
Siamese m:
Joining d v i Files at the Hip and

Other Novel Applications of VF Files

Don Hosek
Quixote Digital Typography
349 Springfield #24
Claremont, CA 91711
714-621-1291
Internet: dhosekmymir . claremont . edu

Abstract

When the utility of XPL files was revealed at the 1989 TUG meet-
ing at Stanford University, and Donald Knuth announced that

he would be working on an updated format for use with m,
it was expected that this new format, VF, would become quickly

and widely accepted in the community. As it turns out,

nearly two years after the creation of the format, the use of VF

files is still fairly rare. This is due partly to lack of understand-

ing of what can be done with VF files and partly to a lack of tools

for implementing these capabilities. This paper will seek to fill
both gaps: by presenting an introduction to what can be done

with virtual fonts and also by describing some recently created

utilities to facilitate the implementation of their potential.

What are VF Files?

First off, let's open up the acronym and point out
that VF stands for "Virtual Fonts." There are some
who would claim that this term is a little misleading

in the context of other computer science technology
and prefer the term "Composite Fonts." As a non-
computer scientist, I prefer to stick with the term

"Virtual Fonts" myself, mostly because it matches

the acronym better.

Now that we have that formality out of the way,
perhaps it is time to ask what it means for a font to

be "Virtual" or "Composite." It means that what
thinks is a single character is not necessarily

that same single character to the printer. Some

dvi drivers have had a limited version of this ca-
pability built into them by necessity: for example,

many dvi-to-HP LaserJet converters will map char-

acter codes to different positions (to allow for restric-

tions on permissible character codes on fonts) and
will send larger characters as bitmapped graphics or

"tiled" pieces of character. However, this capability

is rarely within the control of the user.'

Tom Reid's WROX drivers came close to im-

plementing some version of VF support in its ROXDEX

files which a t least allowed manual control over the

With the VF format, we have an opportunity

to handle many useful features in a way that could

be device-independent.2 In fact, with VF files, we

find that not only can we handle remapping of fonts

rather easily, but we can also build composite char-

acters: by combining characters from the same or

different fonts, and also by mixing any elements

which may appear in a dvi file such as rules or

\ spec ia l commands as well. There are also device-

mapping from T ' X character codelfont combina-

tions to Xerox character codelfont combinations.
However, this facility was not terribly robust and

an early experiment in creating a Times Caps/Small

Caps font revealed that the WROX was expect-

ing better behaved ROXDEX files than I was creat-

ing. In particular, a given Xerox font could only

be referenced from a single font in any dv i file

causing problems when the lOpt Times Roman was

accessed in both the Roman and Caps/Small Caps

fonts. Tom Reid later adapted the program to sup-

port this sort of tinkering, but by then I had left my

beloved Xerox 8790.
The current state of matters requires ,the

"could" in the preceding sentence; Appendix A has

details on precisely what is supported by the current

software.

TUGboat, Volume 12 (1991), No. 4 - Proceedings of the 1991 Annual Meeting 549

Don Hosek

dependent applications for VF files which we will dis-

cuss in more detail later.

'l&X 3.0 and VF Files

Since generally doesn't know much more about

a font than the amount of space that each character

takes up, it isn't even aware that VF files are being

used in a T@ run. Support of VF is left entirely up

to the dvi-to-output converter.

Incidentally, I think that this is a big design
flaw. Had VF support been built into '&jX itself,

rn would have become much more versatile. For

example, the problem of hyphenating accented char-
acters could have been eliminated once and for all

since one would have been able to build accented

characters "on the fly." In addition, the ability to

have arbitrary remapping of fonts when is run

would have solved the notorious "code page" prob-

lem. However, since Knuth was in a hurry to finish

3.0, we'll forgive him this oversight.

Code Pages and Remapping

We'll ignore the problem of mapping the input char-

acter code to the output code (perhaps I'll write

a brief TUGboat article on my experiences on the

topic). Instead, we'll focus on a rather specific prob-
lem: a physical font may not have the mapping of

character codes in it which we would want to modify

to conform to a scheme of our own. For example,

if we use Personal m ' s PTI Fontware Interface to

generate . pk files from Bitstream fonts, we get three
128-character fonts which are not quite in an ar-

rangement suitable for our desires. Most likely, we

would want a 256-character font corresponding to

the proposed standard developed at the 1990 rn
Users Group meeting at Cork [I] . ~ To effect this we

can employ VF files to handle the remapping of char-

acter codes, as seen by m, to the character codes

that are actually used in the font.

