
TUGboat, Volume 12 (1991), No. 2

The moral: Always surround nested loops with
curly braces.

Fontdimens and Physical Fonts

associates a series of parameters with each
font, and looks for these values in the tfm file.
These font dimensions are accessible to a user
via the \f ontdimen command. (Their significance
is summarized in tables on pages 433 and 447
of The m b o o k .) Mr. Khodulev has uncovered
some puzzling behavior when he tries to alter the
\f ontdimens for his own uses.

For the sake of concreteness, we will use
\f ontdimen2, which specifies the normal interword
space for a font. Suppose you wanted to increase the
interword space for a certain font in special places
in the document. You might try (as he apparently
did) something like the following.

\font \rm=cmrlO

\font\specrm=cmrlO

\fontdimen2\specrm=9.99pt

You might expect that when you typeset using
\rm, you get the normal interword spacing (3.33 pt),
while you would extra large spaces only when
using \specrm. In fact, after the \fontdimen
declaration above, any \fontname tied to the
physical font cmrl0 has its \fontdimen changed.
As if to add insult to injury, you cannot attempt
to surround changes to \f ontdimen within a group.
since \f ontdimen assignments are always global.

The following lines of code present one way
of resolving the problem. The font definitions are
encumbered with longer names than usual, but the
actual of mechanics of changing fonts are relegated
to macros with names that closely resemble normal
font calls. These macros have been designed to be
used so the user thinks they are font calls, and the
rare appearance of \aftergroup helps make this
syntax possible.

%% First, fonts.
\font \roman=cmrlO

\f ont\specroman=cmrlO

%% Next, the special registers
\newdimen\savedvalue

\savedvalue=\fontdimen2\roman

\newdimen\specialvalue

\specialvalue=9.99pt

%% Finally, definitions.
\def \rm-C%
\fontdimen2\roman=\savedvalue)

\def \specrm(%

\aft ergroup\restoredimen

\fontdimen2\specroman=\specialvalue

\specroman 1
\def\restoredimenI%

\fontdimen2\roman=\savedvalue 1

Mr. Khodulev did not specify his need in any
more detail, so these macros should be revised as
necessary. With these macros and definitions in
force, the source text

\rm Here is some text.

{\specrm Here is some spaced out text.)

Here is more text, hopefully

back to normal.

\rm Here is more text.

\specrm Here is some spaced out text.

\rm Text is back to normal.

produces

Here is some text. Here is some spaced
out text. Here is more text, hopefully back to
normal.

Here is more text. Here is some spaced
out text. Text is back to normal.

Bibliography

[I] Hoenig, Alan, "Line-Oriented Layout with m,"
in m: Applications, Uses, Methods, ed. Malcolm
Clark. London: Ellis Horwood (1990).

o Alan Hoenig
17 Bay Ave.
Huntington, NY 11743 USA
(516) 385-0736
a j h j j (9cunyvm.b i tne t

Tutorials

The \if, \ifx and \if cat Comparisons

David Salomon

Large, small, long, short, high, low, wide, narrow, light, dark,

bright, gloomy, and everything of the kind which philosophers

term accidental, because they may or may not be present in

things,-all these are such as to be known only by comparison.

- Leon Battista Alberti

TUGboat, Volume 12 (1991), No. 2 239

A general note: Square brackets are used through-
out this article to refer to the W b o o k . Thus [209]
refers to page 209, and [Ex. 7.71 to exercise 7.7,
in the book. Advanced readers are referred to the
actual WEB code by the notation [§495].

The ability to make decisions is a mandatory
feature of any programming language, and m,
being a programming language (with emphasis on
typesetting), is no exception. There are 17 control
sequences [209, 2101 that compare various quanti-
ties, and they are used to make decisions and to
implement loops. Most are easy to use even for
beginners, but the three commands \ i f x , \ i f and
\ i f c a t are different. They are harder to learn. are
executed in different ways, are intended for different
applications, and are confusing. Hence this tutorial.

All three have the same syntax, and must
follow one of the forms below

(command) (comparands) (then part) \e lse
(else part)\f i

will compare the two macros and, since their
definitions are the same, the then part will be
executed. displaying 'yes' in the log file and on
the terminal. Similarly, the test \ ifx\qwe\rty
True\else False\f i results in the tokens 'True'.

A comparison always results in the expansion
of either the then or the else parts. As mentioned
before, each part may contain any tokens. Thus we
may have, e.g.:

\basel ineskip=\ifx\a\b 24pt \else 36p t \ f i
\pageno=\count\ifx\a\b 0 \ e l s e I \ f i
\message(\ifx\a\b success\else f a i l u r e \ f i)
\ i fx \a \b t r ue \ e l s e f a l s e \ f i
\def\M(\ifx\a\b yes\else no \ f i)

Or even something more sophisticated, such as:

\newif\ifSome
\csname
Some\ifx\a\b t r u e \ e l s e f a l s e \ f i

\endcsname
\ifsome . . .

