
aviation and medicine.

Ogawa, Arthur
1101 San Antonio Road, Suite 413,
Mountain View, CA 94043-1002;
(415) 691-1126;
ogawaQapplelink.apple.com.

Specialist in fine typography, IPQX book
production systems, database publishing,
and SGML. Programming services in TEX,
W X , PostScript, SGML, DTDs, and
general applications. Instruction in Q X ,
LQX, and SGML. Custom fonts.

Pronk&Associates Inc.
1129 Leslie Street, Don Mills, Ontario,
Canada M3C 2K5;
(416) 441-3760; Fax: (416) 441-9991

Complete design and production service.
One, two and four-color books. Combine
text, art and photography, then output
directly to imposed film. Servicing the
publishing community for ten years.

Quixote Digital Typography, Don
Hosek
349 Springfield, #24, Claremont, CA
91711; (714) 621-1291

Complete line of TEX, IPTEX, and
METFIFONT services including custom
I4QX style files, complete book production
from manuscript to camera-ready copy;
custom font and logo design; installation of
customized Q X environments; phone
consulting service; database applications
and more. Call for a free estimate.

Richert, Norman
1614 Loch Lake Drive, El Lago, TX 77586;
(713) 326-2583

Q X macro consulting.

rnnology, Inc., Amy Hendrickson
57 Longwood Ave., Brookline, MA 02146;
(617) 738-8029

Q X macro writing (author of MacroQX);
custom macros to meet publisher's or
designer's specifications; instruction.

Type 2000
16 Madrona Avenue, Mill Valley, CA
94941;
(415) 388-8873; FAX (415) 388-8865

$2.50 per page for 2000 DPI Q X camera
ready output! We have a three year history
of providing high quality and fast
turnaround to dozens of publishers,
journals, authors and consultants who use
QX. Computer Modern, Bitstream and
METRFONT fonts available. we accept Dm
files only and output on RC paper. $2.25
per page for 100+ pages, $2.00 per page for
500+ pages.

Outside North America

Typo'QX Ltd.
Electronical Publishing, Battyany u. 14.
Budapest, Hungary H-1015;
(036) I l l52 337

Editing and typesetting technical journals
and books with Q X from manuscript to
camera ready copy. Macro writing, font
designing, Q X consulting and teaching.

Information about these services can be
obtained from:

QX Users Group
P. 0. Box 9506

Providence, RI 02940

(401) 751-7760

l)jX with style sheet and automatic page design in PostScript
Page= is an advanced, automatic multi-column page make-up system.

P a g e w balances columns and baselines, performs vertical justification, automatically positions figures and
tables, and inserts running headers, footers and footnotes.

Page= runs on ordinary PCs (with 640K of memory and 3 megabytes of free hard disk space). It is tried and
tested, having been used for several years in a scientific publishing house to typeset around forty monthly
and bimonthly journals.

It is easy to start using PageTfl. You do not have to know TEX beforehand. You design your own style
sheets using a menu-driven system, prepare your documents using popular word processing software - and
Page= will do the rest. If you wish, you can include any Tfi (such as math) within your documents.

Page= features
Page= is a complete automatic page Pages are typeset automatically. All pages
typesetting system. Once you have designed in multi-page documents will be laid out
your style sheet, pages - including illustrations automatically (without user intervention)
and tables - will be laid out automatically. according to style-sheet specifications.

Figures and tables are automatically floated to
Input can be plain ASCII text, Wordstar or the best position.
Wordperfect files. Postscript illustrations can be included

in documents and scaled automatically or
An automatic 'make' system keeps all according to user specification.
components of a document up to date. Text can be in one to four columns, changing as

often as necessary.
Page layout is controlled by user-defined style
sheets. T@ 3.x is used as the typesetting engine.

T@s mathematical setting works completely
Tables are created on-screen in a semi-wysiwyg normally in Postscript.

format. Page= will automatically lay out Computer Modern fonts can be used on
tables according to style sheet specifications. non-Postscript printers.

