
TUGboat, Volume 8 (1987): No. 2

Fonts for Digital Halftones

Donald E. Knuth
Stanford University

Small pictures can be "typeset" on raster devices in a way that simulates the screens used to print fine books
on photography. The purpose of this note is to discuss some experiments in which METRFONT has created
fonts from which halftones can be generated easily on laser printers. High levels of quality are not possible
at low resolution, and large pictures will overflow TEX'S memory at high resolution; yet these fonts have
proved to he useful in several applications, and their design involves a number of interesting issues.

I began this investigation several years ago when about a dozen of Stanford's grad students were working
on a project to create "high-tech self-portraits" [see Ranisey Haddad and Donald E. Knuth, "A programming
and problem-solving seminar." Stanford Co~nputer Science Report 1055 (Stanford, California. June 1985).
pp. 88-1031. The students were manipulating digitized graphic images in many ingenious ways. but Stanford
had no output devices by which the computed images could be converted to hardcopy. Therefore I decided
to c r ~ a t e ;1 font by which halftones could be produced using m.

Such a font is necessarily device-dependent. For example. a laser printer with 300 pixels per inch cannot
mimic the behavior of another with 240 pixels per inch, if we are trying to control the patterns of pixels.
I decided to use our 300-per-inch Imagen laserprinter because it gave better control over pixel quality than
any other machine we had.

It seemed best at first to design a font whose '.characters" were tiny 8 x 8 squares of pixels. The idea
was to have 65 characters for 65 different levels of brightness: For 0 5 k 5 64 there would be one character
with exactly k black pixels arid 64 - k white pixels.

Indeed. it seemed best to find some permutation p of the 61 pixels in an 8 x 8 square so that the black
pixels of character k would be po, p l My first instinct was to try to keep positions po. p l . p2. . . .
as far apart from each other as possible. So my first METAFONT proRrarn painted pixels black by ordering
the positions as follows:

[This is essentially the "ordered dither" rnatrix of B. E. Bayer: see the survey paper by Jarvis. Judice. and
Ninke in Computer Graphics and Image Processing 5 (1976). 22-27.]

It turns out to be easy to create such a font with METAFONT:

% halftone font with 65 levels of gray, characters "0" (white) to "p" (black)

pair p[1; % the pixels in order (first pO becomes black, then pl, etc.)
pair dC1; d[O]=(O,O); d[ll=(l,l); d[2]=(0,1); d[3]=(1,0); % dither control
def wrap(expr z) =(xpart z mod 8 , ypart z mod 8) enddef ;
for i=O upto 3: for j=O upto 3: for k=O upto 3:
p [16i+4j+k] =wrap(4d[k]+2d[j] +d[i]+(2,2)) ; endf or endf or endfor

w#: =8/pt; % that's 8 pixels
font-quad:=w#; designsize:=8w#;

picture prevchar; prevchar=nullpicture; % the pixels blackened so far
for i=O upto 64:
beginchar(i+ASCII"O",w#,w#,O); currentpicture:=prevchar;
if i>O: addto currentpicture also unitpixel shifted p[i-11; f i
prevchar:=currentpicture; endchar;
endf or

136 TUGboat, Volume 8 (1987): No. 2

This file was called dt .mf: I used it to make a font callcd 'dt300' by applying METAFONT in the usual way
to the following file dt300 .mf:

% Halftone font for Imagen, dithered
mode-setup;
if (pixels-per_inch<>300) or (rnagol):

errmessage "Sorry, this font is only for resolution 300";
errmessage "Abort the run now or you'll clobber the TFM file";
forever: endfor

else: input dt f i
end.

(The purpose of dt300 .mf is to enforce the device-dependence of this font.)
I t 's fairly easy to typeset pictures with dt300 if you input the following macro file hf 65. tex in a T@

document:

\font\halftone=dt300 % for halftones on the Imagen 300
\chardef\other=12

\def\beginhalftone{\vbox\bgroup\offinterlineskip\halftone
\catcode'\\=\other \catcode'\-=\other \catcode'\-=\other
\catcode ' \ .=\active \starthalftone}

(\catcode'\.=\active \catcodeC\/=O \catcodeC\\=\other
/gdef/starthalftone#l\endhalftone{/let.=/endhalftoneline

/beginhalftoneline#l/endhalftone))
\def\beginhalftoneline{\hbox\bgroup\ignorespaces}
\def\endhalftoneline{\egroup\beginhalftoneline}
\def\endhaiftone{\egroup\setbox0=\lastbox\unskip\egroup}

Example of use:
\beginhalf tone
chars for top line of picture.
chars for second line of picture.
. . .
chars for bottom line of picture.
\endhalf t one

(These macros are a bit tricky because ' \ ' is one of the legal characters in dt300; we must make backslashes
revert temporarily to the status of ordinary symbols.)

Unfortunately, the results with dt300 weren't very good. For example, here are three typical pictures,
shown full size as they came off the machine:*

The squareness of the pixels is much too prominent.

* Asterisks are used throughout this paper to denote places where output from the 300-pixels-per-inch
Imagen printer has been pasted in. Elsewhere, the typesetting is by an APS Micro-5, which has a resolution
of about 723 pixels per inch.

TUGboat, Volume 8 (1987), No. 2 137

Moreover. the laser printer does strange things when it is given pixel patterns like those in dt300:"

Although character k has more black pixels than character k -1. the characters do not increase their darkness
monotonically! Character 6 seems darker than character 7 ; this is an optical illusion. Character 32 is darker
than many of the characters that follow, and in this case the effect is not illusory: Exaniirlation with a
magnifying glass shows that the machine deposits its toner in a very curious fashion.

Another defect of this approach is that most of the characters are quite dark: 50% density is reached
already at about character number 16. Hence dt300 overemphasizes light tones.

My next attempt was to look at halftone pictures in books and newspapers, in order to discover the
secret of their success. Aha! These were done by making bigger and bigger black dots: in other words. the
order of pixels po, pl was designed to keep black pixels close together instead of far apart. Also. the
dots usually appear in a grid that has been rotated 45". since human eyes don't notice the dottiness at this
angle as much as they do when a grid is rectilinear. Therefore I decided to blacken pixels in the following
order:

/63j

Here I decided not to stick to an 8 x 8 square: this nonsyuare set of pixel positions still "tiles" the plane in
Esclier-like fashion. if we replicate it at 8-pixel intervals. The characters are considered to be 8 pixels wide
and 8 pixels tall. as before, but they are no longer confined to an 8 x 8 bounding box. The reference point
is the lower left corner of position 24.

The matrix above is actually better than the one I first came up with. but I've forgotten what that one
was. John Hobby took a look at mine and suggested this alternative. because he warit,ed the pattern of black
pixels in character k to be essentially the same as the pattern of white pixels in character 64-k . (Commercial
halftone schemes start with small black dots on a white background: then the dots grow until they form a
checkerboard of black and white: then the white dot,s begin to shrink into their black background.) The
matrix above has this symmetry property, because the sum of the entries in positions (i , j) and (i . j + 4)
is 63 for all i and j : if you consider "wraparound" by computing indices modulo 8.

John and I used this new ordering of pixel positions to make a font called dot300, analogous to dt300.
It has the following gra,y levels:*

Now we have a pleasantly uniform gradation, except for an inevitable anonialy between characters 62 and 63.
The density reaches 50% somewhere around character rlurnber 45, and we can compensate for this by
preprocessing the data to be printed.

TUGboat; Volume 8 (1987), No. 2

The three images that were displayed m-it11 dt300 above look lilie this when dot300 is used:*

My students were able to use dot300 succ:essfully, so I stopped working on halftones and resumed 1111

norrnal activities.
However. I realized later that dot300 can easily be irnprovcd. because each of its characters is niade up

of two dots that are about the same size. There's no reason why the dots of a halftone image need to be
paired up in such a, way. With just a hit more work. we can typwet each dot indeperidrntly!

Thus. I niade a font hf 300 with just 33 characters (riot 65 as before). using the matrix

to control the order in w!iich pixels are blackened. (This matrix corresponds to just one of the two dots in
the larger matrix above.) The c1~;iractrrs are still regarded as 8 pixels wide. but they are now only 4 pixels
tall. U-hen a picture is typeset. t h ~ odd-riunibered rows art' to be offset horizontally by 4 pixels.