(command) (comparands) (then part) \f i The \csname, \endcsname pair creates one of the

(command) (comparands)\else(else part)\f i

They start with one of the commands \ i f . \ i f x
or \ i f c a t , and test their comparands, in a way
that will be described later, to see if they agree or
match. If the test is successful, the then part is
executed: otherwise, the then part is skipped and
the else part is executed. The two parts may consist
of any tokens (control sequences, text. and even
other i f s) .

The two parts are optional. Any of them, or
even both, may be omitted (in practice, of course,
one never omits both). If the else part is omitted.
the \ e l s e , of course, should be omitted as well.
It may also happen that the process of evaluating
the comparands creates extra tokens, which become
included in the then part. The \ f i is important.
It serves to indicate the end of the else part or, in
the absence of that part, the end of the then part.
Even more important, in the case of nested i f s ,
there should be \ f i s to indicate the end of any of
the inner \ i f s, as well as that of the outer one.

Of the three comparisons, \ i f x is the simplest and
most useful one. It compares its two compara-
nds without looking too deep into their values or
meaning. The test

\def \qwe<tr ip) \ de f \ r t y (t r i p)
\ i f x\qwe\rt y
\message(yes)\else\messageCno)

\f i

control sequences \Sometrue, \Somef a l s e , after
which the test \ i f Some is meaningful. Refs. 2 and
3 discuss \csname.

The following example is interesting. It shows
the meaning of the words ". . . the then or else parts
are expanded."

\ i fx \a \b \x(argument) \ e l s e \y(argument) \ f i

Depending on how \a, \b are defined, either \x
or \y is expanded, and its argument used in the
expansion. However, if the argument is left outside
the \ i f x , it is not used in expanding either macro:

\ i fx \a \b \x \ e l s e \y \ f i (argument)

If \x is expanded, its argument will be the \ e l s e ; if
\y is expanded, its argument will be the \ f i . This
is easy to verify with \tracingmacros=l.

The macros compared may have parameters.
Thus

\def \qwe#l(samething)
\def\rty#lIsamething)
\ifx\qwe\rty

evaluates to 'yes'. This suggests one use for \ i f x
namely, comparison of strings. To compare two
strings, place them in macros, and compare the
macros. \ i f x is, in fact, heavily used in ref. 1 for
this purpose. However

\def\qwe#l<samething)
\def\rty(samething)
\ i f x\qwe\rty

TUGboat, Volume 12 (1991), No. 2

will result in 'no'. Macros must have the same
number of parameters to be considered equal by
\ i f x.

Can \ i f x be used to compare a macro and a
character? After defining \def \a{*), both tests
\ i fx\a*, \ i fx* \a are, surprisingly, a failure. How-
ever. after defining \def \ a s t er{*), both compar-
isons \ i f x \ a \ a s t e r , \ i f x \ a s t e r \ a are successful.

A similar example is a test for a null macro pa-
rameter. A straight comparison \ i f x#l\empty . . .
does not work. We first have to define a macro
\ inner whose value is # I , and then compare
\ i f x\inner\empt y (See definition of \empty on

WI 1.
\def\testnull#l\\C\def\innerC#i)

\ ifx\inner\empty
\message(yes)\else\message{no)

\f i)

The test ' \ t e s t n u l l \ \ ' displays 'yes' on the ter-
minal, while ' \ t e s t n u l l *\ \ ' displays 'no'.

To understand these results, we obviously need
to know the rules for evaluating \ i f x . They are
numbered

if both quantities being compared are macros,
they should have the same number of param-
eters, the same top level definition, and the
same status with respect to \long and \outer ;
in any other case. the quantities compared
should have the same category code and the
same character code.

A macro does not normally have either a character-
or a category code. However, for the purpose of
rule 2, a macro is considered to have character code
256 and category code 16. So when a macro is
compared to a character. they will not match.

Rule 1 implies that \ i f x can be used to
compare macros, but it does not expand them and
does not look too deep into their meanings. They
are considered equal if they look the same on the
surface (see examples later). Rule 2 implies that
\ i f x can compare two characters, but not, e.g., a
character and a string, or two strings. Thus

\ i f x AA is a match by rule 2.
\ i f x A#l can be used, inside a macro, to see

whether the first parameter is the letter .A'.
\ i f x Aa is a failure since the comparands have

different character codes.
\ i f x {abc){abc) fails since it compares a '{' to

an 'a'.
\ i f x A(B3 fails since it compares the 'A ' to the

.{'.
The test \ i f x* \ a above fails because of rule 1.

With these rules in mind, the following discus-
sion and examples are easy to understand.

To compare a macro \ a to a string {abc).
we first define \def\b(abc), and then compare
\ i fx \a \b . If the string is a parameter of a
macro, we can say \def \mac#l(\def \ inner{#i)
\ i f x\a\ inner . . .). However, to compare #1 to a
single character, we can simply say

\def\mac#l{\ifx*#l . . .)
after which the expansion \mac* will be success-
ful. There are some complex examples using this
construct on [375-3771.