AU trademarks referenced are trademarks or registered trademarks of their respective companies.
I

ORDER FORM
Special offer: C Single User £249/$449 before 24th December 1992.

0 Single User £349/$649 Network £549/$999

recommended 640K memory and 3 M b of hard disk space
El Check enclosed 0 VISA C MC Ll AMEX

Name Company Position

Address

I Signed Exp. date - - - - Order date

Life Science Communications Ltd, 34-42 Cleveland Street, London W1P 5FB.

Fax: (44) 71 580 1938 e-mail: pagetex @ cursci.co.uk

A Complete T$ Solution From ArborText!

We did the work so you don't have to!
Ready to use, fully documented and supported TEX package

ArborText's TEX Full System Includes:

T@, ~TEX and Macro Packages Built-In Support for Virtual Fonts
Screen Previewer Complete Comprehensive Installation Manuals
DVILASERPS or DVILASERmP 90 days of Free Quality Technical Support
T$ User Manual of your choice 10 Years of TEX Product Development

Available For: Sun-4 (SPARC), IBM RSl6000, DECBISC-Ultrix, HP 9000, and IBM PC's

1000 Victors Way A Suite 400 A Ann Arbor, MI 48108 A (3 13) 996-3566 A FAX (3 13) 996-3573

Electronic Technical Publishing Services Company
2906 N.E. Glisan Street
Portland, Oregon 97232

503-234-5522 FAX: 503-234-5604
mimi@etp.com

S. v. Bechtolsheim, West Lafayette, IN

TEX IN PRACTICE
A recent surge of good TEX implementations for PCs has put TEX on the disks of many people including
writers, designers, desktop publishers, and engineers. With such increased interest in TEX, there is a need
for good TEX books. TEX in Practice is the ideal reference and guide for the TEX community. The four-
volume set is written by an acknowledge expert in the field and addresses the needs of the TEX novice to
the more experienced "T~xpert." The book provides step-by-step introduction to the various functions of
TEX with many relevant examples and ready-to-use macros.

Volume 1 : Basic
19921359 pp., 9 illus1Hardcover $49.00
ISBN 0-387-97595-0
Volume 2: Paragraphs, Math, and Fonts
19921384 pp., 22 illus./Hardcover $49.00
lSBN 0-387-97596-9

Volume 3: Tokens, Macros
1992/544 pp., 22 illus.1Hardcover $49.00
ISBN 0-387-97597-7
Volume 4: Output Routines, Tables
19921300 pp., 10 i1lus.Mardcover $49.00
ISBN 0-387-97598-5

Special Four-Volume Set Price: $169.0011SBN 0-387-972964
Monographs in Visual Communication

R. Seroul, Universite Louis Pasteur, Strasbourg, France; S. Levy, University of Minnesota, MN

A BEGINNER'S BOOK OF T ~ X
This is a friendly introduction to TEX, the powerful typesetting system developed by Don Knuth. It is
addressed primarily to beginners, but contains much information that will be useful to aspiring TEX wizards.
Moreover, the authors kept firmly in mind the diversity of backgrounds that characterize TEX users: authors
in the sciences and the humanities, secretaries, and technical typists. The book contains a wealth of
examples and many 'Tricks" based on the authors' long experience with TEX.

Contents: What is TEX? The Characteristics of TEX Groups and Modes The Fonts TEX Uses
Spacing, Glue and Springs Paragraphs Page Layout Boxes Aiignments Tabbing Typesetting
Mathematics TEX Programming Dictionary and Index
19911283 pp.lSoftcover $29.95/ISBN 0-387-97562-4

George Gratzer, University of Manitoba

MATH INTO TEX
This book is for the mathematician, engineer, or scientist, who wants to write and typeset articles with
mathematical formulas but who does not want to spend a great deal of time learning how to do it. It assumes
little familiarity with TEX or LAT~X.