Here is the METAFONT file hf .mf that was used to generate the single-dot font:

% halftone font with 33 levels of gray, characters "0" (white) to "P" (black)

pair p[]; % the pixels in order (first pO becomes black, then p1, etc.)
pO=(l,l); p4=(2,0); p8=(1,0); p12=(0,0);
p16=(3,-1) ; p20=(2,-1) ; p24=(1,-1); p28=(2,-2);
transform r ; r=identity rotatedaround ((1.5,1.5),90);

for i=O step 4 until 28:
p [i+ll =p [il transformed r ;
p [i+31 =p [i+l] transformed r ;
p [i+2] =p Ci+31 transf ormed r ;
endf or

w#:=8/pt; % that's 8 pixels
font-quad:=w#; designsize:=8w#;

picture prevchar; prevchar=nullpicture; % the pixels blackened so far
for i=O upto 32:
beginchar(i+ASCII"O",w#,.5~#:0); currentpicture:=prevchar;
if i>O: addto currentpicture also unitpixel shifted p[i-11; fi
pre7~char:=currentpicture; endchar;
endf or

TUGboat, Volume 8 (1987), No. 2

(There's also a file hf300 .mf, ar~alogous to the file dt300 .mf above.)
Here's how the three example images look when they're rendered by font hf 3OO:*

They are sornewhat blurry because they were generated second-hand from data intended for square pixels:
sharper results are possible if the data is expressly prepared for a 45" grid. For example. here is a sharper
Mona Lisa, and an image whose dots were conlputed directly by mathematical formulas:*

The T@ macros hf 65. tex shown above rriust be replaced by another set hf 33. tex when independent
dots are used:

\font\halftone=hf300 % for halftones on the Imagen 300, each dot independent
\chardef\other=12

\newif\ifshifted
\def\shift{\moveright.5em}
\def\beginhalftone{\vbox\bgroup\offinterlineskip\halftone

\catcode'\.=\active\shiftedtrue\shift\hbox\bgroup}
{\catcode' \.=\active \gdef . {\egroup

\if~hifted\shiftedfalse\else\shiftedtrue\shift\fi\hbox\bgrou~\ignorespaces}~
\def\endhalftone{\egroup\setbox0=\lastbox\egroup}

% Example of use:
% \beginhalftone
% chars for top halfline of picture. (shifted right 4 pixels)
% chars for second halfline of picture. (not shifted right)
% chars for third halfline of picture. (shifted right 4 pixels)
% . . .
% chars for bottom halfline of picture. (possibly shifted right)
% \endhalftone

These rnacros are much simpler than those of hf65, because the 33 ASCII characters "0" to "P" have no
special meaning to plain TE,X.

140 TUGboat, Volume 8 (1987). No. 2

We can also create an analogous font hf723 for the high-resolution APS. in which case the pictures
come out looking like this:

The same TEX macros were used. but font \half tone was defined to be hf 723 inst,ead of hf 300. Now the
pictures are smaller, because the font characters are still 8 pixels wide, and the pixels have gotten smaller.
At this resolution the halftones look 9eal." except that they are too dark. This problem can be fixed by
adjusting the densities in a preprocessing program. Also. small deficiencies in the APS's analog-to-digital
conversion hardware become apparent when such tiny charact,ers are typeset.

What resolution is needed? It is traditional to measure the quality of a halftone screen by counting
the number of dots per inch in the corresporlrling inr rotated grid. and it's easy t,o do this with a magnifying
glass. The photographs in a newspaper like the International Herald Tribune use a 72-line screen. rotatled
45': this is approximately the resolution 5 0 4 that we would obtain with the hf400 font on a laser printer
with 400 dots per inch. (The 300-per-inch font hf300 gives a rotated screen with only 37.5fi 53 dots
per inch.) The photographs on the book jacket of Computers & Typesetting have a 133-line screen. again
rotated 35'; this is almost identical to the resolution of hf723. But this is not the upper limit: A book that
reproduces photographs with exceptionally high quality, such as Portraits of Success by Carolyn Caddes
(Portola Valley: Tioga Press, 1986), has a screen of about 270 lines per inch. in this case rotated 30'.

Let's turn now to another problern: Suppose we have an image for which we want to obt,ain the best
possible representation on a laser printer of medium resolution, because we will be using that image many
t,imes-for example, in a letterhead. In such cases it is clearly desirable to create a special font for that
image alone: instead of using a general-purpose font for halftones. we'll want to control every pixel. The
desired image can then be typeset from a special-purpose font of "characters" that represent rectangular
subsections of the whole.

The examples above were produced on an Imagen printer as 64 lines of 55 columns per line, with 8 pixels
in each line and each column. To get an equivalent picture with every pixel selected individually, we can
make a font that has. say, 80 characters. each 64 pixels tall and 44 pixels wide. By typesetting eight rows of
ten characters each, we'll have the desired image. For example. t,lle following picture was done in that way:*

TEX will typeset such an image if we say \monalisa after making the following definitions:

\f ont\mona=mona300 [hf , dekl

TUGboat, Volume 8 (1987), No. 2

And once we have the individual pieces. we can combine them to get unusual effects:*

The font mona300 shown above was generated from a file mona.mf that began like this:

row(1); cols(1,5,9,13,15,17,21,24,30,32,39,46,56,62,70,
78,86,95,103,110,118,120,127,135,142,151,159,167,175,183,
191,198,207,215,223,230,238,246,254,263,271,279,287,295,302,
311,318,328,334,342,350,358,366,367,375,382,383,390,392,398,
400,405,408,414,416,421,424,430,432,439);

row(2); cols(4,7,12,20,23,28,30,37,38,40,45,48,53,6~,64,

. . . and so on. until 312 rows had been specified. Thr pararrleter file mona300 .mf was

% Mona Llsa for Imagen 300
mode-setup;
if (pixels-per_inch<>300) or (mag<>l) : . . . (error messages as before)
else: input picfont
width:=44; height:=64; m:=8; n:=10; filename:="monat';
do-it; fi

and the driver file picf ont .mf was

def do-it=
for j=O upto n-I: jj:=width*j; jjj:=jj+width; jjjj:=j;
scant okens (I1 input "&filename) ; endf or enddef ;

string filename ;

def row(expr x) =

cc:=(x-1)div height; rr:=height-1-((x-1)mod height);
if rr=height-1: beginchar(cc*n+jjjj,width/pt,height/pt,O; fi enddef;

def cols(text t) =

for tt:=t: exitif tt>=jjj; if tt>=jj:
addto currentpicture also unitpixel shifted (tt,rr); fi endfor

if rr=O: xoffset:=-jj; endchar; fi enddef;

This is not very efficient. but it's interesting and it seems to work.

142 TUGboat, Volume 8 (1987), No. 2

Ken Knowlton and Leon Harrnon have shown that surprising effects are possible once a picture has been
digitized [see Computer Graphics and Image Processing 1 (1972). 1-20]. Contiiiuing this tradition. I found
that it's fun to combine the TJ$ macros above with new fonts that frankly acknowledge their digital nature.
One needn't always try to compete with conirnercial halftone screens!

For example, we can use hf 65 tex with a 'negdot' font that makes negative images out of square dots:

The METRFONT file negdot .mf that generated this font is quite simple:

% negative pseudo-halftone font with 65 sizes of square dots
mode-setup;
w#:=2.5pt#; font-quad:=w#; designsize:=Bw#;

for i=O upto 64:
begin~har(i+ASCII"O~,w#,w#,O);
r#:=sqrt(.gw#*(i-i/80)); define-pixels(r);
fill unitsquare scaled r shifted(.5w,.5h);
endchar ;
endf or

end.

Cnlike the previous fonts we have considered, this one is device-ir1depr:ndent.
It's even possible to perceive images when each character of t,he halftone font has exactly the same

number of black pixels. Here. for example. is what happens when the three images above are typeset with
a font in which each character consists of a vertical line and a horizont,al line: the lines move up arid to the
right as the pixel g;,ts darker, but they retain a uriiforni thickness. U'e percctiw lighter and darker features
only because adjacent lines get closer together or further apart.

TUGboat. Volume 8 (1987), No. 2

The METAFONT file lines .mf for this device-independent font is:

% pseudo-halftone font with 65 lines that move right and up
mode-setup; q:=savepen;
w#:=2.5pt#; font-quad:=w#; designsize:=8w#;
for i=O upto 64: beginchar(i+ASCII"O",w#,w#,O); pickup q;

draw (O,h*i/64)--(w,h*i/64); draw(w*i/64,0)--(w*i/64,h); endchar;
endfor end.