To understand the meaning of 'top level defi-
nition', consider the following. Defining \def \a{*)
\def\bC*), the test \ i fx \a \b is a success. How-
ever, the test

\def \aC\b) \def \c(\d)
\def\b{tests) \def \dCtests)
\ i f x \ a \ c

is a failure, since \ i f x compares only the top level
definitions, and does not bother to expand \b and
\d to find out that they are equal. Both tests

\def\qwe{\par) \def\rtyC\par) \ i fx\qwe\r ty

and

\let\qwe=\par \ l e t \ r t y= \pa r \ifx\qwe\rty

are successful, but

\ le t \xxx=\par \def \qwe{\par)
\def \ r ty i \xxxl \ ifx\qwe\rty

fails, since \ i f x does not expand its comparands to
find their deep meaning.

This is an important feature of \ i f x that
has several consequences. One consequence is
that \ i f x is not bothered by undefined control
sequences. It simply considers them all to be equal,
so an \ i f x comparison of two undefined control
sequences always results in a match. Another con-
sequence of the same feature is that two defined
control sequences-such as e.g., \ i f and \ i f cat-
can be compared by \ i f x without worrying about
side effects resulting from their expansions. The
comparison \ i f x \ i f \ i f c a t is a failure, whereas
\ i f x \ i f \ i f is a success. It is also possible to com-
pare the control sequence \ i f x to itself, by means of
\ i f x . Thus \ i f x \ i f x \ i f x yes\else no\f i results
in 'yes'. Note that the \ f i matches the first \ i f x .
and the other i f s shouldn't have any matching \f i s
since they are being compared, not executed. Con-
sequently, the test \ i f x\f i \ f i yes\else no\f i
also produces 'yes', as does \ i f x\message\message
\messageCyes) \ e l s e \message{no)\fi

TUGboat, Volume 12 (1991). No. 2 241

An interesting effect occurs when we try (per-
haps as a serendipitous error)

The \ i f x compares the two tokens following, which
are \message and \message. They are equal, so the
word 'yes' is typeset. It is not displayed in the log
file or on the terminal because the control sequence
\message, which would normally have displayed
it, has been used in the comparison. Continuing
along the same lines, the test \ i f x \messageiyes)
\ e l s e \messageCno)\f i compares the control se-
quence \message to the 'C'. They are not equal,
because of rule 2 and, as a result, the else part is
expanded, displaying 'no' in the log file, etc. Note
that the string 'yes)' becomes part of the then
part, and is skipped.

The reader should be able, at this point. to
easily figure out the results of the following tests:

Tests 1-3 are similar, the control sequences
\qwe, \qw, \q are compared to \message, which
results, of course, in a 'no'. The undefined \qw
and \q do not produce any errors. In 4, the
control sequence \ \ (which is normally undefined)
is compared to the first 'm' of 'message' and, in 5,
\message is compared to the 'C'. Test 6 compares
the first two letters 'me' of 'message' to each other.
The 6 tests result in a 'no' being displayed in the
log file.

Test 7 compares the first two letters 'mm' of
'mmessage' to each other. They are equal, so
everything up to the \ e l s e is expanded. This
results in the tokens 'essageyes'.

Exercise 1. What are the results of:

\def\\Cmessage)
(a) \ifx\\message~yes)\else\messageCno)\fi
(b) \ i f x \ \ \ \ yes\else no \ f i

and why?

More about undefined control sequences. The
test \ i fx \a \b , where \a, \b are undefined, results
in a match. This means that all undefined control
sequences have the same meaning. On the other
hand, the test \ i f x\a\relax. where \ a is undefined,
is a failure. This means that an undefined control
sequence is not equal to \ r e l ax (at least not its
upper level meaning).

However, when the name of an undefined
control sequence is synthesized by a \csname-
\endcsname pair, that control sequence is made
equal to \ re lax. Thus if \ a is undefined, the
construct \csname a\endscsname (which creates
the name \a) is set equal to \ re lax , and the test
\expandafter\ifx\csname a\endcsname\relaxis
a success. This is the basis of [Ex. 7.71. It describes
a macro \ i f undef ined that determines if any given
string is the name of a defined macro.

\def\ifundefined#lC%
\expandafter\ifx\csname#l\endcsname\relax)

The test

\ i fundefined a
\messageCyes~\else\messageCno~\fi

displays 'yes' in the log file if \ a is undefined.

Exercise 2. Define a macro \ i fdef ined#l that
will be the opposite of \ i fundefined and be used
in the same way.

What if \ a has been defined as \ re lax? Pre-
dictably, the test ' \ l e t \ a= \ r e l ax \ i f undef ined
a' is successful. It is (somewhat) more surprising
that the test '\def \a{\relax) \ifundef ined a' is
a failure. This difference is a direct consequence of
the difference between \ l e t and \def. Following
is a short discussion of that difference, which is
important in advanced applications, where macros
are defined and compared.