Contents: Part I: The One-Day Course Typing Your First Article - Part 11: A Leisurely Introduction Typing
Text Typing Math The Preamble and the Topmatter The Document The Bibliography * Multiline Math
Displays Display Text Part Ill: Customizing * Customizing AMS - TEX - Macros in TEX
1992/approx. 187pp.lSoftcover $34.50 (tent.)llSBN 0-81 76-3637-4

This is a publication of Elirkhauser, a Springer-Verlag New York Imprint, Cambridge, MA

I Reference # S918

TEX Publishing Services
From the Basic:
The American Mathematical Society offers you two basic, low cost TEX publishing services.

You provide a DVI file and we will produce typeset pages using an Autologic APS Micro-5
phototypesetter. $5 per page for the first 100 pages; $2.50 per page for additional pages.
You provide a Postscript output file and we will provide typeset pages using an Agfa/
Compugraphic 9600 imagesetter. $7 per page for the first 100 pages; $3.50 per page for
additional pages.

... There is a $30 minimum charge for either service. Quick turnaround is also provided a manuscript
up to 500 pages can be back in your hands in one week or less.

I
For more information or to schedule a job, please contact Regina Girouard, American Mathematical
Society, P. 0. Box 6248, Providence, RI 02940, or call 401-455-4060.

To the Complex:
As a full-service TEX publisher, you can look to the American Mathematical Society as a single source
for any or all your publishing needs.

Macro-Writing

Art and Pasteup

FOR YOUR TEX TOOLBOX FOR YOUR TEX BOOKSHELF

I
TEX Problem Solving ' Non-CM Fonts 1 Keyboarding

Camera Work 1 Print~ng and Binding 1 Distribution

CAPTURE
Capture graphics generated by a.pplication programs.
Make LaserJet images compatible with w. Create
pk files from p c l or pcx files. $135.00
texpic
Use texpic graphics package to integrate simple
graphics-boxes, circles, ellipses, lines, arrows-into
your TEX documents. $79.00
Voyager
W Y macros to produce viewgraphs-including bar
charts-quickly and easily. They provide format, in-
dentation, font, and spacing control. $25.00

TEX B Y EXAMPLE NEW!
Input and output are shown side-by-side. Quicldy
see how to obtain desired output. $19.95
TF$X B Y TOPIC NEW!
Learn to program complicated macros. . . . $29.25
TJ$K FOR THE IMPATIENT
Includes a complete description of W's control se-

. quences. $29.25
FOR THE BEGINNER NEW!

A carefully paced tutorial introduction. . . $29.25
BEGINNER'S BOOK OF TEX
A friendly introduction for beginners and aspiring
"wizards." $29.95

a Micro Programs Inc. 251 Jackson Aue. Syasset, NY 11791 (516) 921-1351

T
HE MOST VERSATILE TEX ever
published is breaking new
ground in the powerful and
convenient graphcal envi-

ronment of Microsoft Windows: Tur-
~oTEX Release 3.1E. TurboT~X runs
on all the most popular operating
systems (Windows, MS-DOS, 0S/2,
and UNIX) and provides the latest
TEX 3.14 and M ETR FONT 2.7 stan-
dards and certifications: preloaded
plain TEX, 14TEX, AMSTEX and M-
BTEX, previewers for PC's and X-
servers, M ETA FONT, Computer
Modem and BTEX fonts, and printer
drivers for HP LaserJet and DeskJet,
PostScript, and Epson LQ and FX
dot-matrix printers.

Best-selling Value: TurboT~X
sets the world standard for power
and value among TEX implementa-
tions: one price buys a complete,
commercially-hardened typesetting
system. Computer magazine recom-
mended it as "the version of TEX to
have," IEEE Soflware called it "indus-
trial strength," and thousands of sat-
isfied users around the globe agree.
TurboT~X gets you started quickly,
installing itself automatically under
MSDOS or Microsoft Windows, and
compiling itself automatically under
UNIX. The 90-page User's Guide in-
cludes generous examples and a full
index, and leads you step-by-step
through installing and using TEX and
METRFONT.

