
TUGboat, Volume 8 (1987), No. 3

Floating Figures at the Right

- and -

Some Random Text for Testing

Thomas J. Reid

Texas A&M University

PREFACE: This article is a rewritten version of a
note which the author sent to W h a x . The techniques
presented in this article represent several significant im-
provements over those in the earlier note. In particular,
the output routine has been simplified and generalized
and the \everypar token list is now used to control the
figure insertion.

Placing a figure to the right

of a paragraph of text is rela-
- - - . - - - - -. . -

tively easy in m. It is done

by placing the figure before the
- - - - - - -

start of the paragraph and using
- -. - - - -

\hangindent and \hangafter

to set the amount of the indent - - - - - - - - - - - - - - -. - - - - -
and the number of lines needed

to "cover" the figure. 'I&,X will

automatically adjust the paragraph shape to fit

around the figure as it has done here.

However, in practice, the figure is likely to

be larger; it is very probable that one paragraph

of text may not be enough to "cover" the figure.

The figure above shows a sample page of "text"

containing such a figure. This smaller figure begins

even with the second "paragraph" and extends into

the third one. While hanging indents can be used

easily to set the shape for paragraph two, their

use for paragraph three is more complicated: it

is necessary to account for the size of paragraph

two and the \parsk ip glue when calculating the

number of lines to be indented.

A further complication can arise. Suppose that

the desired place to begin the figure had been at

the start of paragraph four. There is not sufficient

space left on the page to begin the figure; the figure

needs to be floated to the next page.

Approach to solution

This problem can be solved by performing a test

at the start of each paragraph of text in the area

where the figure is to be placed. At the start of

each paragraph, one of three possibilities exists:

The figure has not yet been started;

The figure has been started and the shape of

the paragraph about to begin is to be adjusted

for the remaining portion of the figure; or

3. The text has proceeded past the end of the

figure.

If the figure has not yet started, we check to see

if there is room left for it on the current page.

If there is, we start the figure and then adjust

the paragraph shape. Otherwise, we defer further

action on it until the start of the next paragraph.

If the figure has been started but the text has not

yet covered it (e.g., paragraph three in the sample

page figure), we adjust the paragraph shape using

the original height of the figure minus the height

which has already been covered. Once the text has

passed the figure, no action is needed for adjusting

paragraph shapes.

Implementation of this procedure requires that

the current position on the page be known. This

information is available only within the output

routine; to get it, we need to change the output

routine to save it for us.

The modified output routine

Changes are made to the output routine to allow us

to use it to query page height without disturbing

its normal operation. These changes consist of

adding a refereme to an \ outputpretest token list

to the start of the output routine and making the

execution of the original output routine conditional

upon a flag set by the \outputpretest control

sequences.

\newif\ifoutput

\newtoks\outputpret e s t

(And all along you thought output routines were

nasty beasts.)

Preparing the figure

The figure to be inserted is defined and placed in

a box register named \figbox. It is important to

set the dimensions of this box register to reflect the

dimensions of the figure. Another dimension value

is set in \ f i ggu t t e r ; this represents the space to

be placed between the text and the figure.

TUGboat, Volume 8 (1987), No. 3

\def\vr<#l,#2,#3>{\vrule height #1

depth #2 width #3)

\setbox\figbox=\vbox to 50\unit{\hboxi%

\point 0 0 {\vr<1.5pt ,Opt ,30\unit>)

\point 0 50 i\vr<Opt,1.5pt,3O\unit>)

\point 0 0 {\vr<50\unit,Opt,1.5pt>)

\point 30 0

{\kern -1.5pt \vr<50\unit ,Opt, 1.5pt>)

\point 5 15 i\vr<2. Opt, Opt ,20\unit>)

\point 5 15 C\vr<4\unit,Opt,2.0pt>)

\point 25 15

(\kern -2.0pt \vr<4\unit,Opt,2.0pt>)

\point 7 28 {\vr<1. Opt, Opt ,4\unit>)

\point 7 35 C\vr<Opt,l.Opt,4\unit>)

\point 7 28 {\vr<7\unit ,Opt, l.Opt>)

\point I1 28

{\kern -1. Opt \vr<7\unit ,Opt, l.Opt>)

\point 7 28 {\vr<2.5\unit,Opt,2\unit>)

\point 19 28 {\vr<1. Opt, Opt ,4\unit>)

\point 19 35 C\vr<Opt,l.Opt,4\unit>)

\point 19 28 {\vr<7\unit,Opt,i.Opt>)

\point 23 28

{\kern -1.Opt \vr<7\unit,Opt,i.Opt>)

\point 19 28 {\vr<2.5\unit, Opt, 2\unit>)

\hss)\vss)

\wd\figbox=30\unit

Controlling the figure placement

In addition to the modified output routine, we

define an alternate \outputpretest routine which

will be used to decide whether or not to actually

output anything to the DVI file.