Yet another possibility is the font produced by angles .mf: here each character is a single line of radius
2.5 pt that rotates from horizontal to vertical as thr density iricreases:

% pseudo-halftone font with 65 radii that move counterclockwise
mode-setup; q:=savepen;
w#:=2.5pt#; font-quad:=w#; designsize:=8w#;
for i=O upto 64: begin~har(i+ASCII"O~,w#,w#,O); pickup q;

draw ((0,O)--(w,O)) rotated (90*i/64); endchar;
endfor end.

The images are still anlazinglv easy to identify:

(We can think of a large array of dials whose hands record the local light levels.) It is amusing to view these
images by tilting t,he page up until vow eyes are almost parallel to the paper.

As a final example, let's consider a 33-cliaracter font that's designed t,o br used with hf 33. tex instead
of hf65. tex. Readers who like puzzles are invited to try to guess what t,his METAFONT code will do, before
looking at the image of Mona Lisa that was typeset with tlw corresporlding font. [Hint: The name of the
METAFONT file is hex. mf .]

% pseudo-halftone font with 33 more-or-less hexagonal patterns
mode-setup; q:=savepen;
w#:=7.5pt#; font-quad:=w#; designsize:=8w#;
for i=O upto 32: beginchar(i+ASCII"O",w#,.5w#,0); pickup q;

alpha:=.5-i/72; z0=(.5w,.5h);
zl=alpha[(5/6w, .5h) ,z0] ; z2=alpha [(2/3w, - .5h) , zO] ;
zO=.5[z2,z5]=.5[z3,z6]=.5[zl,z4] ; x2=x6; y5=y6;
draw zl--22; draw .5 [zl,z21--20;
draw 23--24; draw . 5 [z3,z41--20;
draw 25--26 ; draw .5 [z5,26] --z0 ; endchar ;
endf or

end.

The answer to this puzzle can be seen in the illustration a t the very end of this paper (following the
appendices).

TUGboat, Volume 8 (1987), No. 2

Appendix 1: Source data for the examples

The examples in this paper are niostly derived from the basic pixel values shown below. This data uses a
corivention takrri from the book Digital Image Processirlg by Rafael C. Gorlzalez and Paul Wintz (Xddison-
Wesley. 1977): The 32 characters 0123456789ABCDEFGHIJKLMNOPQRSTUV represent densities from 1.0 down

(Lisa) (Lincoln)
FFHHIJKKJ J JKLKKLLLKLLLLLMLLLLMMMLLLLLLMLKJ J J J J JIIIHHGHH .
IIIIJKKKKJJJKLMLMMMLMNNOMLJHGFGIKMMMMMMLKKJJKJJIJIJJHJJ.

TUGboat, Volume 8 (1987)' No. 2

to 0.0 (i.e., ' 0 ' is black and 'V' is white). The Lisa data was digitized by a T V camera in Stanford's robotics
lab. The Lincoln and Liberty data come mostly from Appendix B in the Gonzales-Wintz book, although I
decided to change several dozen of the pixel values found there.

(Liberty)
QQRRRQPPRQQQQQQQQPPPPOPOOMM. VVVVVVVVVJABVVV.
QKJONMPQRQQQQQQQPQPPPPOOOON. VVVVVVVVPB760VV.
966989EKPQQQQQRQQQPPQPOONNN. VVVVVVVVGHEDAEVVV.
66689877AMPRQQRRQPPPPOONMNM. VVVVVVVKL97ADTVVV.
6669999898HORQRQQPPQOCONOMM. VVVVVVVC55656FVVV.
66678898878BQRRRQQQPOPOOPNM. VVVVVVV4457765VVV.
666769998887GRRRQPOOPPOOONM. VVVVVVV35CB974VVV.
5667667788778IRQPPOPPPOONOL. VVVVVVV44JIB55VVV.
F6676777677779IQQ00PONOOOOM. VVVVVVVQHEDG8VV.
VKA767778777679PQPPOOMMMMML. VVVVVVVVE7CHSVV.
VVTKC7676667677IPPOOPNMMMNL. VVVVVVVV9LDDAVV.
VVWQHD77668787AOPOPNONNNML. VVVVVVVVNMCCAVVVVVVVVHVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV.
VVVVVURG77787F87KONNNNNLMML. VVVVVVVVU99ABTVVVVVVVVNVVVVMVVVVVVVVVVVVVVVVVVVVVVVVVVV.
VVVVVVVSAE777EE6AOONNNMMMMM. VVVVVVVVM86ADCVVVVVVVV9VVVVBVVVVVIVVVVVVVVVVVVVVVVVVVVV.
VVVVVVWHD968EK77KONMMLLLLL. VVVVVVVVV5L8DDVVVVVVVVVAVVV9VVVVGVVVVVVVVVVVVVVVVVVVVVV.
UVWUUTTTG89GLKB6IMMMLLLLLK. VVVVVVVVVQV9EEVVVVVVVVV8TVV9VVVJLVVVVVVVVVVVVVVVVVVV.
TUWUUTTSSPKNNLJ6FMLKLJLLKK. VVVVVVVVVVVBDEFVVVVVVVVS8MJ9VVNBVVVVVVVVVVVVVVVVVV.
TTTTSSSSSRRQOOLH89NLKKJKKKL. VVVVVVVVVVVCEFBVVQHQVVVK78978M8VVVVUQOVVVVVVVVVVUVWTU.
TTTTSSRRRSTRPPLH97MKJKIKKKL. VVVVVVVVVVVDEDAIVVVG9LN7BRRL97AVVSLCRVVVVVVVVVUTWTTU.
QTTTTSRRRSTRQOMH77KJKJJJKJJ. VVVVVVVVVVVDCDBBVVVVVC8JBDCCDA7QEAIVVVVVVVVVVWTTTSTT.
9EHORRQRRTSRSSOG67LJJKJJJJL. VVVVVVVVVVVD9DABMVVVVVNAPHEB9DA9ETVVVVVVVVVmTSSSSST.
6555BKORPSPONJIE76IKJKJKJKK. V V V V V V V V V V V I 9 A B A 8 V V V V U 8 L Q A H D C B D 8 K V V U V U V U T T S S R S S R S .
55456BKQLMG89B8769IKKLKKLKL. VVVVVVVVVVUVAB9B8VVTPA59KNNFCBA99VUUTTTTTTTTTTTTTSSSSSRS.
F6467BMRI76566566CJKMLLKKLJ. VVVVWVVVWVA79BBSO8BG5EAOJDBABA8UTTSSTSSSTSSSSSRRRRRRR.
74458LOQI55775559BKLLLLLKLK. V ~ L 9 A A 9 8 P U U U 5 H F H F D B A B B B T S S R R S S S S S S S S R R R R R Q Q R .
B97EINLQR9897555DLLLLLLLLLK. ~TUTTTTTA8C977USJ5CEBCA997CCTSRRQRQRRRQRRRRQQPPPQQ.

Q R Q Q ~ Q R R R R R R Q ~ ~ H I ~ L L P L N P N K M M ~ E ~ B F ~ K O L ~ B B F L ~ ~ 2432IK J JIIH.
RRQQQQRRRQRRQQMI3MHOODSPMKLJ6L62FIIPL4DCDF311113AJJIIHI.
QRQQQQQRQRRQRQQ7FK0QHQSOMLK6MKG24CDNLGEAI75011232JJIIII.
RQQPQQQQQRRQRQH5MEPPMQQMJDBEOLE93BJLLJ6BC65000111JJIHHH.
QQQPQQPQPQRQQQAMEOPIQOM8GLKONM9G4AAINK31861OOOOO1KJIIII.