The general form of \ l e t is

\ l e t (control sequence)=(token)

It defines the control sequence as being identical
to the token. This is similar, but not identical
to, \def (control sequence)C(token)) and the fol-
lowing illustrates that difference. After \def \aCX)

\ l e t \g=\a \def \h{\a), the sequence \g\h pro-
duces 'XX'. If we now redefine \a, the meaning of
\h will change (since it was defined by \def) but \g
will not change. Thus \def\a{*) \g\h produces
'X*,.

As a result, we can say that \ l e t \ a= \b assigns
\ a that value of \b which is current at the time the
\ l e t is executed, and this assignment is permanent.
In contrast. \def\aC\b) assigns \ a the name \b.

242 TUGboat, Volume 12 (1991), No. 2

When \ a is expanded, its expansion causes an
expansion of \b, so the result is the value of \b.

Each expansion of \ a may, therefore, be different
since \b may be redefined.

A more formal way of saying the same thing is:
A \ l e t makes a copy of the definition of \b, and
that copy becomes the definition of \a; in contrast
\def sets a pointer to point to the definition of \b,
and that pointer becomes the definition of \a.

Back to \ i f x. The comparands of an \ i f x are not
limited to just macros, primitives, or characters.
They can also be:
rn font names. \f ont\abc=cmrlO \f ont\xyz=cmrlO
\ re lax \ifx\xyz\abc produces 'yes'.
rn Active characters (see [Ex. 7.31). The result of
\ l e t \a=" \ i fx \ae is a match.

Exercise 3. Why does \def \a{") \ i f x\a" fail?

rn Names of the same register. A test such as

\countdef\me=3 \countdef\you=3 \ifx\you\me

is a success.
m Macros defined at run time, such as in:

\def\toneC\countO=9 A 1%
\messageIEnter a def in i t ion)%
\read16 to \no te
\ i fx\ tone\note
\messageCyes)\else\messageCno~

\f i

If the user enters '\count0=9 A' from the
keyboard, in response to the message, there will
be a match. Entering anything else, such as
'\count0=9 a'. will result in a failure. In either
case the value of \count0 will not be changed
(by the way, what is it?), nor will the letters 'A'
or 'a' be typeset. Notice that a message entered
from the keyboard must terminate with a carriage
return which, in tam, is converted by ?'EX into a
space. This is why the definition of \ tone must
end with a space (to avoid that, change the value
of \endl inechar as explained on [48]).

The second comparison, \ i f , is executed in a
completely different way. expands the token
following the \ i f (if it is expandable), then expands
its expansion (if possible), and so on until only
unexpandable tokens (characters or unexpandable
control sequences) are left. If less than two un-
expandable tokens are left, the process is repeated
with the next input token. The process ends when
there are two or more unexpandable tokens to be

compared, or when an \ e l s e or a \ f i are encoun-
tered. The final result is a string of unexpandable
tokens, the first two of which are compared by
character code but not by category code. The rest
of the tokens, if any, are added to the then part.

If a comparand is an unexpandable con-
trol sequence, rather than a character, it is as-
signed a character code 256 and a catcode of 16.
Thus the tests \ i f \hbox\vbox, \ i f \hskip\vskip,
\ i f \hbox\kern, succeed. (See [209] for exceptions
regarding the use of \ l e t .) This also implies that
comparing a primitive to a character always fails.

There is also the case where evaluating the
comparands results in just one unexpandable token.
Such a comparison should not be used since its
result is undefined. Unfortunately, no error message
is given by W. The advanced reader is referred to
[$495] for the details of such a case.

The first example is simple \def \a{*). Both
tests \ i f \a*, \ i f *\a are successful (compare with
the similar \ i f x test above).

After \def \aC\b), \def \cC\d), \def \bC*).
\def\dC*), the test \ i f \ a \ c is a 'yes'. How-
ever, \def \aI\b), \def \cC\d), \def \bCtesting).
\def \ d I t e s t ing), \ i f \a \c will fail, since the two
tokens compared are the first two characters result-
ing from the expansion of \a, which are ' te ' . As
mentioned above, the rest of \ a (the string 'sting')
and the whole of \ c (the string 'testing') do not
participate in the comparison, are added to the then
part, and are therefore skipped. More insight into
the working of \ i f is provided by the test

\def \aI\b) \def \cI \d)
\def \bCtts t ing) \def \d{t ts t ing)
\ i f \ a \ c \messageCyes)\else \messageCno)\fi

It compares the first two t's of \a. They are
equal, so expands everything up to the \e l se .
It displays 'yes'. and also typesets the rest of \ a
('sting') and the whole of \ c ('ttsting'). Note that,
again, \ c is not used in the test.