\newbox\pagebox

\newdimen\pageht

\newif\iftryingfig \tryingfigfalse

\newif\ifdoingfig \doingfigfalse

\newif\ifpageafterfig \pageafterfigfalse

\def\dofigtest{%

\ifnurn\outputpenalty=-10001

\setbox\pagebox=\vbox~\unvbox255~%

\global\pageht=\ht\pagebox

\outputf alse

\unvbox\pagebox

\else

\outputtrue

\if doingfig

\global\pageaf terf igtrue

\f i

\f i)

In this alternate pre-test routine, we test for a

penalty value of -10.001. This special penalty value

will be used in a later macro to signal our intentions

to the \outputpretest routine. If this value is

found, we get the height of box 255 (\unvboxing it

removes the glue from the bottom of the box). This

height is saved so that it can be used later and the

box contents are returned to the main vertical list

while \outputfalse is set to bypass execution of

the original output routine.

If any other penalty value caused the output

routine to be entered, the \dof igtest macro sets

\outputtrue so that the normal output routine

will be performed. However, a flag (\pageafter-

f igtrue) is set if we were "actively doing the figure"

when the page break occurred. This condition oc-

curs when the figure is placed flush with the bottom

of the page.

Next, the macro which controls the figure

placement is defined.

\newdimen\startpageht

\newdimen\htdone \htdone=Opt

\edef\oldeveryparC\the\everypar)

\everypar=C\tryfig \oldeverypar)

\def \tryf ig{%
\iftryingfig % ------------ Section A

~\everypar={\relax)\setbox0=\lastbox

\parindent=\wdO \parskip=Opt \par

\penalty-10001 \leavemode)%

\dimenO=\vsize

\advance\dimenO by -\pageht

\advance\dimenO by -2\baselineskip

\ifdim\dimenO>\ht\figbox

\dimen0=0.3\baselineskip

\vmle depth \dimen0 width Opt

\vadjust{\kern -\dimen0

\vtop to \dimeno{%

\baselineskip=\dimenO

\vss \vbox to lex{%

\hbox to \hsize{\hss

\copy\figbox~\vss~\null~~%

\global\tryingfigfalse

\global\doingfigtrue

\global\startpageht=\pageht

\global\htdone=Opt

\dohang

\f i

\else @/ ------------------- Section B

\if doingf ig

~\everypar=~\relax)\setbox0=\lastbox

\parskip=\wdO \parskip=Opt \par

\penalty-10001 \leavemode)%

TUGboat, Volume 8 (1987), No. 3 317

\global\htdone=\pageht

\global\advance\htdone by

-\startpageht

\ifpageafterf ig

\global\doingfigfalse

\else

\dimenO=\ht\figbox

\advance\dimenO by 0.5\baselineskip

',if dim\htdone<\dimenO

\dohang

\else

\global\doingf igf alse

\f i

\fi

\else 7 ----------------- Section C

\global\outputpretest={\outputtrue)%

\f i

\f i)

Although this macro is fairly long, it is rather

straightforward (with two exceptions). It is divided

(as indicated by the comments) into three sections:

section A which starts the figure; section B which

controls the paragraph shapes after the figure has

been started; and section C which is performed after

the text has passed the figure. Execution of one of

the three sections is determined by the settings of

\iftryingf ig and \if doingf ig.

Within section A, we first invoke the output

routine to get the current page height. This is

a little bit tricky since we have just started the

paragraph and are in horizontal mode (\tryfig

is called from the \everypar token list immedi-

ately after entering horizontal mode and inserting

the \parindent glue). Thus, we need to define

a temporary "dummy" \everypar token list (to

prevent endless recursion), then break out of the

paragraph, signal the output routine, and restart

the paragraph.

It is then a simple matter to compute the

space left on the page and test to see if that is

greater than the height of \f igbox. (The extra

two times \baselineskip is added to avoid a

problem situation. For more details, see under

"Problems with the insertion macros?) If there is

not enough room, we will exit the macro without

changing \if tryingf ig. This will cause section A

to be checked again at the next paragraph break.

If there is room on the page for the figure, we

output the figure and change the \iftryingf ig

and \ifdoingf ig flags. The height of the page

when the figure is saved since it will be needed

later. Then, \htdone is preset to zero. This

indicates how much of the figure has been covered

by text and it is used in calculating the number

of lines to be shortened. Finally, we call the

\dohang macro to calculate and set the hanging

indent va.lues.