TUGboat, Volume 8 (1987), No. 2

Appendix 2: 65-level data for typesetting
The 32-level data in Appendix 1 was converted to 65-level data by a co
simpler than) the program in Appendix 3. In this case the representation
'p' means black. The 65 codes follow standard ASCII order: 0123456789 :

(Lisa)
MMIHFDBADDDA?BA???B?????=????===??????=?BDDDDDDFFFIHKIH.
FFFFDBABADDDB?=?===?=;;8=?DIKMKFB======?BADDADDFDFDDHDD.
DDFFDB???BDA====?;:;8888ITY[lA[[[RD;8;8;=?BA??BABBABD?B.
FDDD?====???===;:89877?T[YY]̂ ll̂ ']]-']]p8768:===;;======?==.
BDA?=;:;:======. . 98766AYe [TY [I -1 ' ' ' ' - W85468;:;8:7888;=:;.
=??===;:;;:;8;:;87668Y[RH?FMT[--'-"bT656788889776688=;.
=?@=:=;8888888887646MY?33125;K['bbbbbbK33456666645777:;.
?B==887778779877655?[D2000012;0['bbbbb]9433535335646688.
??=8776666677678536VY710000026I['bbdbbbM355443435534477.
?BA876443567647753B]V510000137DT]bbeded-;=7686654534355.
FMK;75685455656639VbK3100001258DO[bdeddbRK?AB8=85324344.
RPOI?=ADA65533424C"?31000012257F[eddedeXTMPFABF6232434.
VROMKKHKKKC843226RbbD365116DB??IT-dededd-[TKKMFO=422224.
WTTMRTRVTRIM6443=[b'VPKM640TIR[][[bdeded'[YVPMPVI623233.
TVTTWTT[WTK077A;?-bbIDFM64T?8RRF=Wbddded'l [YVVYY0722245.
WYWY [YY] YVRVFOWTH] e-6367251658858Vedggddbe [YWY [YT=23356.
[[[I] ['I [- [' - [Y]Y-db710115:21016F]edededb[[[Y []I [M66677.
IU(I [-] (CC-U(‘~ bbb?10115:3112?TbdeddedbTTPQRRRRPHAADF.
'bb" [[-I ' -'bbbbdbbbK21418D5129M [edggggdebb'l [[VRPMPVY.

'bbbb'] ' ' ' 'bbbdededY ; 43@Y [826DT^dedgf dedbbbb' 'b'] 1 [Y [.
b'bbbbb'bb'-bdeddede]~846Q~D~=I~]edggggfeb'bbbbbbb'] [[.
' bbb'bbdbbbbededdddbI8=8HTO=8HY'ddgfgggdb'"] [- ' .
' bbbbbdedebbbdbbedeed [? 3 7 1 ~ 1 ~ ~ ~ - b d e ~ ~ f gf eb1'-'- ' - ' ' 'bb' .
bbbbededdb " " '1 bdddeb [; l29DMW' bdedgf g g g b '1 [-bb ' -b " - .
bdbbdededeb' - ' ' [bededde [96AR] 'bdeddgggf gdb-1 [I ' ' ' ' ' - .
bedbbdddedb"]YT]gdggddd'Yl'bbbddedgfggded] "I'bbbb'b" .
dbebb'L"][YTVWV[ggggdedd']bbbbbb'bdggggde"']-bbbbbbb'.
eddb'] -1 [[WVWVWY [bgdgggde [KY] "^Y [bggf gf g d -1 [I 1 " " 11 1 .
bb '] - [[[[[YVVW [[I bgf gf ded] ; DPVVVPR] gggggggb' [[[YVY [TTRY .

'1 [YV [' ' ' ' [[I ['bdggggddbY=8AIIFFHWdgf gdf ggdede] ' bRHRV [.
' ' [- [[- ' - [dbbbbdeggf ggdaM8768887; =Mbggddggf eddebbbVIT [Y .
'b'] [I '1 -1 bbbe'bdgf ggbRA6224553447Dl ddeggf gdbCYOMKKMY [[.
bb] [[[YVY'bbbd'bdgggdM721111221247Fbeddggggggd'MDITRTWY.
" [[Y [WT] 'bb'd'bggf g] 8212111112248D'dgdgf gfggdbYRMKMMOM.
[' [TRTRV[' ' ' ' ' (dggdbM4110012111239Kbdgdggdbdggd'YVOITIM.
1 '1 RKKORW] ' [I bggf d [T?1100011111358Mbdeddb-1 bdggd' [RHDA; .
'b] - [RIMT [I -bgf gg'I=2lOOOOOOOll248O 'db [TPORIbggf gdb [WVT.
[']]][VPTRV'gfggdV721201110001215:T '̂[TIKV'egfgggdb"'Y.
]'[Y[[WVVPTggggfbW610011100000113;M[YRYbdggfggfgggd"~~.
[[WTTROMMWdgf gf e '1 ~61131100000115FT] bgf gggf ggggf gggb] -1 .
WRTVWVWY]ggggggb][[YPD?4100001370Y'gggggfgggfgfggfgd[[Y.
VTW [VYY] ef gf gf d' [^ '1 [I YVPIB= ; ; FV- ' dgf gf gdgf gggggf ggdb- [.
YTRTRROYggggggb " -b ' ' [Y [YX [[[[I -dbgiiggdeggf gf gf ggggd ' 1 .
1 YVWVWV-f gf gf gbbbbdeb] [I [[- 'b' ' dggf igf gdddbbdedggf gf el [.
-1 [I [[bgiiiggbdededd' -1 'bbbbbdggf ggggggb' 'beddef gggd' V.
[[[[[['gfgiiifedgddedbbbbdebdegfgggfgfgdb"bdeggggdggdc.
TRTTRTbgiiiiigdggdggdedededdefgggfgggigdb1bbdgfgfgddgd'.
PMMPMTdiiiiiiggfgggfgggfgdedggfgggiifigdb'bdgiigggdegdt.
TTTRT-iiiiiiiiggfggggfggggfggggfgifiigdeddgggiigfgdddeb.
[(] -bg. llllllllgfggiifggfgggfgfggfiiiigggggiiiigfgggdefd.
bbddiiiiiiiiiiiiiiiiigggfgggggfggiiiigfgfiiiiiiggfggggd.
bbgiiiiiigiiiiiiiiiiiifggfgfgfgiiiiiiggiiiiiiigfgggfggg.
dgiigigggfgiiiiiiiiiiigggggggggiiiiiiiiiiiiiiiiggfggfgf.
giiggfgfggiiiiiiiiiiiiifgfgfgfiiiiiiiiiiiiiiiiigfggfggg.
iiiigggiiiiiiiiiiiiiiiggiiggggiiiiiiiiiiiiiigggfgggggfg.
iiiigfiiiiiiiiiiiiiiiiiiiiifgiiiiiiiiiiiiiiiiigggfgfggg.
iiigdedggggiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiigggfgf.
iiigddggfgfiigggg.
iiiggdLbgbdedgd[['diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiifgfg.
iiigddefdgdbbW?;?DMWiggiiiiiiiiiiiiiiiiiiiiiiiiiiiigggg.
iiiidggdiggg]F=;=?DFMOR[giiiiiiiiiiilkiiiiiiiiiiiiiiiif.
ikliiigiiiiglIDADBADIHIMYbgiiiiiiiikkliiiiiiiiiiiiiiiig.
ikkkiiiiiiigbROMMIFFFFFIKMVigiiiiiilkiiiiiiiiiiiiiiiiig.
ilklkiklkkkig'l -YRMIFFFDHIFK'giiggiiigdgggiiiiiiiiiiiig.

lmputer program similar to (but
is different: '0' means white and
;<=>?@ABCDEFGHIJKLMNOPQRSTUV

(Lincoln)
5546556466665667567667767666
4554556553555466556656666645
5355355453567566665666647:IT
65453434343665555455658=Rddd
665343434254453534236=Rdeded
43434343224122243434APdedded
554435342422414247AR'bgdgded
5453434344434252:FYbbdg[PAB[
345534346555443;RY'bdgR00002
435455454555546 [I gb [' '000000