One way to accomplish this would be to create

a VPL file by hand (a VPL file is a VF file converted to

a mnemonic form readable by humans). As it turns

Or not. Speaking from the font designer's

standpoint, I find that the Cork standard has

an inadequate number of vacant font spaces for
face-specific characteristics. For example, five "f-

ligatures" are provided, but not all are necessary

in all fonts, but no space is reserved for an f-j lig-

ature which is useful for typesetting Scandinavian
languages. For some classical designs, other charac-

ters are necessary as well, e.g., ligatures for c-t and
s-t, long s, and others.

(MAPFONT D 0

(FONTNAME beckman)

(FONTCHECKSUM 0 10537600616)

1
(CHARACTER 0 15 (comment quotesingle)

(CHARWD R 366)

(CHARHT R 816)

(MAP

(SETCHAR 0 47)

1
)

Figure 2: An extract from a VPL file showing
how remapping of characters could be accomplished.

The above sample was generated by Tom Rokicki's

AFM2TFM.

out, this isn't too bad; Figure 2 shows how a remap-

ping of this sort might look. However, in practice,

this can get rather tedious since we need to give
metric information for every ~ h a r a c t e r . ~ Even with-

out this hindrance, it would still be overly tedious

for a font where the remapping involves fairly direct

remappings, e.g., for a small caps font, where almost

the entire font would be mapped directly except for

the lowercase letters which would be mapped from
the uppercase in a smaller font.5

The REMAP utility. To simplify this task, I wrote

RE,MAP, which provides a far simpler format for
specifying this most common application for virtual

fonts. A REMAP input file begins with a series of
lines indicating the fonts that are used in the format:

FONT font-number font-name

[optional~scaling~factor]

The font-number is any number between 0 and 1 5 . ~

The most commonly used font should be assigned

number 0 as in a VPL file; we will see that this helps

cut down the coding. The font-name is the font as it

is known to m , e.g., cmrl0; this could be the name

A fact not adequately documented, incidental-

ly.
This is actually a rather simplistic view. In a

high-quality small caps font the weights of the small

caps are adjusted to correspond to the weights of the

lowercase letters of that size. With most modern

digital type technologies, where a single outline is

linearly scaled for all sizes, using 8pt caps for the

lowercase in a 10pt caps small caps font ends up with
small caps that are too light for the surrounding

text.
The upper limit of 15 is arbitrary and was in-

tended to keep memory requirements low

TUGboat, Volume 12 (1991), No. 4 -Proceedings of the 1991 Annual Meeting

Siamese TEX

FONT 0 BSOOll

FONT 1 BS0011 800

RANGE 0 127

DATA DECIMAL

0:O 1-96 1:65-90 123-127

END

Figure 3: Sample REMAP input file. The specifi-

cation 0: 0 at the beginning is intended to show the

format of a single character mapping. In practice,

the data would begin 0-96.

of another virtual font, although such nesting can be

dangerous. Finally the optzonal-scalzng-factor is an

integer which gives the scaling factor in the same

terms as the scaled keyword in m: e.g., 1000

refers to no scaling. 500 gives a 50% scaled face, and

SO on.

After all the FONT statements have been de-

clared. a line must appear which gives the range of

character codes which define the extent of the font.

This serves as a simple checksum against typograph-

ical errors in the last segment of the REMAP file.

Its format is:

RANGE first last

Finally, the remap data is provided. All num-

bers must be in the same radix but a choice of hexa-

decimal, octal or decimal is provided. The remap

data consists of a font number - character code pair

for each character to be remapped. If the font num-

ber is 0, it may be omitted. Each pair is joined with

a colon, and pairs can be separated by one or more

spaces or a new line. A contiguous range can be

specified by listing the first and last character code

separated by a hyphen. An unused character posi-

tion is indicated with XX. The data begins with DATA

followed by one of HEX. OCTAL or DECIMAL (the de-

fault, if none of the choices is listed, is HEX). At the

end of the da ta and the file, END should appear on

a line by itself. Figure 3 shows a sample of how this

might appear for a small caps font.

