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Abstract 

We show how the logical structures of a realistic class of mathe- 

matical formulae can be recovered from Plain source repre- 

sentations, using the Centaur system, a tool for Language-Based 

Environments. 

Introduction 

A major current trend in structured document rep- 

resentation and processing is to distinguish the log- 

ical and layout structures of (the instances of) a 

given family of documents. Both ODA (Office Doc- 

ument Architecture) and SGML (Standard General- 

ized Markup Language) [3] offer tools, much akin to 

context-free grammars, for specifying either or both 

of these structures for a document class ("document 

type") of interest. 

In general, we may say that document logi- 

cal structure expresses the author's (and hopefully 

the reader's) organization of the material being pre- 

sented, independently of how the words, formulae, 

and illustrations of the work are actually to be 

turned into marks on paper or screen. Document 

layout structure expresses how primitive "glyphs" 

(font characters, illustrations, images) are posi- 

tioned and juxtaposed on display surfaces, and how 

a hierarchy of groupings of them (e.g., "paragraph 

blocks," "pages") can be identified. Both structures 

are usually thought of as trees, possibly with cross- 

links between nodes. 

These general remarks specialize well to math- 

ematical formulae, i.e., to mathematical notation. 

The author and reader of a technical document think 

about a formula in terms of its logical structure. 

Communication between them is achieved via a rep- 

resentation of the formula as a layout structure; this 

of course must be imaged (printed, displayed) for it 

to actually play its communicative role. 

The logical structure of formulae is also the ba- 

sis for computational applications, such as symbolic 

mathematical computation, that operate on their 

meanings, i.e., that manipulate (effective represen- 

tations of) the objects deno t ed  by the formulae. For 

example, a program to symbolically invert a ma- 

trix of polynomials would typically require a logi- 

cal structure representation of the matrix, and not 

a layout representation. Beyond computation, the 

majority of information-retrieval applications one 

might imagine for a database of mathematical for- 

mulae (such as an online table of integrals) would 

use logical structure. 

The high-quality mathematical typesetting 

that has been brought about by systems such as 

has whetted the appetites of computational 

mathematicians for WYSIWYG symbolic computa- 

tion, also sometimes called "direct manipulation," 

that provides the ability to interact directly with 

the pleasant-to-look-at (imaged) layout structures 

of formulae as they appear on the screen. The catch 

is that the manipulations that are desired require 

logical structures. And while it is now straightfor- 

ward to generate layout from logical structure, going 

in the reverse direction is generally hard. 

Building on these observations, signficant ef- 

fort has been devoted recently to building WYSIWYG 

symbolic math systems in which logical structures of 

formulae are always held as the primary representa- 

tion: Layout structures are generated when needed, 

TUGboat, Volume 12 (1991). No. 4-Proceedings of the 1991 Annual Meeting 



Dennis S. Arnon and Sandra A. Mamrak 

and links back to the logical structure are then main- 

tained to enable desired subunits of logical structure 

to be inferred from (visible) selections of subunits of 

layout structure. (See, for example, [4] and [I].) 

Nonetheless, there are numerous situations in 

which one starts without a logical structure repre- 

sentation of a formula of interest, and would like 

to obtain one. In this paper we shall suppose that 

we begin with a Plain representation of a for- 

mula from a simple class of combinations of elemen- 

tary functions and integrals. We then show that by 

using contemporary tools of Language-Based Envi- 

ronments we can do a reasonable job of recovering 

logical structure from TEX. 
In the next section, we briefly discuss the Cen- 

taur system for Based Environments, which we have 

used. Then we specify the concrete syntax of 

that we parse, and the abstract syntax (logical struc- 

ture) we translate it into. We mention the restric- 

tions we are forced to impose on the TFJ syntax 

we can accept. Finally we show some examples. It 

should be clear that the logical structures we obtain 

are suitable, with minor transliteration, for input to 

such symbolic computation systems as Mathemat- 

ica or Maple. We hope it will also be clear that 

we could also "unparse" our logical structures into 

SGML, EQN, or virtually any other concrete syntax 

for the logical structure of mathematical notation. 