Inserting the figure represents another tricky

situation. The commands here use the same

techniques as those given for Exercise 14.28 in The

m b o o k : We insert a strut in the current line to

give it a known depth: then, with a \vadjust, we

insert a box with zero height and a depth equal

to that of the strut. Inside this \vtop box. we

define a \vbox to force the figure to have a height

equal to the x-height of the current font. Finally,

the innermost \hbox causes the figure to be right

aligned.

Section B also begins by calling the output

routine to get the page height. We then compute

the amount of the figure which has been covered. If

a page break occurred since we started the figure

(\pageafterfigtrue) or if the figure has been

covered, we set \doingf igf alse and terminate the

macro. Otherwise, call \dohang again to compute

and set the hanging indents for the new paragraph.

Section C is quite simple: we redefine \out-

putpretest so that \dofigtest won't be called

anymore.

Note that we redefine the \everypar token

list when the \tryfig macro is defined. This will

cause \tryfig to be invoked at the start of every

paragraph following the definition. However, the

initial settings of \tryingf igfalse and \doing-

f igf alse result in Section C being executed each

time. Sections A and B won't be used until we

activate them.

To activate the insertion process, we define a

macro to perform the needed setup.

Finally, the \dohang macro is defined which

actually sets the paragraph shape.

318 TUGboat, Volume 8 (1987), No. 3

There are two interesting points to note in

the \dohang macro. First, the calculation of the

height of the paragraph which is to be cut out

involves adding 1.49 times \baselineskip. This

increase is done to provide a minimum of one half of

\baselineskip of gutter space between the bottom

of the figure and the x-height of the line of text

below the figure. Since the top of the figure is

even with the x-height of the first line, we need to

increase its height by one half of \baselineskip.

The additional .99\baselineskip is added since

numbers are truncated on division; we want the

\divide to give us a "ceiling" result, not a "floor?

The second point of interest in \dohang is the

actual calculation of \hangcount. Here. we set a

count variable to a dimension and then divide the

count by another dimension. rn allows dimensions

to be coerced into numbers; the number becomes the

value of the dimension in units of scaled points. By

dividing a coerced dimension by another dimension,

the units are cancelled out leaving us with a count.

Applying the insertion macros

Now that all the pieces have been defined, we can

see how to combine them within a document to set

the figure. The following TEX commands show the

portion of an input file where the figure is to be

used.

(define macros previously shown in article)

(text for paragraph preceding figure)

\rightinsert

\par
(text for first paragraph after figure)

\par

(text for next paragraph)

\par
(text for still another paragraph)

. . .

When using these macros, care should be taken

when using grouping. The macros have been

designed to allow a group to be entered after the

figure has been started. However, the \right insert

call itself should not be placed within a group unless

you are certain that the entire figure will be covered

before the group ends.

Demonstrating the insertion macros

To demonstrate these macros under a variety of

circumstances, we need to vary the amount of text

prior to starting the figure and the amount which is

placed after its start. This brings us to the second

major topic of this article: generating variable

amounts of random text.

While this may seem like a frivolous application

of TjjX, it does serve some useful functions. When

showing how page layouts will look, typographers

often use Latin text to fill out pages. For those of us

who don't have any Latin text handy or don't want

to type it in, it is possible to have TEX make up

some text with the aid of a pseudo-random number

generator.

Another benefit of randomly-generated text is

that by shifting the position within the random

sequence, we can vary the amount of text that will

be created. This technique will be used to show

how the figure placement macros act under different

conditions.

Random numbers in T'EX

To start, we need a random number generator. The

following one uses the linear congruential method.

It has a period of 50,000 numbers with chi-squared

values for 1000 number sequences falling within the

35% to 70% range. A call to \ m d results in \rndval

being set to the next number in the pseudo-random

sequence. The number will be between 0 and 99,

inclusive.

TUGboat, Volume 8 (1987), No. 3

Now, the random number generator can be

used to generate random paragraphs consisting of

a random number of sentences; random sentences

made up of a variable number of words; and words

made up from a number of randomly selected

letters. Following the normal practice in English,

we capitalize the first word of each sentence.

Applying the random numbers

Using the random text generator to demonstrate

the figure placement macros can be accomplished

with the following code.

(define macros for figure placement)

(define macros for random text generation)

\message{Give me a number from 0 to 99:)

\else

\parskip=Opt plus 2pt

\parindent=20pt

\f i

\def \doparC\par)

\ m d \np=\rndval

\divide\np by 20 \advance\np by 5

\loop \ifnum\np>O \dopar C\randompar)%

\advance\np by -1 \repeat

\rightinsert

\par
Insert the figure here or soon after.

\ m d \np=\rndval

\divide\np by 10 \advance\np by 7

\loop \ifnum\np>O '\dopar {\randompar)%

\advance\np by -1 \repeat

\bye

Those who actually try the macros presented in

this article are advised to try the following sequence

numbers: 7, 8, 28 and 42-43.