One feature of REMAP which is not readily ap-

parent from the above discussion is that kerning and

ligatures from the fonts being remapped are pre-

served as far as possible. For example. a kern be-

tween the A and V of font 0 would be preserved as

would the corresponding kern between the A and V
of font 1. However, no kern would automatically be

inserted between, say, the A of font 0 and the V
of font 1. Also, kernings and ligatures for charac-

ters not included in the remapped font would be

ignored, so the user need not worry about getting

. 'DI~~ICULT" instead of "DIFFICULT." If the user

feels the need to add or delete ligatures or kerns

explicitly, this can be accomplished through the key-

words L I G , NOLIG, KERN and NOKERN.

VF Files, POSTSCRIPT Fonts, and M y

Previewer

As was mentioned earlier, VF files can be a useful

tool for dealing with any device-dependent; type-

faces. Tom Rokicki's AFM2TFM converter, for ex-

ample. uses VF files for remapping character codes

and creating small caps versions of the fonts. How-

ever. this technique still relies on there being a font

on the printer somehow associated with a set of tfm

dimensions on your computer.

If we want to preview a d v i file which refers

to these fonts. we have two options: the first would

be to have .pk files which match the POSTSCRIPT

fonts. This is certainly a possibility and there exist

from various sources many options for creating these

files.? Any necessary remapping of character codes

can be handled using the REMAP features described

above. This, however, is not interesting.

A more interesting approach would be the case

where an exact preview is not necessary and it

would be adequate to use, say, Computer Modern to

give an approximate the appearance of the printed

document in screen preview or possibly even using

POSTSCRIPT fonts to create proofs of a document

which is to be ultimately printed using native fonts

on a Linotronic typesetter. Mapping the characters

to appropriate places. as noted above, is trivial; how-

ever, problems will be encountered in proper spacing

of the letters if the metrics for the font do not match.

VF fonts can be used to remedy this situation by

adding or subtracting appropriate amounts of space

from the sidebearings to get the character widths to

match. This is done with the SHADOW command in

REMAP which causes all characters in the virtual

font to have the same metrics as the characters with

the corresponding codes in the font mentioned in the

SHADOW command. This feature can also be used to

create "invisible" fonts like those used by SL~J$X.

Invisible characters can be created by referring to

characters in an unspecified font number: an exam-

ple of this appears in Figure 4. This approach gives a

slight storage advantage over the t f m / . pk strategy,

Perhaps the best option in the MS-DOS world

is to use Adobe Type Manager to create CHR files

which can be converted into m - s t y l e fonts with

the CHtoPX and PXtoPK utilities supplied with

the public domain e m w . This will allow any

POSTSCRIPT font to be printed or previewed just

like a METAFONT-generated font.

TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting 55 1

Don Hosek

SHADOW ptmr

RANGE 0 255

DATA DECIMAL

0-255

Figure 4: A REMAP input file to create an "invis-

ible" version of POSTSCRIPT Times.

which is standard for the S L ~ fonts, and there al-

ready exist VF fonts distributed with some versions
of Tom Rokicki's DVIPS for this sort of use.8

Device-dependent virtual font files. At this
point, it would be worthwhile to point out that VF

files fall into two categories. A simple remapping of

the characters in a font such as that described in the
introduction to REMAP would fall into the category

of non-device-dependent VF files since they would be
used with any output device. On the other hand, VF

files created using the SHADOW feature of REMAP for

proofing purposes would be device-dependent.

The classification into the two categories is not

always self-evident. For example, the VF files created
by Tom Rokicki's AFM2TFM would not be device-

dependent! As it turns out, the remapping of char-

acters performed by these VF files is still needed for

VF files which will be used in the proofing stages.

Accented Characters

Another useful application of VF technology is the
ability to create pre-accented letters. This is

the only way to have automatically accent

words containing accents like "Explosionsgefahr-
l i ~ h " . ~ REMAP provides this capability with the

ACCENT command which allows one to define accent-

ing capabilities. The algorithim used for construct-
ing accented characters is identical to that used for

\accent by m . At the time of this writing, fa-

cilities for diacritics below letters (e.g., C) are under

development.

"Joined at the Hip" Explained

One other program was written as a sort of prolog

to the work done to REMAP as described above.
SIAMDVI is a program which takes a dvi file and

* The files I have were in the MS-DOS distribu-

tion and are of unknown origin.
This is because of a design decision in the

program. Knuth has justified m ' s deficiency in

this regard as an encouragement for font design-

ers to provide pre-accented characters. METAFONT-

based fonts designed on this basis are just becoming
available.

creates a VF file in which each page in the dvi file

is represented by a single character in the VF file.

