
TUGboat, Volume 11 (1990), No. 4

Sanitizing Control Sequences Under \wri te

Ron Whitney

W ' s \wri te primitive is typically used to send
information to other files for typesetting later.
The most obvious examples here are those cases
where chapter heads, section heads, and keywords
are written to files along with corresponding page
numbers to make tables of contents and indexes.
(See Salomon in TUGboat 10, no. 3; see also Durst
in the same issue for another use of \wri te)

The syntax of a \wri te statement is

\write(number)((token string) 3

where (number) is a "stream number" usually
allocated by the \newwrite macro and corresponds
to a disk file opened by \openout. To make matters
concrete here. we will simply assume that the user
has called \newwrite\outf i l e and that our syntax
is

\write\outf ileI(token strzng))

The execution of the \wri te statement then ei-
ther involves writing the (token strzng) directly
(i.e. \immediately) to the file corresponding to
\ou t f i l e , or writing the (token string) to a node
placed in m ' s main vertical list. In the latter
case. the (token lzst) in the node is later written
to the file corresponding to \ o u t f i l e as the page
on which the node is placed undergoes \shipout to
the dvi file.

In either case, as the (token lzst) is transferred
to the file \ ou t f i l e , it is fully expanded (that is,
the (token lzst) is expanded as. say. it would be
under an \edef; unexpandable control sequences
are written out using the \escapechar and the
letters or symbols which go to make up their
names). There's Good News and Bad News in
this. The Good News is that the information
to be written to external files is often 'contained'
within control sequences, and we definitely want
tokens such as \number to be expanded (otherwise
an index might show every item appearing on,
literally, \number\pageno). The Bad News is that
we would really much prefer that indexes contain
items like \cos rather than their expansions (e.g.
\mathop(\rm cos3\nolimits). The Bad News
isn't really all that Bad, though, since we can use
m ' s \noexpand and say

\write\outfile~\noexpand\cos)

to achieve what we want.
Then: Where's the Beef? The News isn't really

Totally Good because our solution requires some
knowledge of the contexts in which \noexpand

is appropriate. \wri te statements are typically
hidden a few levels down inside macros and one
might ever know (barring authorship or clear docu-
mentation of the underlying macros) when silliness
such as \noexpand is required. Lamport has done
an admirable job in schooling IPw users to use
\protect for this very purpose, but even so, ques-
tions such as Chris Hand's (TUGboat 11, no. 3,

p. 456) are natural. In Chris' case, a guillement
(\<<) caused a section head to expand to some 509
characters in an . aux file, and that line was too long
for 7J jX to handle when the . aux file was reread. It
is also common to see control sequences for accents
make for inscrutable tables of contents files.

A Better Method

Much nicer than user-keyboarded \noexpands would
be some method of preventing expansion within
macros themselves which use \write, thus not plac-
ing a user under the strain of being on the lookout
for expanding arcana. This note proposes a way
to handle things generally. It was suggested by a
technique used by Michael Wichura in TUGboat 11,

no. 1 along with simultaneous consideration of Pe-
ter Breitenlohner's piece on avoiding long records
in \wri te streams in the same issue of TUGboat.
Other people have undoubtedly thought of the same
thing (see The w b o o k , p. 382).

The primitive \meaning disgorges a "mean-
ing" of whatever token follows it. In the case of
a defined control sequence (and let's assume this
control sequence has no parameters), say \foo.
\meaning\foo will cause to spit up the se-
quence macro:-> followed by a sequence of char-
acter tokens as would be obtained by \s tr inging
the tokens of \foo's definition. The definition is
thus shown as a string of character tokens, all of
category 12 (except spaces).

For example, if \f oo is defined to be the token
string \sin and \cos, its definition consists of
11 tokens altogether: 4 math shifts, 2 spaces. 3

letters, and 2 defined (in plain) control sequences.
On the other hand, \meaning\foo produces the
string

macro:->$\sin $ and $\cos $

whose right part (beyond the :->) consists of 4

space tokens and 15 character tokens of category
12. None of this material is expandable; internal
objects which had been single tokens (such as \ s in)
are now divided into character tokens (such as
\-s-i-n).

TUGboat, Volume 11 (1990), No. 4

denotes an assignment (without an optional equals

sign) here.
At the end of the environment we have to be

more careful. It may be the case that the environ-

ment being ended was inside another environment,
and occurred before the first paragraph inside that

environment. In that case the value of \parskip

is zero, and the proper value must still be restored.
Therefore, no further actions are required. We ar-

rive at the following implementation:

\def\EndEnvironment

#l(\csarg\vspace(#lEndskip)

\endgroup %% restore global values
\ifParskipNeedsRestoring

\else \TempParskip=\parskip

\parskip=Ocm\relax

\ParskipNeedsRestoringtrue

\f i)

Note that both macros start with a vertical skip.