4343445554566~~dkgid30000000
2434465466647YOgk~dBlOOOOOOO
355465656465:'Ykke[741111000
464666566645 : g[lil K862323lll
466676665657BfkniY;781122232
566656776676Alkki];772323243
577656776776[nnieCFDA4324342
65665577767?kpmkgbHMI6534455
5567767677<bnklkgCTWM86566?V
4667777576fkgA8'gid'O8674;RY
567777777?i'di[8biidY8668RQb
577888887;iibe[DBiiiY:56FCgV
657778788;dW [M?=ObiiM87?] [OW
566778898='F???b[Te]=6:BMD=F
667888;:=?YR77Id;;'[88;8;:;D
77888; ; ==; di66 [768g [; ; : 878; =
7788;=:==8'kA8?78i,iK==;88;:
88.=:===?. :bl=88?D]kgMA=. f . I : ;
8;:====?=??Wk;B==KW&dKB?=. 2 . .
. . . - - - - - .,-----?=?DC]8;=HKkk-'TKFD= . . - - - - . - , . ---- .-???BT'I:?lAinYVbYRMA
. --- , ---??=?BB?BMM] blmKbd [R [Y [TK
: =?=?BBABABAFKWbnkWV [TMPM [KH
;==??BDABDDDDDHRkgVC[YDKHWHY
==?BABADDFDA?DFP[iYb'TDFFMFD
=?BABADBADDBDBDFHebY']KDBMFT
??BABDADBDDADDDFF[gfAdKFAPMW
=?B?BABDDADBDDADFM1nib[DBHTH
=?B?DB?ADDDAFFFFFKRmkggHPRWV
=????ABDABDDDFDFG'Hblkib[iik
=?B?BB?BDDDABDDDMT?Wmlkkikli
???BAB?ADABDADDAeC:Mgklknnmn
?@?BADBDDABDDDDHki;=Vlmnnnnn
???BADABDBDABABklkB:=Rknrnnmn
?????BADDDDABATklki;==Fgnpnm
?@=?BBABADA?DMlkkliH===?]nmp
???????B?BDTikklkkik;====Rbl
??@B???DMYiniilklkliR:===??A
??===DYkkkkkiiiiiikik=;=HedM
==;?RnnnknlkiiiiiiigibD1iikl
==Kimnmnnnkliiigigiiiikiggik
Kdnnnnnmnkkkigggdgiggiiiddgi
mmmnhmklkggif ef igf iiiiigi
nkmmmmnkklif ggdegf giigiiii
nmnknmnkklkkkgggddgggiigiggg
nnkknnnnkklklifdegfgfiiigibD
nkklknknklmlkggdgggggiiigiiR
nklikkknnnnkkgggfifgiiiiigig
nkkiklknmninnkgfggiiiiiiiiiii
kplikiknnpnnkklkkklikiklkiik
npnnnnknpppmnnnnnknklknkklkl
PPP~P~~PPPPP~PP=~-

TUGboat, Volume 8 (1987). No. 2

WXYZ[\]--'abcdefghijklrnnop. The density of character k was assumed to be approximately k /36 for
0 5 k < 8. and approxirnately k / 7 2 + 1/9 for 8 5 k < 64.

6654567756666666677778788==.
6AD8;=76466566567677778988;.
[bb [I LOB7666665665776788; ; : .
bbb] [-'-Y<7466456777788;=:=.
bbb [[[[I [-H946556776888 ; 8==.
bbb ' -1 [-I ' 1 W6.545666787887 ; = .
bbb'b [[[-I ^-K554678877898: =.
ebb'bb ' '1 "1 F5677877788; 8?.
Mbbcb"'b-"'[F668878;8889=.
OBY' b ' - '1 ' ' -b ' [767788=====? .
002BT'b'bbb'bc-F77887;===:?.
OOOl6HR' 'bb] '1 'Y8787;8: ; :=? .
0000015J"'] 'M]'A8;:;: ;?==?.
00000003YO'~'OPbY88~~:=====. I I

OOOOOOl l IR[b]PA"B8;==?????.
101011322K][K?BVbF===??@??B.
31111123347B:;?DbM=?A?D??BA.
22324434354688?I][;?BBDBAB?.
32233355533577?ILC=ADAFBAB?.
62223354532568=Hc'ADBDDDBDD.
[P1855654335348Kb1?DDADDDD?.
bddeVA857378;CFP-bFBDBDADAB.
degdbWA6?=K] [W] 'b [FBA?AB?B? .
Mbgb'V=5F1bebbdbbTDA=??BA?D.
'gfd-?86FddL'ded[WB??W?B?B.
V['PF; ?65 [I ['ddeR?????????B.
IOT088866=VTY'b'??BBBBBBBAB.
=DMB;88868YPVWY[DDDFDFDDDDF.
7 1 = . . . =. . . , . , .88H [Y] RYFFFKFFFDDFH . --. .- -- ,.-?==;;DFDFK[KKKMKKKHHII.
=;:BD?F==:?F?DMLMKMMMKKIHIH.
==ARA;=?==BIBM] [KMMPMKKKHKI.
?FTDKKFMMKR]O-iPKMMOMMOMMKK.
I]B=RiilkiikbiVKMOMPMMPPMMM.
MD??BHWiknibilMKMPMPOPOOPOP.
IABABAD [dng] 1-MKMOPOMPOPOPO .
MTMKIHIHWgigkPMMPMMPROPOPRO.
bMIKR [' [kknkkTMMPOPORRRRRRO .
IMYRKKHM^ingkWPOPMMPORRQTRR.
DDK]iiiknmgiiOPOOMPORRORTTT.
KDFFIHMWbdbklTMMPMOPORRRTTT.
gV-OMMPY]nknnVPOPOPOPORTTTT.
id'gb-dignnpmWOPOPORRRRTTTW.
kgkkkinnmnmnnOPOPOPRRRRRTWV.
nnknnnpknnppiOMPORRQRQTTTTT.
mnnnmnpppmpnVMMPOPRRRRTTTWV.
nmnmnnppppkTKMMPOOOPRRTTTTT.
pnnnmpppdlMKMMPOPPRORTTTTTT.
npppppnbOYgKMMPOPQRRRTTTWWV.
R'fikdWHKKpIKMPMORORRRTTTTT.
?=?BDBDFFIkpTMOPPORRRRYYTTW.
1 FFIKQPHFFepnPMOPORRQV [VWVV .
lkl['knnbMdppgMMPOPORWVYVYW.
klmnmnnmpnnppmWOMMMRRR[WVWV.
ikknnmpppppppnniYPOMOTVTWVW.
degikl-ppnCRPTTTTTR.
iddbgkgkkiikknnnpppmbWTPRRR.
Vedb[gigiggiklmnmpppppgVRRR.
idgbgkikkklnmnnnnppppppgVR.
KMR [' iiklnnkgnpmnmpppppppp ' .
f I?BHl FM [b [OM] kpnnppppppppp .
iiFBDDBBDDFDDDKkpnppppppppp.
kigDDDFFFFFIHIHMnpppppppppp.
nknVHIHIKKKKKKKKVpppppppppp.

(Liberty)
OOOOOOOOODYVOOO.
000000007V'b800.
OOOOOOOOKIORYPOOO.
0000000B?['YR2000.
OOOOOOOTdabdbMOOOOOOOOOOOOOOOOOOOOOOOOOOooooooooooooooo.
0000000ggd"be00000000000000000OOOOOOOOOOOOOOOOOOOOOOOO.
0000000idTW['f000000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
OOOOOOOggDFVdeOOO.
00000006HPRK]0000000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.