Similar results are obtained in the experiment

\def\toneI*)
\messageCEnter a)\readl6 to\note%
\ i f \ tone\note

Assuming that the user enters '*\count90=89',
the result will be a match, and \count90 will
also be set to 89. However, if the user en-
ters '?\count90=89', the comparison will fail, and
\count90 will not be affected. Similarly, if the user
enters '*abc', the comparison will be successful, and
the string 'abc' will be typeset. Entering, '?abc'
however, will result in 'no', and the string 'abc' will
be skipped.

TUGBoat, Volume 12 (1991), No. 2 243

The test \ i f \ s , where \s is undefined, results
in the message ! Undefined cont ro l sequence,
since \ i f always tries to expand its comparands.

Defining \def \w{xyz), the test

is a success, since the first token of \ w is an
'x'. However, The other two tokens are added to
the then part, and the result of the test is the
string 'yzyes'. Sometimes it is desirable to discard
that part of \ w that does not participate in the
comparison. This is a special case of the general
problem of how to extract the first token of a macro
\w and discard the rest.

One way of doing it is:

When \W is expanded, the first step is to expand
\w, and the second, to expand \tmp. The first
argument of \tmp is thus the first token of \w. and
the second argument, the rest of \w. The result
of expanding \tmp is thus the single token 'x', and
that token becomes the definition of \W. The test
\ i f x\W yes \e l se no\f i now results in the string
'yes'. This method works even if \ w is \empty.

Exercise 4. Perform the test:

for \count90 set to 1, 11 and 12.

The next example is the two tests \ l e t \ a= -
\ i f \ a e , \def\b(") \ i f \ b - . In the first test, the
\ l e t makes \ a equivalent to the active character
'-'. In the second one, the \def makes \b a macro
whose definition is the same active character '"I.
The \ i f expands its comparands, so it ends up
comparing '- ' to '"'. Both tests thus result in a
match.

Having mentioned active characters, let's use
them to further illustrate the behaviour of \ i f . The
following:

\def\a(*-)
\hboxiMr . Drof na t s)
\hboxCMr.\if*\a\fi Drofnats)
\hbox{Mr . \ i f +\a\f i Drofnats)

results in:
Mr. Drofnats
Mr. Drofnats
Mr.Drofnats

which is easy to explain. The test \ i f *\a\f i
expands \ a and only uses its first character (the
'*'). The second character (the tilde) remains and
affects the space between 'Mr.' and 'Drofnats' (it
has the effect of \frenchspacing). In contrast,
the test \ i f+ \ a \ f i expands \a and, since there is
no match, skips the second character. As a result,
there is no space between 'Mr.' and 'Drofnats'.

The \noexpand command can be used to sup-
press expansion during an \ i f . Assuming the defini-
tions \def \q(A). \def \p(9), the test \ i f \p\q fails
since it compares the characters 'A', '9'; however,
the test \ i f \noexpand\p\noexpand\q is a success
(even if the macros involved are undefined).

\ i f c a t

The third comparison, \ i f c a t . is less useful. It

works like \ i f , expanding its comparands, and
resulting in a string of characters. of which the first
two are compared by category codes 1371, but not
by character codes. For example, the catcode of
'&' is 4 (alignment tab) and the catcode of '8' is
12 (other). If we change the catcode of '8' to 4
and compare \catcode' \8=4 \ i f c a t 8&, we get a
'yes'. It is hard, however, to find simple, practical
examples for \ i f c a t (the examples on the notorious
13771 are hardly simple or practical).

Similar to an \ i f . there is also the case
where expanding the comparands results in a non-
expandable control sequence, rather than a charac-
ter. In such a case, assigns it a character code
256 and a catcode of 16. Thus all the following com-
parisons \ i f cat\hbox\vbox, \ i f cat \hskip\vskip,
\ ifcat\hbox\kern, succeed. (Again, see [209] for
exceptions concerning the use of \ l e t .)

The category code of a character can be typeset
by the command \the\catcodeC\A. It can be dis-
played in the log file by \showthe\catcode'\A. This
does not work for control sequences since they have
no catcode. When comparing control sequences
with an \ i f ca t . they are first expanded, and the
first two tokens are compared. For example, af-
terdefining\def\a{&) \def\bI+=) \def\c{true)
the comparison \ i f ca t \a \b fails, since the catcodes
of .&' and '+' are different. However. the comparison
\ i f ca t \ b \ c is a 'yes' since the comparands are '+'

and '='. The string 'true' is typeset.
It is possible to compare macros without ex-

panding them. Assuming the definitions of \a. \b
above. the test \ i f cat\noexpand\a\noexpand\b
results in a match since it does not expand the
macros, and they are treated as undefined (category
code 16).