This prevents the \begingroup and \endgroup
statements from occurring in a paragraph. On a

side note: since these macros are executed in verti-

cal mode, I have not bothered to terminate any lines
with comment signs. Any spaces generated by these

macros are ignored in vertical mode.

6 Paragraph skip restoring

So far, I have ignored one important question: how
exactly is restoring the paragraph skip implemented.

For this I use the \everypar token list. Basically

then, the idea is the same as in "An Indentation

Scheme" (p. 612): the occurrence of a paragraph

will automatically have perform, through the
insertion of the \everypar tokens, the actions nec-

essary for subsequent paragraphs.

\everypar=

C\ControlledIndent at ion

%see "An Indentation Scheme"

\ControlledParskip)

\def\ControlledParskip

C\ifParskipNeedsRestoring

\parskip=\TempParskip

\ParskipNeedsRestoringfalse

\f i)

The cost of a controlled paragraph skip is then one
conditional per paragraph. Conceivably, this cost

could even be reduced further (to almost zero) by
defining

\def\CPS % Controlled Parskip
(\ifParskipNeedsRestoring

\parskip=\TempParskip

\ParskipNeedsRestoringfalse

\let\ControlledParskip=\relax

\f i)

and including a statement

\let\ControlledParskip=\CPS

in both the \StartEnvironment and
\EndEnviroment macros, and at the start of the

job (for instance by including it in the macro pack-

age). This approach, however, does not particularly

appeal to me. Too much 'pushing the bit around'.

7 Conclusion

The \parskip parameter is arguably the most tricky
parameter of T)jX. Its workings are very easy to

describe. but in actual practice difficulties arise.
In this article I have described how treatment of

the paragraph skip can be integrated with the glue

above and below environments. As in an earlier ar-
ticle on indentation, I use for this the \everypar

parameter as an essential tool.

References

J. Braams, V. Eijkhout, N.A.F.M. Poppelier,

The development of national I4T)jX styles, TUG-

boat vol. 10 (1989) #3, pp. 401-406.

Donald Knuth, The T'Xbook, Addison-Wesley
Publishing Company, 1984.

Stanley Morison, First principles of typography,
Cambridge University Press, 1936.

Leslie Lamport, Urn, a document preparation

system, Addison-Wesley Publishing Company,

1986.

o Victor Eijkhout
Center for Supercomputing

Research and Development
University of Illinois
305 Talbot Laboratory
104 South Wright Street
Urbana, Illinois 61801-2932, USA
eijkhoutQcsrd.uiuc.edu

TUGboat, Volume 11 (1990), No. 4 621

So, in order to suppress expansion in a (token

string) which is to be written out to an external

file, one need only stuff the (token string) into

a macro, regurgitate the macro's \meaning into

another macro, and \wri te the second macro out.

The data being written out is, in a certain sense,

inert because control sequences have been divided
into the characters forming their names and there

is nothing to be expanded. If this information is

reread from an external file again, however, (and
therefore passes through W ' s mouth again) it can

be reassembled into the original (token string).

To this end, we make the following definition:

The third argument to \GetMacroMeaning is the

control sequence into which the "meaning" will be

placed. The first two arguments will be produced
by 'expanding' \meaning. Thus, converting text
for, say, a section head which a user keys as

\section{. . .I , can be accomplished by inserting

the following sort of code within the definition of

\sect ion:

\def\sect ion #I{%
. . .
\def\sectionhead{#l)%

\expandafter\GetMacroMeaning

\meaning\sectionhead
:->\xxsectionhead\endget

\write\outf i l e

\expandafter{\xxsectionhead)%

. . .
3

The first \expandafter causes \meaning to gobble

\ sec t ionhead and expand into the first 2 arguments
of \GetMacroMeaning. The second \expandafter

is used in the \wri te statement because the code

presented always stores the head to be written out

in \xxsectionhead. When 2 section heads occur

on the same page, the second will overwrite the first
definition of \xxsectionhead, so we must make sure

that the contents of \xxsectionhead gets placed
in the node on the page and not just the token