ooooooooo~?~ ~~oooooooooYooo ~oooo~oooooooooooooooooooooo .
OOOOOOOOO6O[POOOOOOOOOO]20O[OOOD?OOOOOOOOOOOOOOOOOOOOll.
OOOOOOOOOOOVRPMOOOOO0004]=D[OO;V00000000OOOOOOOOOOlllll.
00000000000T0MW006H6000A'~[~]=]000016800000000001011131.
00000000000RPRYF000K[?;~V54@[~Y004?T5000000000121112221.
OOOOOOOOOOORTRVVOOOOOT]DVRTTRY~6OYFOOOOOOOOOOlll2232423.
00000000000R[RYV=00000;Y710W[RX[02000000000111112434342.
00000000000F[YVY~00001]?6YHRTVR00000000000F[YVŶ00001176YHRTVR̂B0010101BOO1O1O1lllll2233444353.
OOOOOOOOOOlOYV[W]OO27Ye[A;:MTWY[[Oll2322323232224343444.
OOOOllOOOllOY'[VW39]WKdPY8DRWXVY]1324333432434435545554.
001111111111?[YY[~71lldIMHMRVYWVW2435544343433454554665.
1111213132323X-T["14DdTPVTY[['TT2445656545655456677766.
1312422222233Y[D]bbDV["YYW'YYW[YY'O'?567657677766667588877.
223233344454480Wd'[b;3601 [[VYV]W[Y677787887777588989:8:.
23243434335346Kbcb'0=757g[YRYY](V(657788887877Bi;888;;=.
2243435355545XddWT'RD]DTdPOKRRV-V[877789898888di8;===?=.
4355355545453'bgdYM?R===FI=7=88?IYOYP?88;:8;8?gY;==?=?=.
3433545455556dbgdPA8;=RVPA7=:;IH=?BKMbB8;;;8FK[===?=?BA.
435535356454FgggYY8?TTRFA;8B:TB8I?DFMPi?:;:=Kg[?==?BABD.
5545555465657bgfR:?WD'FB[8?=DBFAWYK?RMRi=;=RRdnd=???BAD.
6466676645456iib'FR?bDFFK8i] M?M [I TOT [Fb] ; =Mbknn??BADDF .
565565666664VgfM^HDbP88W8;YO'eHGY'8DPKDRKDDdikik?BABFFF.
46556664545666ibHIbI88R78?F?Kd'HMb8=[MKYDT]-nkglA?BBDFF.
65566555455466fIFd??7?;7;A==eOiWM65566555455466fIFd??7?;7;A==eOiWM̂A8?bVVA8?bVVM?inkgikFBDDFFI.
54666645564566=Fi=I88R37=B?Db?bkMFF7@gRTiYDDFFIF.
656656646456466_MB861648=?Bb=BKkgTR;?KOYF'dpnnkikDDFFFF.
55676666654656He=077=66<DRVP8?P[iWD??DbWTbepppnnnDDFIHI.
66676676765656Y=087F68=]K?B8;=[KgXYF;Ain]bnpppppmBDFFFF.
55665665665557[D[78878gD7=?7:=(DVFed?FYkbdpppppppFDFFIF.
5546666546666A8M?6;3==]87?=7==]BVi]bMKTeblppppppnmDFIFI.
4565656664667V='88?5==K78==8;?T?bbinDK[[bpppppppnpDFFFH.
5464666565656]M'8966:;:89?;:;?K=-d'i?TdbgppnppppmnFFFGH.
5365664554568D[D;:3=====A?;:=?F?]T'd;RbppppmppppklFFIHK.
556656545546=BY:8@5==???IM=;??KI'P'g:MpppppgppppgkFFIKK.
454556664666JB';:=6?=?;BD?88?9F[bRbd8IkpppngpppngkDFIKK.
445453546666RTd?;:=A=?;?=?89?8BbL]bg?PgpppminpnmikFFHKH.
355645554665FWd=;:I;:I7A??7;?;?g--'g?KgppnnkipniiPIIKKI.
445465456646=V^=:7D:;T7?@B6:?;?g]['-;AgmnppkgdndiFFHIHK.
345545645466D[0;76?8'?8=AA7;=:?d]̂'B:BgkpppipkklnFFIHKK.
233554566666F[BA58?=T8=FD?7:;=DbT-]B:igppnnnnkk'FIHKKK.
343545666666F]8I3F;TB8;?F=;7;?BbT]b?8idppknkknnFFIHKKK.
344566656566M];=5H;=:F?FNA;7:?=['bgFD?YdnppkkpnYDFHIHKK.
345466666766Q';:8BR:@?;??=68=?;TbdgkgbTbininkiVDFIHIKKK.
445665766777Hd;7==b;D=;??;87=D8IbbbiLAgbbk?dKFDFFIHIHKM.
546477777787;':8B-I:?:;7;7:7?=8Dbbei?AYg'kBDDDDFFIHIKKK.
3555667877877V=8Rd7;;;=?:;;==;ATbcbi??MkbkDDFFFFIHIKHKK.
6665766777777MBBd'6=7:?;;=8?;Hilgbci?9Id'iDDFFGHIKHIKKM.
6787878:88888IA'iY6<7?=DAA?=HliifbdiB:IbgiMFFIHKKKKKMMM.

---- . , . , , . , ?=ODdkR6?8?FP;??InknkbgbkB?HbdgbIHMMMMMOMMMP.
??????BDABABBHIdnR=D?DTA=BKnpnpibignK1igbkkMMRPRRRRRRRR.

148 TUGboat, Volume 8 (1987), No. 2

Appendix 3: Transforming the pixel data
The following WEB program illustrates how to convert data like t,hat of Appendix 1 into the form required
by the fonts and macros described earlier.

1. Introduction. This program prepares 33-level halftone images for use in T# files. The input is
assumed to be a sequence of pictures expressed in the form

m n
(first line of pixel data, n characters long)

. . .
(m th line of pixel data. n characters long)

terminated by a line that says simply '0'. The pixel data consists of the characters "0" to "9" and " A "
to "V". representing 32 levels of darkness from black to white. [See Appendix 1.1

The output is the same set of pictures, expressed in a simple format used for 33-level halftones. with
ASCII characters "0" to "P" representing darkness levels from white to black. The levels are adjusted to
compensate for the idiosyncrasies of Canon LBP-CX laser-printing engines. Two dots are typeset for each
pixel of input: hence there are 2m "halflines" of n-character data in the output.

2. Here's an outline of the entire Pascal program:
program half tones (z,nput , ou tpu t) :

label (Labels in the outer block 4)

const (Constants in the outer block 3)
type (Types in the outer block 5)

var (Global variables 6)

procedure inztzalize; { this procedure gets things started properly)
var (Local variables for initialization s)
begin (Set initial values 7)

end:

begin in i t ia l ize; (The main program 23);
end.

3. Each picture in the input data must contain fewer than rnuz-rn rows and max-n columns.
(Constants in the outer block 3)

max-m = 200; { n2 should be less than this)
max-n = 200; { 72 should be less than this)

This code is used in section 2

4. The main program has one statement label, namely cleanup-and-ter7nintLte.
define cleanup-and-terminate = 9998
define f inish r goto cleanup-and-termznate { do this when all the pictures have been output)

(Labels in the outer block 4) s
cleanup-and-terminate ;

This code is used in section 2.

5 . The character set. We need translation tables between ASCII and the actual character set. in order
to make this program portable. The standard conventions of TEX: The Program are copied here, essentially
verbatim.

define text-char r char { the data type of characters in text files }
define f irst-text-char = 0 { ordinal number of the smallest element of text-char)
define last-text-char = 127 { ordinal number of the largest element of text-char)

(Types in the outer block 5) r
ASCII-code = 0 . . 127: {seven-bit numbers }

This code is used in section 2.

TUGboat, Volume 8 (1987), No. 2

6. (Global variables 6) -
xord: array [text-char] of ASCII-code; { specifies conversion of input characters }
zchr: array [ASCII-code] of text-char: { specifies conversion of output characters }

See also sections 10, 13, 14; and 22.
This code is used in section 2.

['43] + . # - ; zchr

['53] + '+.: xchr
. . ,['54] t * , * ; xchr['55] t * - . ;

xchr['56] t - . .; xchr['57] + - / - ;
zchr['60] + -0-1 xchr['6l] + '1.; xchr['62] - * 2 * ; xchr['63] c -3'; xchr['64] + - 4 - ; xchr['65] +- - 5 - :

xchr['66] t + 6 - ; xchr['67] + -7 . :
xchr['70] t - 8 - ; xchr['71] c - 9 - ; xchr['72] + - : -; xchr['73] + ' ; + ; xchr['74] +- - < - ; zchr['75] +- -= - ;
xchr['76] - - > * ; xchr['77] + - ? - ;
zchr['100] + -@.; xchr['lOl] t - A F : xchr['l02] + -B-: xchr['103] + - C - ; xchr['104] + .D*;
xchr['105] t -E'; xchr['l06] t OF-: xchr['107] + * G s ;
zchr['110] t .Hs: xchr['lll] t 'I-; xchr['l12] t - J - ; xchr['l13] t - K 7 ; xchr['ll4]
xchr['115] t - M s ; xchr['ll6] c .Ns; xchr['117] + - 0 ' :
zchr['120] t *Pe; xchr['121] t -9-1 xchr['122] - - R ' ; xchr['123] + - S s ; xchr['124]
xchr['125] t * U ' : xchr['126] t .V * ; xchr['127] t .Ws;
xchr['130] t 'X'; xchr['131] + 'Y'; xchr['132] + * Z - ; xchr['133] + . [- ; xchr['134]
xchr['135] - -1 - ; xchr['136] t - ^ - ; xchr['137] + + - * ;
xchr['l40] + * ' .; xchr['141] + - as : xchr['142] c -b ' ; xchr['143] + - c - ; xchr['144]
xchr['145] c - e ' ; xchr['146] + -f - : xchr['147] t -g - ;
xchr['l50] t - h S ; xchr['151] t ' i-; xchr['l52] t *j-: xchr['153] t -k*; zchr['l54] + -1';
xchr['155] t .ms; xchr['156] t -ns ; xchr['157] + -0.:

xchr['160] t * p * : xchr['l61] t - q * ; xchr['162] t - ra ; xchr['163] t ' s * ; xchr['l64] t * t e ;
zchr['165] + *u'; xchr['166] t * v e : xchr['167) +- * w a ;
xchr['170] t - x s ; xchr['l71] + - y s ; xchr['l72] t + z + ; xchr['173] + * (- ; xchr['174] + - I - ;
xchr['175] + - I - ; xchr['176] + - - - ;

xchr[O] + -;; xchr['177] + -,-; { ASCII codes 0 and '177 do not appear in text)

See also sections 9. 11. 15. and 17

This code is used in section 2.