Improvements to random text generator

Words composed of randomly selected letters cause

several problems. First, it is a very time-consuming

operation to select each character at random. Fur-

ther, the words do not tend to hyphenate very well.

This can result in overfull hboxes (try sequences

8, 12 or 73) or word spacing that is too loose. If

one is showing a layout that has narrow columns,

it is desirable for paragraphs to be set without any

bad breaks.

An improvement would be to select words at

random from a pre-built list of words. This requires

considerably fewer random numbers. Words should

be chosen of varying lengths so that the text appears

to be realistic. To avoid distracting the reader into

trying to make sense out of the text, the word list

should be made up using a language that the reader

is not likely to know. Latin perhaps?

\read-1 to\mynum \ns=\mynum
Problems with the insertion macros

\ifnum\ns>99 \ns=99 \fi
One weakness that these macros have is that they

\ifnum\ns=l Skipping 1 number.
don't account for any stretching of the \parskip

\else Skipping \number\ns\ numbers.\fi
glue. This can result in an extra line being shortened

\loop \ifnum\ns>O \ m d below the figure if the \parskip glue between the
\advance\ns by -1 \repeat paragraphs covering the figure is allowed to stretch

\rnd \ifnum\rndval>49

\parskip=6pt plus 4pt minus 2pt

\parindent=Opt

too much (try sequence 4).

This extra line is normally not a big problem.

However, if the figure is being placed close to the

bottom of the page, it is possible for the extra

shortened line to be placed at the top of the next

TUGboat, Volume 8 (1987). No. 3

page. The \tryf lg macro avoids this problem

by subtracting an extra two times \baselmeskip

from the remaining space on the page before testing

to see if there is room.

An example of the problem can be seen by

removing the extra \advance\dimenO from Section

A or \tryf ig and running the macros with random

sequences 42 and 43.

Improvements to the insertion macros

When a figure won't fit on a page, it is deferred

until a paragraph break on the next page. However.

it does not always start with the first paragraph on

the next page (try sequences 9 and 35). Sequence 55

shows a variation of this same problem. The output

routine lags behind the building of the vertical list.

Thus. it is possible that when this '&-st'' paragraph

break occurred. Tm was still processing the earlier

page. The improvement to the figure placement
would be to get the figure to be output as soon as

possible after the page break.

A further refinement would be to get the figure

to start at the very top of the next page. This

might involve placing the figure in the middle of a

paragraph.

Perhaps the definitive improvement to these

figure insertion techniques would be to define a new

\insert (say, \newinsert \right ins) and revise

the output routine to handle a \rightins as it

does other inserts. This is where output routines

do become nasty beasts.

Contents of Style Collection

as of 6th September 1987

Ken Yap

University of Rochester

The U?fsx style collection now contains the files

listed below. They are available for anonymous ftp

from Rochester. Arpa in directory public/latex-

style. You should retrieve the file OOindex first

to obtain a brief description of current directory

contents. The file OOdirectory contains a reverse

time sorted list of files; this may be helpful in

File

OOdirectory

OOindex

OOreadme

a4. sty

a4wide.sty

aaai-instructions

aaai . sty

acm. bst

agugrl.sty

"agugrl.sample

agujgr. sty

* agujgr . sample
amssymbols.sty

* article. txt
* artiO.txt

*artil.txt

* arti2.txt
biihead.sty

cyrillic . sty
dayofweek. tex

deproc.sty

deprocldc .tex

docsty. c

docsty.readme

doublespace.sty

*draft.sty

draf thead. sty

dvidoc.sha-1

dvidoc.shar2

epic.shar1

epic. shar2

* espo . sty
format .sty

f ullpage .doc

f ullpage . sty
geophysics.sty

* german. sty

Set page size to A4

Adjusts width too to suit A4

. t ex
Instructions to authors

B~BTEX style to accompany

aaal . sty
Style fi!e for AAAI

conference 1987

ACM B i b w style

AGU Geophvsical Research

Letters style, sample

AGU Journal of Geophysical

Research style, sample

Load AMS symbol f , ds

Standard files in text format,

with places to make

language specific

changes indicated

Underlined beading

Load cyrillic font

r\/Iacros to compute day of

week and phase of moon

Examples of how to use

arithmetic capabilities

DECUS Proceedings style

Paper that describes the

above

Program to convert .doc to

.sty by stripping comments

Double spacing in text

Draft option for documents

for "debugging"

Prints DRAFT in heading

Sh archive of DVIDOC, DVI

to character device filter

for Unix BSD systems

Style file to substitute all

fonts with doc font

Sh archive of extended

picture environment

Style file for Esperanto

Print F P numbers in fixed

format

Get more out of a page

Geophysics journal style

Redefines keywords for

German documents

keeping your collection in sync with U W - s t y l e .