Centaur 

Centaur [2] is a meta-tool for the generation of 

language-based environments. From a grammati- 

cal specification of a (context-free) language and 

executable specifications of its formal semantics, 

parsers, type checkers, and interpreters for it can be 

automatically generated. Centaur is written in Lisp 

and Prolog and usually runs under X-Windows. 

In the next section we shall see a grammar for 

our class of formulae. Nonterminals in the concrete 

syntax rules are enclosed in angle brackets. Literal 

strings to match in the input stream are enclosed in 

double quotes. Underneath each rule is a specifica- 

tion of the portion of abstract syntax tree that gets 

built when that rule is recognized. The last part 

of the grammar defines the "signatures" of the ab- 

stract syntax tree, i.e., what arities they have and 

what "phyla" (L'sorts," "types") their children must 

have. Finally the phyla themselves are given; each 

is simply a set of abstract syntax operators. 

Grammar for a Class of Formulae 

The appendix shows the grammar for each of the 

example expressions. Here are some properties to 
note: 
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1. Variables are restricted to single letters; in- 

teger constants are restricted to single digits. 

2. Non-character integrands must be single 

chars or 'l&X subformulae, i.e., enclosed in braces. 

Also, the args of special functions (currently sin. cos, 

log, exp, prime) must be characters or subformulae. 

These requirements simplify the grammar and pars- 

ing. 

3. Multiplication is denoted by asterisk. This 

avoids three shiftlreduce conflicts from yacc. 

4. All integrals are represented by instances 

of a single abstract syntax operator. Formatting 

routines need to handle this appropriately (e.g., not 

print the .'dn for a null (defaulted) variable of inte- 

gration). 

5. We assume that prime of an expression 

means derivative with respect to its main variable, 

and that there is some clear way to know what the 

main variable is (e.g., the expression has only one 

variable). It is the user's job to enclose the argu- 

ment of prime in parentheses to prevent ambiguity. 

Similarly the args of sin and cos must be in paren- 

theses. 

6. Exponential function must be done as exp, 

not. e to the x. 

Examples 

The following are examples of expressions accepted 

by our concrete grammar. 
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J 
exp -a2 + exp x3 

dx 
sin x2 + cos x2 

J sin log xdx 

(1 sin log xdx):), 

( 
-(x * cos (log (x))) x * sin (log (x))  

2 
+ 

2 1' 

Figure 1 shows the abstract syntax tree for the last 

expression. 
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Figure 1: Abstract syntax tree 
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Appendix 

definition of texMath is 

rules 

<markedTexExpr> : : =  "$$" <texExpr> "$$" ; 

<texExpr> 
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<texFactor> : : =  <texFactor> "*" <texPower> ; 

t imes (<texFactor>,  <texPower>) 

<texTerm> : : = " \ s q r t M  <bracedTexExprOrChar> ; 

s q r t  (<bracedTexExprOrChar>) 

<texTerm> : :=  <bracedTexExprOrChar> "\prime" ; 

d e r i v a t i v e  (<bracedTexExprOrChar>) 
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<name> : := %LETTER ; 

name-atom (%LETTER) 

<digit> : := %DIGIT ; 

digit-atom (%DIGIT) 

<null-name> : := ; 

null-inst 0 

<null-limit> : := ; 

null-inst 0 

abstract syntax 

integral -> EXP NAME EXP EXP; 

quotient -> EXP EXP ; 

power -> EXP EXP ; 

sum -> EXP EXP ; 

difference -> EXP EXP ; 

times -> EXP EXP ; 

negate -> EXP ; 

sin -> EXP ; 
cos -> EXP ; 
log -> EXP ; 
exp -> EXP ; 
sqrt -> EXP ; 

derivative -> EXP ; 

name -> implemented as IDENTIFIER ; 

digit -> implemented as STRING ; 

null-inst -> implemented as SINGLETON ; 

EXP : := integral quotient power sum difference times negate sin cos log 

exp sqrt derivative NAME digit null-inst ; 

NAME : : = name ; 

end definition 
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