8. (Local variables for initialization s) r
i: 0 . . last-text-char;
This code is used in section 2.

9. (Set initial values 7) +-
for i + 1 to '37 do xchr[i] t - u s :

for i + first-text-char to last-terct-char do xord [chr(i)] t '177;
for z + 1 to '1 76 do xord [xchr[i]] +- z;

10. Inputting the data. We keep the pixel values in a big global array called v. The variables m and n
keep track of the current number of rows and columns in use.

The dd table contains density values assumed for the input, indexed by single-character codes.

(Global variables 6) +=
v: array [O . . m a x - m) 0 . . max-n] of real; {pixel darknesses, from 0.0 to 1.0)
m: integer; { rows 0 . . m + 1 of v should contain relevant data}
n: integer; { columns O . . n + 1 of u should contain relevant data }
dd: array [text-char] of real;

150 TUGboat, Volume 8 (1987), No. 2

11. All input codes give zero density. except " 0 " to "9" and " A " to "V" .

(S P ~ initial values 7) +E
for i - ,f i~..st-tez_cha,r to lust-text-char. do dd [c h r (i)] t 0.0:
for i - " 0 " to "9" do d d [c h r (i)] -- 1.0 - (i - "ON) /31 .0 ;
for i + "A" to "V" do d d [c h r (i)] + 1.0 - (i - " A " + 10) /31 .0 :

12. The process of iiiputting pixel values is quite simple. We terminate the program if anomalous values of
m arid r~ occur. Bouiidary values are added at the top, left. right,. arid bottom in order to provide "padding"
that will be coiiv~rlierit in the pixel trarisforrnation process. Each boundary value is equal to one of its
adjacent neighbors.

(Input a picture. or terminate the program 1 2) c
r e u d (m) : if (7n 5 0) V (r n > mnx_m) then Jinrsh:
' read-h('n) : if (T L 5 0) V (1 1 2 mar -n) then fitin~sh;
for i - 1 t o rn do

begin for 1 -- 1 to rt do
begin 'recli?(c): ~ [i . j] + dd[c j :
end:

'uj i . 01 - ilji. 11: U ! , L . 11 + I] - u [i . 12.1:

read-h :
end:

for J - 0 to n + 1 do
begin vj0.31 - 1~[1.31: u[m + 1. jl t 'u[l -r~. j] :
end

This rode is used i n section 2 3 .

13. Thr. todt. just written rnakes usr of three temporary registers that must be declared:

(Global variablrs 6) +=
i . j : m t e p r : { current row anti column }
c: clzur.: {character read from input }

14. Pixel compensation. The 33-level output of this program is assu~ned to be printed by a forit that
contains 4 x 8 cliaracters. wlxre each character lias 0 to 32 black bits. Physical properties of output devices
cause distortions. so that a, character with k black bits does not have an apparent density of k/32. We
therefore nlairltairi a table of apparent density values.

define n im- l = 32 { n~axirrlurri out,put l e~e l }

(Global variables 6 j +=
d: array [O . . ,rnc~s_l] of real: { apparent densities. from 0.0 to 1.0]

15. This t a b k is based on some drrisitoinetrr nleasurerrlents that are not especially reliable. The amount
of toner seerns to vary between the top of a page and the bottom: also blocks of the character " N u seen] to
appmr darker than hloclis of the character "0". because of sonie property of xerography, although the "0"
has one more bit t~ i rned oil. Such anomalirs have been snmothed out here. since the resulting values should
provr good enough in practice.

(Set initial values 7) +=
d@ - 0.0: d [l] - 0.06: d [2] - 0.095: d [3] + 0.125: 441 -- 0.153:
d [5] 6 0.175: d [6] + 0.213: dl71 -- 0.245: dl81 + 0.27; d [9] + 0.29;
d [10] t 0.3: d [l l] + 0.31: dl121 + 0.32: d[13] + 0.33; d[14] + 0.34:
d [l5 j - 0.35: r1[16] t- 0.36: d[17] + 0.37: d[18] + 0.38: dl191 + 0.4:
4201 t 0.42: d[21] + 0.44: d[22] + 0.47: dl231 + 0.5: dl241 + 0.53:
d[23] + 0.57: d[26] - 0.61: dl271 + 0.66: d[28] + 0.72: d[29] + 0.80;
tl[30j + 0.88: dl311 - 0.96: d[32] t 1.0:

TUGboat, Volume 8 (1987), No. 2 151

16. We convert the pixel values by using a variant of the Floyd-Steinberg algorithm for adaptive grayscale
[Society for Information Display. SID 75 Digest. 36-37]. The idea is to find the best available density. then
to diffuse the error into adjacent pixels that haven't yet been processed.

The following code assumes that x is the desired density value in column 1 of the current halfline. It
outputs one 33-level density, then updates x and J in preparation for the next column. Adjustments to the
densities iri the two next halflines are accumulated in auxiliary arrays nextl and nex t2 : this will cornperisate
for errors in the current halfline.

We assunie that nex t l [J] , n r z t l [j + 11, and next2 [I] correspond to the dots that are adjacent to cur ren t [j] .

(Output one value and move to the next column 1 6) 3

(F ind I so that d[l j is as close as possible to z 2 1) :

write (xchr [" O N + 11) : err t z - d [l] :
nert l [J ; - m ~ t l [J] T alpha * er7 :
n,ert2 [j] - beta * err;
j + j + 1: { move right }
next1 ijj + next1 [j] + yarnrrm * err:
z + cu.r..rent[jj + delta * er7

This code is used in sections 18 and 18.

17. The constants alpha . . delta control the distribution of errors to adjacent dot positions.
(Set initial values 7) CE

alpha - 7 /16 : { error diffusion to SW neighbor)
beta + 1/16: {error diffusion to S neighbor }
ganzma + 5/16: { error diffusion to SE neighbor }
delta t- 3/16: { error diffusion to E neighbor)

18. Herr is the overall control of the process. Every halfline of the picture being output is a sequence of
ASCII charac.ters from "0" to "P", terminated by " . ".

(Output the picture 1s) c
for j - 1 t o r~ + 1 d o

b e g i n nextl [j] 0.0: next2 [j] + 0.0:
e n d :

for i + 1 t o m d o
b e g i n (Set the current halfline data for the upper row of dots in line .i 1 9) :

j t- 1: x + curren,t [lj;
r e p e a t (Output one value and move to the next columri 16) :
u n t i l j > 7 1 :

wrz te - l7~ (~ . -) : (Set the current halflirie data for the lower row of dots in line i 2 0) ;

j - 1: x + cvrrent[l j :
r e p e a t (Output one value and move to the next colunln 1 6) :

u n t i l j > n:
wrzte-ln(+ . -) ;
e n d

This rode is used in section 23

19. The density value for dot 1 in the upper halfline of line z is obtained as a weighted average of the input
values in rows z - 1 and 1 , colunlns 1 and J + 1. The upper halfline is skewed to the right. so we must shift
nest1 and nrx t2 appropriately.
(Set the current halfline data for the upper row of dots in line i 1 9) G

for j t- 1 to n d o
b e g i n currentj j] + (9 * 'u [i . j] + 3 * u [i . j + 11 + 3 * v [i - l j j] T V [Z - l ~ j + 1]) / 1 6 i n e x t l [j + 11:
next1 [j] + n ~ ~ t 4) [j] ;
e n d :

next1 [n + 11 t 0.0

This code is used in section 18

152 TUGboat, Volume 8 (1987), No. 2

20. The lower halfline is similar, but in this case there is leftward skew; we use rows i and i + 1, columns
j - 1 and j .