Classic TEX for Windows. Even if
you have never used Windows on
your PC, the speed and power of
TurboT~X will convince you of the
benefits. While the TEX command-
line options and T~Xbaok interaction
work the same, you also can control
TEX using friendly icons, menus, and

dialog boxes. Windows protected
mode frees you from MSDOS lim-
itations like DOS extenders, over-
lay swapping, and scarce memory
You can run long TEX formatting
or printing jobs in the background
while using other programs in the
foreground.

MS-DOS Power, Too: TurboT~X
still includes the plain MSDOS pro-
grams. Virtual memory simulation
provides the same sized TEX that
runs on multi-megabyte mainframes,
with capacity for large documents,
complicated formats, and demanding
macro packages.

Source Code: The portable C
source to TurboT~X consists of over
100,000 lines of generously com-
mented TEX, TurboT~X, M ETR FONT,
previewer, and printer driver source
code, including: our WEB system in
C; PASCHAL, our proprietary Pascal-
to-C translator; Windows interface;
and preloading, virtual memory, and
graphics code, all meeting C portabil-
ity standards like ANSI and K&R.

Availability & Requirements:
TurboT~X executables for IBM PC's
include the User's Guide and require
640K, hard disk, and MSDOS 3.0
or later. Windows versions run on
lvhcrosoft Windows 3.0 or 3.1. Order
source code (includes Programmer's
Guide) for other machines. On the
PC, source compiles with Microsoft
C, Watcom C 8.0, or Borland C++ 2.0;
other operating systems need a 32-
bit C compiler supporting UNIX stan-
dard I/O. Specify 5-1/4" or 3-1/2"
PC-format floppy disks.

Upgrade at Low Cost. If you
have TurboT~X Release 3.0, upgrade
to the latest version for just $40 (ex-

ecutable~) or $80 (including source).
Or, get either applicable upgrade free
when you buy the AP-TEX fonts (see
facing page) for $200!

No-risk trial offer: Examine the
documentation and run the PC Tur-
boQX for 10 days. If you are not sat-
isfied, return it for a 100% refund or
credit. (Offer applies to PC executa-
bles only.)

Free Buyer's Guide: Ask for the
free, 70-page Buyer's Guide for de-
tails on TurboT~X and dozens of TEX-
related products: previewers, TEX-to-
FAX and T~X-to-Vent~ra/Pagemaker
translators, optional fonts, graphics
editors, public domain TEX accessory
software, books and reports.

Ordering TurboT~X

Ordering TurboT~X is easy and deliv-
ery is fast, by phone, FAX, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
public agencies (shipping and media
extra). Discounts available for quan-
tities or resale. International orders
gladly expedited via Air or Express
Mail.

The Kinch Computer Company
PUBLISHERS OF TURBOTEX

501 South Meadow Street
Ithaca, New York 14850 USA

Telephone (607) 273-0222
FAX (607) 273-0484

AP-T@ Fonts Avant Garde Bold

Avant Garde Eque
Avant Garde Dernibld

=-compatible Bit-Mapped Fonts
Identical to

Adobe Postscript Typefaces

Bookman Light

Boo kman k%
B ookman Dernibold

If you are hungry for new TEX fonts, here is a feast guar-
anteed to satisfy the biggest appetite! The AP-T)jX fonts
serve you a banquet of gourmet delights: 438 fonts cov-
ering 18 sizes of 35 styles, a t a total price of $200. The
AP-TEX fonts consist of PK and TFM files which are ex-
act lJjX-compatible equivalents (including "hinted" pix-
els) to the popular Postscript name-brand fonts shown
a t the right. Since they are directly compatible with any
standard T'EX implementation (including kerning and liga-
tures), you don't have to be a TEX expert to install or use
them.