244 TUGboat, Volume 12 (1991), No. 2

Exercise 5. With \c defined as above, what is the Since \ i f evaluates its comparands, they can
result of \ i f c a t \ c ? be other i f s. Defining \def \a{). \def \b{**), the

test
Perhaps the simplest practical example of

\ifcat is a test for a letter. ~~~~~i~~ that \if \if x \a \b l \ e l s e \ i f \a\b23\f i \ f i \ e l se4 \ f i -
the parameter of macro \suppose is supposed to (see [Ex. 20.13gl) is an \ i f with an \ i f x as a

be a letter or a string starting with a letter. The comparand. The \ i f x . in turn, has another \ i f

macro can be defined as: \def \suppose#l{\if c a t nested in its else part.
A#l. . . \ f i . . .3. The process starts when the outer \ i f evaluates

Exercise 6. If the parameter of \suppose is a
string, only the first character will be used by the
\ i f c a t , and the rest will be added to the then
part, perhaps interfering with the rest of the macro.
Generalize the definition of \suppose to suppress
the rest of the parameter during the \ i f ca t .

The examples

\def \a{") \ i f c a t \ a -
\ l e t \b=- \ i f c a t \ b e

are identical to the ones shown earlier. in connection
with \ i f . They behave the same as in that case,
resulting both in a 'yes'.

Active characters may also be compared with
an \ i f c a t , since they all have the same catcode
(13). After defining \catcoder\?=13 \def?{:).
\catcode1\!=13 \def ! { ; I , the test \ i f c a t ? ! is a
success, seemingly confirming the above statement.
A deeper look. however, shows that the test ex-
pands the two active characters, and compares the
catcodes of their values! The values just happen
to have the same catcode. To actually compare
the catcodes of the active characters, a \noexpand
should be used to prevent their expansions. Thus
the test \ifcat\noexpand?\noexpand! compares
the catcodes of the active characters without ex-
panding them (and is also a success).

Nested ifs

In principle, it is possible to nest i f s one inside
another. An i f may be a comparand of another
i f , or it may be nested in either the then or the
else part of another i f . However, because our three
i f s work in different ways, not every combination
of nested i f s is valid. In general, a nested i f is
written as

\ i f . . \ i f (inner)\f i . . \ e l s e . . \ i f (inner)\f i . . \f i

where any of the inner i f s may have an else part,
and may itself be nested by other i f s . However,
as the examples below show, such an i f should be
carefully analyzed before it is used, since it tends to
produce unexpected results.

its comparands in order to come up with two tokens
for comparison. It activates the \ i f x which, in
turn, compares \ a and \b. They are not equal.
so the '1' is skipped, and starts executing the
else part of the \ i f x. This part contains the inner
\ i f , which evaluates \ a and \b, compares the two
asterisks. and results in the '23'. The outer \ i f is
now equivalent to \ i f23\else4\f i. which typesets
the '4'.

The test

\if\ifx\a\bl\else\if\a\b22+\fi\fi\else3\fi

is similar, it has the '+' left over after the compari-
son. so it gets typeset.

Exercise 7. What gets typeset by the following?
\ i f \ i f x \b \b l \ e l s e \ i f \a\b2\f i \ f i+ \e l se3 \ f i

The \ i f c a t comparison is similar to \ i f in
that it first evaluates its comparands. As a result,
other comparisons may be used as comparands, and
may also be nested inside an \ i f ca t . The following
tests can be analyzed similarly to the ones above:

\ifcat\ifx\a\bl\else\if\a\b234\fi\fi\else5\fi

\ifcat\ifx\a\bl\else\if\a\b22+\fi\fi\else3\fi

\ifcat\ifx\b\bl\else\if\a\b2\fi\fi\else3\fi

Since \ i f x does not evaluate its compara-
nds. they cannot be other \ i f s . Trying. e.g..
\ i f x \ i f \a\b . . . , the \ i f x would simply compare
the \ i f to the \a. We cannot even use braces to sep-
arate the inner and outer i f s \ i fxC\if \a \b. . .) . . .
since the \ i f x will compare the 'C ' with the \ i f ,
and 'IQX will eventually complain of an 'Extra 3'.

We can, however. nest an i f (of any type) in
the then or else parts of an \ i f x . The test

\ i f x \ a \b \ e l s e \ i f \ a \b o k \ f i \ f i

(with \a , \b defined as above) typesets 'ok'. The
\ i f x compares \ a and \b and finds them different.
It skips to the else part and expands it. The inner
\ i f is thus executed in the usual way; it finds
two identical tokens (the two asterisks of \b), and
typesets 'ok'.

Examples

1. A practical example is macro \ f l ex in s below.
It lets the user decide, at run time, whether any

TUGboat, Volume 12 (1991), No. 2 245

floating insertion should be a \midinsert or a
\topinsert. The user is prompted to enter either
'mid' or 'top' from the keyboard. In response,
the macro uses a nested \ifx to create either a
\midinsert or a \topinsert.