\xxsect ionhead itself. In situations where one may

write \immediately, the line under discussion could

become

Further Problems

The method above concerns itself only with material
we wish to block from expansion as we \wri te it

out. As noted previously, other data (such as

page and section numbers) must be expanded to get

tables of contents and indexes right. David Salomon

has discussed some of these issues in TUGboat 10,

no. 3. For this article. we only point out that one

can concatenate different kinds of data into one
control sequence and then \wri te that out. For

example. if \sectionnumber is a T'EX count register
containing the current section number, one might

augment and alter the above code to

. . .
3

Thus, for section number 3 with title sin2 x +
cos2x = 1" and appearing on page 22, the above
code will cause

\sec {3){0n $ \ s in -2x+\cos -2x=1$3{22)

to be written on \ou t f i l e . The \edef for

\wri tedata causes expansion in its replacement
text where possible. so the definition of \writedat a

in the case above will be

\sec {3){$\sin -2x+\cos -2x=l$){\number\pageno)

Of course, \sec here consists of 4 tokens of cat-

egory 12 (since the whole line passed through

\meaning), not just one control sequence, and a

similar remark holds for the text of the section head.

\number\pageno, however, has not been sanitized

and will be expanded as this token string is written
to \outf i l e .

A considerable compaction of all this code

can be had by doing the expansions at once (as
suggested by Victor Eijkhout). To this end, make
the definitions

TUGboat, Volume 11 (1990), No. 4 622

and

\def\sectag{\sec)

then rework \ s ec t i on to

\def \ sec t ion #I{%

>
Another problem occurs when one wishes to

\wri te out long strings of text. Peter Breitenlohner

showed in TUGboat 11, no. 1 that one could break
long strings of text exactly as they had been

broken in the source file by activating (carrzage

 return)^ and specifying the \newlinechar to be the
(carriage return). Unfortunately, this method is not

transferrable within the current technique exactly

because of the sanitizing properties of \meaning.

\meaning will disgorge - ^ M sequences for active

(carriage return)^ which cannot in turn be read as
(carriage return)^ because the - will be of category

'other' instead of 'superscript'.

One way to get over this is to use active ^^Ms as
delimiters of line records and \wri te the intervening

material line by line to the output file. Here we use
a method of Alois Kaelschacht (TUGboat 8, no. 2,

p. 184; also pointed out by Sonja Maus recently)

which allows \loops to contain \ e l s e clauses.

\def\loop#i\repeat{%

\def\body{#l\relax\expandafter\body\fi)%

\body)
\ l e t \ r epea t \ f i

To handle a long piece of text line by line, we
define \ParseLine to divide the material after it

into 2 pieces separated by the5rst (carriage return)
in that material.

C\catcode'\--M=\active
\gdef\ParseLine#l--M#2\endParse{%

\def \Firs tLine(#l)%
\def\Remainder{#2)%

)3

\Wri te i t first turns on the (carriage return), then

reads the text to be written to a file. Then it runs

through a \ loop until the \Remainder text is empty,

writing each line with the \meaning technique.

{\endlinechar=-1

\ca t code ' \-^M=\act ive

\catcode ' \Q=ii

\gdef \Writeit{
\bgroup\catcode'\--M=\active

\@Writei t)

\gdef\@Writeit#l\endWriteit{

\ le t \Firs tLine\empty

\def\Remainder{#i--M)

\loop
\expandaf t e r

\ParseLine\Remainder\endParse

\write\outfile\expandafterC

\ san i t ize \F i r s tLine)
\ifx\Remainder\empty\else\repeat

\egroupl)

Of course, this is exactly the kind of nonsense

that Breitenlohner avoided with the \newlinechar

technique, and the 'solution' here still has problems.
For one thing, pairs of braces which occur across

input lines will cause \ParseLine to miss the

intervening --Ms (since arguments to macros must
contain balanced sets of braces). For another, if one

also wishes to use the argument to \Wri tei t for

something else (such as typesetting here and now),

the --Ms are now embedded and have not been

changed into (space) or \par as appropriate. It is
possible to define the active ^ ^ M to check ahead for

another - ^ M immediately following, changing the

pair into \par and otherwise inserting (space), but
at this point we realize we are trying to simulate

'IjEX's mouth behavior with a stomach process and
will never be wholly successful. When an input line

ends with a control word, m ' s mouth will gobble

the end-of-line character, whereas the procedure
above will insert an end-of-line (space) willy-nilly.

All of which is to say that the \meaning

technique outlined here should be confined to cases

where one is fairly certain that the records to be

written are rather short (say, the cases of tables
of contents and indexes). In cases where longer

records are anticipated, Breitenlohner's technique,

accompanied by something analogous to \p ro tec t ,
is needed; or one may simply use a verbatim

approach if the data is not to be used 'immediately'.

o Ron Whitney
Users Group

rfu@Math.AMS.com