Demibold BOO kman Italic

C o u r i e r
Courier Oblique

Cour ier Bold

C o u r i e r :tique
Helvetica
Helvetica O blique When ordering, specify resolution of 300 dpi (for laser

printers), 180 dpi (for 24-pin dot matrix printers), or 118
dpi (for previewers). Each set is on ten 360 I<B 5-1/4"
P C floppy disks. The $200 price a.pplies to the first set
you order; order additional sets a t other resolutions for
$60 each. A 30-page user's guide fully explains how to
install and use the fonts. Sizes included a,re 5, 6, 7, 8, 9,
10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points; hea.dline styles
(equivalent to Times Roman, Helvet'ica,, a.nd Palatino, all
in bold) also include sizes 29.9, 35.8, 43.0, 51.6, 61.9, and
74.3 points.

-

Helvetica Bold

Helvefica ELe
Helvetica Narrow
Helvetica Narrow Oblique
-

Helvetica Narrow Bold

Helvetica Narrow EqUe
Schoolbook Newcentury

Roman

Schoolbook C,";"""'""

Schoolbook
Schoolbook New Century

Bold Italic

The Kinch Computer Company
PUBLISHERS OF TURBOT@

501 South Meadow Street
Ithaca, New York 14850

Telephone (607) 273-0222
FAX (607) 273-0484

Helvetica, Palatino, Times, and New Century Schoolbook are trademarks of
Allied Linotype Co. ITC Avant Garde, ITC Bookman, ITC Zapf Chancery,
and ITC Zapf Dingbats are registered trademarks of International Typeface
Corporation. Postscript is a registered t,rademark of Adobe Systems Incorpo-
rated. The owners of these trademarks and Adobe Syst,ems, Inc. are not the
authors, publishers, or licensors of the AP-l$$ fonts. Kinch Computer Com-
pany is the sole author of the AP-TEX fonts, and has operat,ecI independently
of the trademark owners and Adobe Systems, Inc, in publishing this soft-
ware. Any reference in the AP-T)i-J font software or in this advertisement to
these trademarks is solely for software compatibility or product comparison.
LaserJet and DeskJet are trademarks of Hewlet,t-Packarcl Corporation. Tfl
is a trademark of the American Math Society. TurbopJ and AP-TE): are
trademarks of Kinch Computer Conipany. Prices and specifications subject to
change without notice. Revised October 9, 1090.

Times Roman

Times ltaiic

Times Bold

Z a ~ f Dingbats XeCI

Publishing Companions translates

WordPerfec t

IN ONE EASY STEP!

With Publishing Companion, you can publish documents using TEX or bT with little or no
TEX knowledge. Your Wordperfect files are translated into T@ or bT+ fi p es, so anyone using
this simple word processor can immediately begin typesetting their own documents!

Publishing Companion translates EQUATIONS, FOOTNOTES, ENDNOTES, FONT STYLES,
and much more!

Retail Price . $249.00
Academic Discount Price $199.00

For more information or to place an order, call or write:

30 West First Ave, Suite 100
Columbus, Ohio 43201

(614)294-3535
FAX (614)294-3704

TYPESET QUALITY WITH THE EASE OF WORD PROCESSING

Make Your Best Work
Look Its Best!

Name I Definition I

Zeta I <(s) = Xk-' (Rs > I) 1

Typesetting Software
For professional publishing and the power
to produce high-quality books, technical
documents, scientific notation, mathemat-
ical formulas, and tables, rely on PCTEX to
make your work look its best.

The PC T@ Laser System includes:

0 PC TEX and PC T~Xi386
0 Our screen previewer, PTI View
0 HP Laserjet and Postscript printer drivers
0 Computer Modern Fonts at 300dpi
0 AM-TEX and b T p Macro Packages

The PC T i Manual and LATEX for Everyone
0 Free Technical Support

PERSONAL

INC
12 Madrona Avenue

Mill Valley, California 94941
(41 5) 388-8853; Fax: (41 5) 388-8865

Call for a free catalog and demo disk.
See the best for yourself!