\def \f lexinsC%

\def\bCmid) \def\dItop)

\message{mid or top?)\read-1 to\a

\csname

\ifx\a\b mid%

\else

\if x\a\d top\f i

\fi insert%

\endcsname

1

\f lexins

(Insertion material)

\endinsert

What if the user enters none of these inputs.
Clearly \flexins should be extended so it can
recover from a bad input. It is a good idea to
expand \f lexins recursively. in such a case, to give
the user another chance to enter a valid input. The
first try is:

\def\flexinsI%

\def\b{mid 3 \def\dCtop)
\message{mid or top?)\read-1 to\a

\csname

\ifx\a\b mid\else

\if x\a\d top\else \f lexins\f i

\f i insert\endcsname

1

It does not work! When TEX expands \f lexins
recursively, it is still inside the \csname. During the
recursive expansion it finds \def \b, but \def is not
expandable, and thus not supposed to be inside a
\csname [40]. The result is an error message (which
one?).

We now realize that we have to delay the
recursive expansion of \f lexins until we get out of
the \csnme-\endcsname pair. The final version is:

\def\flexinsC%

\def\b{mid) \def\d(top 3
\def\badinsert{\flexins)

\message{mid or top?)\read-1 to\a

\csname

\ifx\a\b mid\else

\ifx\a\d top\else bad\f i

\f i insert\endcsname

In the case of bad input, the \csname-

\endcsname pair creates the control sequence name
\badinsert. We predefine it to simply expand
\flexins. which then asks the user for another
input.

2. (Proposed by R. Whitney.) This is a
generalization of the previous example. Macro
\yesno below prompts the user to respond with a
'Y' or a 'N', but also accepts the responses Ly', 'n'.
It does the following:

Prompts the user with a question where the
response can be 'Y', 'N', 'y', or 'n'.
rn Reads the response into \as.
m Uses \ifx to compare \ans to macros containing
one of the valid responses.
m If a match is found, uses \csnme to create
the name of, and expand. one of the macros
\yesresult, \noresult. These macros should be
predefined to do anything desirable.

If no match is found. expands \badresult. which,
in turn, should expand \yesno recursively.

\def\yCy 1 \def\nCn 1 \def\YIY 3
\def\NIN) \def\badresultC\yesno3

\def \yesresultC(whatever))

\def \noresult {(whatever))

\def\yesnoC%

\message{Respond with a Y or N!)

\read-I to\ans

\csname

\ifx\y\ans yes\else

\ifx\Y\ans yes\else

\ifx\n\ans no\else

\ifx\N\ans no\else bad%

\f i

\f i

\fi

\fi result\endcsname

>
\yesno

A different version of \yesno uses \if instead
of \ifx. We start with:

\def\badresultC\yesno)

\def \yesresultI(whateuer))

\def \noresult((whatever) 3
\def\yesno{%

\message{Respond with a Y or N!)

\read-1 to\ans

\csname

\if y\ans yes\else

\if Y\ans yes\else

\if n\ans no\else

\if N\ans no\else bad%

TUGboat, Volume 12 (1991), No. 2

It compares \ans to the token 'y' instead of
the macro \y, but it does not work! Macro \ans
contains a .y' (or 'Y' or whatever), followed by a
space. The space gets added to the then part. which
then becomes 'uyes'. creating the control sequence
\uyesresult. To get this to work. the first token
of \ans has to be extracted. and all the other ones
discarded. This can be done. as shown elsewhere.

by

\def\tmp#l#2\\C#l)

\def\sna(\expandafter\tmp\ans\\)

Macro \sna now contains just one character, and
the next version is:

\def\badresult{\yesno)

\def \yesresulti(whateve~)~

\def \noresult {(whatever))

\def\yesno{%

\message{Respond with a Y or N!)

\read-1 to\ans

\def \tmp##1##2\\C##ll

\def\snaC\expandafter\tmp\ans\\)%

\csnarne

\if y\sna yes\else

\if Y\sna yes\else

\if n\sna no\else

\if N\sna no\else bad%

\f i

\f i

\f i

\fi result\endcsname

>
Note that it works for any response that's a

string starting with one of the four valid characters.

Exercise 8. Extend this example. Define a macro
\triresponse that accepts the responses 'left',
'right', 'center', or any strings that start with
'1'. 'r ' , or 'c'. The macro then expands one of the
(predefined) macros \dolef t, \doright. \docenter
or \dobad.

3. A practical example of the use of \ifcat
arises when style files are used. If such a file
has internal macros, they can be made private by
declaring \catcoder\O=ll, and giving the macros
names that include the '0'. At the end of the file,
a matching \catcoder\Q=12 should be placed. The
problem occurs when such a style file, say b . sty, is
\input by another file, a. sty, that also contains the

pair \catcoder \Q=ll, \catcoder\Q=12. A simple
test should reveal the problem to readers who still
don't see it. The solution is to place the test

\if cat @A\chardef \catcount=12

\else

\chardef \catcount=\catcode'\Q

\f i

\catcoder\Q=ll

at the beginning of b.sty, and reset at the end to
\cat code ' \Q=\catcount.

Exercise 9. Use \if cat to solve the following
problem: Given \def\foo#lC. . .), devise a test
to see if, in the expansion \f oo. . . , the argument
is delimited by a space. Normally, such a space
is automatically absorbed by and cannot be
recognized.