By default. the character dimensions are determined

by the locations of print on the output from the
dvi file, but this can be altered through the use of

\ s p e c i a l commands. The program had originally

been conceived as a clumsy way of handling some

of the features of REMAP. but use and discussion

of its potential have revealed the following possible

applications:

0 Simple dvi inclusion. Actually, this approach

is somewhat more sophisticated than that pro-

vided by Michael Spivak's DVIPASTE [3] or

Stephan v. Bechtolsheim's DVI2DVI [4] since
it is possible to load the virtual font scaled by

some factor to include reduced views of output

pages.

The previous item can be expanded on with

some simple macros to allow l&X to handle

composing signatures. The current version of

SIAMDVI limits this to books of 256 or fewer

pages (because of the limitation on the num-

ber of characters which can appear in a single

'l&X font) but a future release will allow longer
documents to be remapped. This has the ad-

vantage over many processors for signatures in
that the positioning of pages can be adjusted

slightly to compensate for the thickness of the

sheets of paper in the final printing.

If the output driver supports 180' rotation of
characters, full signature pages could be com-

posed in this manner.

Using Alan Hoenig's METAFONT and T)$ code

described elsewhere in this proceedings issue,
university seals can be typeset as single charac-

ters.

These are just a sampling of the possible uses of

SIAMDVI. I had originally viewed it as more a nov-

elty than a genuinely useful product-that evalua-

tion has changed.

A Device Drivers Supporting VF

Files

At the time of this writing, the following drivers were

the only ones which I was aware of which supported

VF features:''

lo Please be aware that any subjective comments

in the list below are exclusively my opinion and are
based on direct experience except where noted. I

apologize for any inaccuracies.

552 TUGboat, Volume 1 2 (1991), No. 4-Proceedings of the 1991 Annual Meeting

Siamese TEX

0 ArborText drivers updated since 1990. Some

drivers in the ArborText collection undergo in-

frequent revision (e.g., dvixer) and so may not
yet have this feature. However, since the VF
format is based on Arbortext's XPL format for

the DVIAPS driver, they have had a head start

on implementing the features in their drivers. I

have not used versions of these drivers contain-

ing VF support.

DVIPS by Tom Rokicki. This public domain
~ V ~ - ~ ~ - P O S T S C R I P T converter is the first public

domain driver supporting VF to include source

code. Also included with DVIPS is a program,

AFM2TFM, written by Donald Knuth [2] and

modified by Tom Rokicki, which uses VF files
in creating remapped versions of POSTSCRIPT

fonts with support for ligatures and other con-

venient features. DVIPS runs on Unix, VMS
and MS-DOS.

The e m m drivers. These drivers, usually
bundled with the public domain e m m for

MS-DOS, provide excellent functionality for the

user, although I have never bothered with the
font library support which seems cumbersome

to me.

Radical Eye drivers for A m i g a m . All pro-

grams have support for POSTSCRIPT programs

(even on non-POSTSCRIPT devices!) and so
come with an AFM2TFM program based on

that with DVIPS (see above).

There are also two programs available for con-

verting a d v i file which contains references to VF
files into a dv i file with the references expanded into

"clean" code which could be translated by any dv i
processor. These are:

DVIcopy by Peter Breitenlohner. MS-DOS,
UNIX, VM/CMS.

DVIvfDVI by Wayne Sullivan. MS-DOS only.

B Status of the Programs

At present, the programs exist only in ugly VAX C
code. Before release, the code will be translated
into CWEB with change files for Turbo C and VMS

available on release.

References

[l] Ferguson, Michael J. "Report on Multilingual
Activities." TUGboat, 11(4), pages 514 - 516,
1990. [Page 516 of the report; is a full-page table
depicting the character set.]

[2] Knuth, Donald E. "Virtual Fonts: More Fun for

Grand Wizards." TUGboat, 10(1), pages 13 -
23, 1990.

[3] Spivak, Michael, Michael Ballantyne, and Yoke

Lee. " H i - w Cutting & Pasting." TUGboat,

10(2), pages 164- 166, 1989.

[4] Bechtolsheim, Stephan v. "A . dvi File Process-

ing Program." TUGboat, 10(3), pages 329 - 332,

1989.

[5] Youngen, Ralph, William B. Woolf, and Dan C.
Latterner. "Migration from Computer Modern
Fonts to Times Fonts." TUGboat, 10(4), pages

513 - 519, 1989.

TUGboat, Volume 12 (1991), No. 4- Proceedings of the 1991 Annual Meeting