407

404

Cover 3

405

410

408,409

403

407

411

406

412

Index of Advertisers
American Mathematical Society

ArborText

Blue Sky Research

ETP (Electronic Technical Publishing)

K-Talk Communications

Kinch Computer Company

Life Science Communications Ltd.

Micro Programs, Inc.

Personal TJ$ Inc.

Springer-Verlag

Y&Y

412 TEX without Bit
Wouldn't it be nice to be able to preview DVI files at any magnification, not just those for
which bitmap fonts have been pre-built? Or to produce truly resolution-independent output
that will run on any Postscript device, whether image setter or laser printer?

Perhaps you are looking for an alternative to Computer Modern? There now exist complete
outline font sets which include math fonts that are direct replacements for those in CM.
Even if you do want to remain faithful

ion of the fonts. We su

Preview at arbitrary magnificati

* Preview in MS windowsTM - a

* Avoid runni f memory on the printe

* Designed from the bott

1 TM form (ATM compati

SR Computer Modern

l4T$ + SLIT@ font set - line, circle, symbol, lcmss*, and logo*

* AMS font set - Euler, math symbol and Cyrillic fonts

* Lucidam Bright + Lucida New Math - a complete alternative to CM

Resolution-independent Postscript files using outline fon
reau, not just those with THpertise - and that translat
Is it perhaps time to get rid o f those huge, complex directories full o f bitmap fonts

dian Hill, Carlisle, MA 01741 - (80 286 - Fax: (508) 37 1-2004

ademark of B~gelow & Hol

Volume 13, Number 3 / October 1992
1992 TUG Conference Proceedings

Introduction

Keynote Address

Software

Malcolm Clark / President's introduction

Malcolm Clark / Portable graphics in Y&X

Bart Child* ./ Literate programming, a practitioner's view
Steve Hampson and Barry Smith / A high performance T&X for the

Motorola 68000 processor family

Harry L. Baldwin, Jr. / Using a high-level language as an aid in writing
documents

Larry F. Bennett 1 T-EDIT, a collection of editing macros for 'I&X
Robert MCGaffey 1 Automatic tables using SGML, C, and T&X
Anthony J. Starks / Dotex-integrating Tj$i into the X-window system
Kresten Krab Thorup 1 Gnu emacs as a front end to UT&X
Walter van der Laan and Johannes Braams / Writing reports with more than a

hundred people

Front Ends

a
Graphics Jackie Damrau / Discovering graphics in U7&X documents

Robert L. Harris / Preparing halftones for use in m
David Salomon 1 Creating shaded rectangles with Postscript
Neil A. Weiss / Creation and incorporation of Postscript graphics with

7&X-formatted labels into rn documents

Timo Knuutila / How to combine multiple languages, Postscript, and U r n
Victor Eijkhout / Just give me a lollipop (it makes my heart go giddy-up)
James L. Hafner / F o i l m , a Urn- l ike system for typesetting foils
Peter Abbott / Typesetting a magazine the easy way

Macros

File Management

Future Issues

Mimi Burbank and Donna Burnette / Using rn for a publications database

T. V. Raman / An audio view of (U) W documents
Dennis S. Arnon, Isabelle Attali, and Paul Franchi-Zannettacci /

Model-based conversions of @?;EX documents

Reports

Participants

Announcements

Chris Rowley / U r n 3 update
Workshops

Participants at the 1992 TUG Meeting

The Donald E. Knuth Scholarship for 1992 and 1993
Calendar
TUG 1993 annual meeting, Aston, UK
TUG 1993 course schedule

TUG Business

Advertisements

Institutional members

Consultants
Index of advertisers