4. A compound macro argument.
Macro \compndArg accepts a compound argu-

ment and breaks it down into its components. The
argument should be of the form xxx , xxx , . . . , xxx ;
(the ',' separates the individual components and
the '; ' delimits the entire argument). The macro
accepts the argument (without the ';'. of course),
it appends ' , ; ,' to the argument, and makes the
whole thing the argument of \pickup, which is then
expanded.

\def \compndArg#l ; {\pickup#l, ; ,)

\def\pickup#l,C% Note that #I may be \null

\if;#l\let\next=\relax

\else\let\ne~t=\~icku~

\messageCr#l')% use #I in any way

\f i\next)

Macro \pickup expects its arguments to be
delimited by a comma, so it ends up getting the first
component of the original argument. It uses it in any
desired way and then expands itself recursively. The
process ends when the current argument becomes
the semicolon. Note the following:
rn This is also an example of a macro with a variable
number of parameters. The compound argument
may have any number of components (even zero,
see below).
rn The method works even for an empty argument.
The expansion '\compndArg ; ' will cause \pickup
to be expanded with a null argument.
rn The macros do not create spurious spaces. In
many macro lines, the end-of-line character gets
converted to a space, which is eventually typeset
if the macro is invoked in horizontal mode. Such
lines should be identified, with a test such as
C\compndArg g;D. and should be terminated by a

TUGboat, Volume 12 (1991); No. 2

'%'. Try the above test with and without the '%' in
the first line of \pickup.

Conclusion

The main source of the confusion surrounding the
various \if comparisons is the inability to find
out exactly what is comparing. In future
extensions of TJ$ it would be useful to have a
control sequence \tracingcornparands such that
setting \tracingcomparands=l would show, on the
terminal, the actual quantities compared.

Answers to exercises

1. (a) displays 'no' on the terminal since it com-
pares the macro \\ to the letter 'm'; (b) typesets
'yes' since it compares two identical macros.

2. Macro \if undef ined supplies the \if x, and the
matching \else and \f i are provided outside. We
want \if def ined also to supply an if that can be
completed outside. We start with the test for an
undefined macro

\expandafter\ifx\csname#l\endcsname\relax

and create either an \iffalse (if the macro is
undefined) or an \if true (in case it is defined), to
be matched outside. The first version is:

\def\ifdefined#l C%
\expandafter\ifx\csname#l\endcsname\relax

\let\next=\iffalse\else\let\next=\iftrue\fi

\next

But it fails! The reason is explained at the bottom
of [211]. The next, working, version is:

\def \maca(\let\next=\if f alse}

\def\macb(\let\next=\iftrue)

\def\ifdefined#l C%
\expandafter\ifx\csname#l\endcsname\relax

\maca\else\macb\f i \next)

After which, we can say:

\ifdefined a \message(yes)\else

\message(no)\fi

3. Because \let\a=" defines \a as an active char-
acter, where as \def\a{-} defines \a as a macro
(whose value is the active character '"'). The
\ifx does not look too deep into the meaning of
its comparands, so it decides that a macro is not
equal to an active character. In contrast, the \if
comparison, discussed later, which looks deeper into
the meaning of its comparands, returns a 'yes' for
both tests.

4. Just do it. It's worth it. Then do the similar
test

\if\the\count90\the\count90

\messageCyes~\else\messageO\fi

5. A success, since it compares the catcodes of the
two letters 't', 'r'. It also typesets 'ue'.

6. Macro \tmp expands to the first character of the
parameter.

\def\suppose#lC\def\tmp##1##2\\~##1~%

\ifcat A\tmp#l\\ . . . \else . . . \fi . . . I

7. The \if x compares \b and \b, and they, of
course, match. The '1' is thus the first token left
for the outer \if to compare. The rest of the \if x
(\else\if \a\b2\f i\f i) is skipped. Next comes
the '+', followed by the else part of the outer \if,
with the '3'. The outer \if can now be written as
\if l+\else3\f i which, of course, typesets the '3'.

8. Answer not provided.

9. We place an expansion of \isnextspace at the
end of \foo. This sets \next to the token following
the parameter of \f oo. The \if cat can then be
used to compare the category of \next to that of a
space. The following test

\def\spacecheckC%

\ifcat\next\space

\messageCyes3\else\message~no~\fi~

\def\isnextspace~\futurelet\next\spacecheck~

\def\foo#1{#l\isnextspace)

\f ooCA) \f ooIB) . \f ooCC) D
produces 'yes no yes' on the terminal.

References

1. Greene, A. M., BASIX-An Interpreter Written
in m, TUGboat 11 (1990), no. 3, pp. 385-392.
2. Bechtolsheim, S., \csname and \string, TUG-
boat 10 (1989), no. 3, pp. 203-206.
3. Hendrickson, A., Getting m n i c a l , TUGboat 11

(1990), no. 3: pp. 359-370.

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
dxs@ms,secs.csun.edu