(Set the current halfline data for the lower row of dots in line i 2 0) E

for j t 1 to n d o
b e g i n current[j] + (9 * v[i . j] + 3 * v [i . j - I] + 3 * v [i + 1. j] + .u[i + 1. j - 1]) /16 + nextl [j] ;
nextl [j + 11 + next2 [j] :
e n d :

nextl [I] +- 0.0
This code is used in section 18.

21. The algorithm is now cornplete except for the part that chooses the closest possible dot size. A
straightforward binary search works well for this purpose:
(F ind 1 so that d[l] is as close as possible to x 21) =

i f x 5 0.0 then 1 + 0
else i f x > 1.0 t h e n 1 maz-1

e l se b e g i n lo'w-l + 0 ; h2yh-l + m a d : { we have d[low-l] < s < d[hiyh-l] }
w h i l e hrgh-l - low-l > 1 d o

b e g i n m,zd-l + (lour-1 + hrgh-1) d i v 2 :
i f x > d [m d l j t h e n low-l + mid-l
e l se hzgh-1 + rnzd-1;
e n d :

i f x - d[lou!-1] < d[hrgh-l] - x then 1 - low-1 else I + hzgh-1;
e n d

This code is used in section 16.

22. W e had better declare the variables we've been using.
(Global variables 6) +E
x: real: { current pixel density }
err: real: { difference between x and the best we can achieve}
current: a r ray [0 . . maz-nj o f real: { desired densities in current halfline }
nextl . next2: a r ray [O . . muz-n] of real: { corrections to subsequent densities }
alpha. beta, gamma, delta: red 1 { constants of error diffusion }
1 ; low-1, mzd-1. high-1: 0 . . ma-1 : { trial density levels }

23. The main program. Yaw we're ready to put all the pieces together
(The rnain program 2 3) E

write-ln (\input,hf 33 -): wrzte-ln ;
w h i l e true d o

b e g i n (Iriput a picture. or terminate the program 12):
wri te_h(- \beginhal f tone .): (Output the picture 18);

write-ln (' \endhalf tone *) ; write-ln;
e n d :

c leanup~and_t~rminate :

This code is used in section 2.

TUGboat, Volume 8 (1987), No. 2

Appendix 4: Pixel optimization
Here is another short WEB program. It was used to generate the special font for Mona Lisa.

1. Introduction. This program prepares a METAFONT program for a special-purpose font that will
approximate a given picture. The input is assumed to be a binary file that contains one byte of density
information per pixel. The output will be a sequence of lines like

this means that bits 3, 15, 16, and 17 of the character for row 10 should be black.

2. Here's an outline of the entire Pascal program:
program p ic fon t (by tes -zn , o u t p u t) ;

type (Types in the outer block 5)

var (Global variables 6)
(Basic procedures 10)

begin (The main program 26) ;
end.

3. The picture in the input data is assumed to contain mm rows and nn columns.
define mm = 512 { this many rows)
define nn = 440 { this many columns)

4. It's convenient to declare a macro for incrementation.
define z n c r (#) - # t # + 1

5 . Inputting and outputting the data. The input appears in a file of &bit bytes, with 00 representing
black and FF representing white. There are mm x nn bytes; they appear in order from top to bottom and
left to right just as we normally read a page of text.
(Types in the outer block 5) =

ezght-bits = 0 . . 255; {unsigned one-byte quantity)
byte-f i le = packed file of eight-bzts; {files that contain binary data)

This code is used in section 2.

6. (Global variables 6) c
bytes-zn : byte&:
See also sections 9, 14, 16, 22. and 25.

This code is used in section 2.

7. Different Pascal systems have different ways of dealing with binary files. Here is one common way.
(Open the input file 7) =

r ese t (by te . s - i n , * -, * / B : 8 -)

This code is used in section 26.

8. We shall use the following model for estimating the effect of a given bit pattern: If a pixel is black, the
darkness is 1.0: if it is white but at least one of its four neighbors is black, the darkness is te ta; if it is white
and has four white neighbors, the darkness is zero.

define whzte = 0 {code for a white pixel with all white neighbors}
define gray = 1 { code for a white pixel with 1, 2. 3, or 4 black neighbors }
define black = 2 { code for a black pixel)
define t e t a - 0.2 { assumed darkness of white pixel with a black neighbor)

154 TUGboat, Volume 8 (1987). No. 2

9. There isn't room to store all the input bytes in menlory at once. biit it suffices to keep buffers for about
a doze11 rows near the current area being computed.
(Global variables 6) +z
i i : in teyer ; { the buffer holds rows 822 - 7 through 822 + 4)
b ~ ~ f l e r : array [-2 . . 9.0 . . rLn + 11 of real; { densities in twelve current rows }
darkness : array [-3 . . 9 .0 . . n n + I] of 'white . . black: { darknesses in buffer rows }
new-row: array [O . . n n + 11 of real: { densities in row being input }

10. The get-zn procedure conlputes the densities in a specified row and puts them in new- row Thls
procwiure is called successively for 1 = 1. 2
(Basic procedures 10) z
procedure ye t -m(i : znteyrr):

var j : in teger : t : eryh,t_bzts; { byte of input }
begin new-roc [0] - 0.0:
if '2 > mm then

for 3 1 to nn do ne~c - rou~ : j] t 0.0
else for j + 1 to ,rLn do

begin 'rea(l(bytes-isr1.t): nelc_rotr.[,jj + (255.5 - t) j 256 .0 :
end:

aeul_row [nn + I] - 0.0:
end:

See also sectioris 11 arid 20.

This code is used i l l sectiori 2 .

11. Here is a procedure that "rolls" tho buffer doum eight lines:
(Basic procedures 10) +z
procedure rol l :

var j: 0 . . n7i, + 1: i : 2 . . 9: k : integer:
begin for i - 6 to 9 do

for j + 0 to 'nn + 1 do
begin buffer.[i - 8. jj - hu#er[i. j] : dark7iess:i - 8. j] - darkneas[i , j] :
end:

for j 0 to 7171 + 1 do darkriess [-3.3:; da,rhes.sj5. j] :
i n c r (i i) :
for i - 2 to 9 do

begin ge t -m(8 * 23 + i - 3):
for 3 - 0 to n,n - 1 do

begin bufle!r[i . j] - neiu-row [J] : darkness ji. j] - ruliite:
end:

end:
end:

12. It 's tedious but not difficult to get everything start>ed. We plit zeros above the top lines in the picture.

(Initialize the buffers 12) =
2 2 t- 0:
for i + 6 to 9 do

begin get-ln (i - 5) ;
for j - 0 t o nn + 1 do

begin bufler ji. j] 6 new-i.o?o[j]; darkness [i : j] 6 whrte:
end:

end:
for % + -2 to 5 do

for j + 0 t o nn + 1 do
begin h.r~f ler[?., j] - 0.0: darkness[i . j] + mh,zte:
end:

for j - 0 to izn - 1 do darkness[-3.11 6 2r.h~te
This code is used in section 26.

TUGboat, Volume 8 (1987): No. 2

13. It's easy to output the current darkness values. Here we output eight consecutive rows.

(Output t,he pixel values for the top eight rows of the buffer 13) E

for i + -2 t o 5 do
begin wr i t e (- r ow (- . 8 * r i - 5 A- i : 1, -) ; , co ls (.): cols-out + 0:
for j + 1 to n n do

if darkness[i . jj = black then
begin if cols-out < 15 then

begin if cols-oi~t > 0 then w?.r te(- , -) :
zncr(cols_out) :
end

else begin wr r t e - i n (- , *) : w r i t e (- ,,,,,,, ,,,,,,,,~): cols-out - 1;
end:

~ ' r ? , f e (J : 1):
end:

turlte-1n (- 1 ; -)
end

Tliis cod? is used in section 26

14. (Global variables 6) t~
cols-out : 0 . . 13: { t h ~ nurnber of colurnns output so far 011 this line }

15. Dot diffusion. The pixels are divided int,o 61 classes. nurrihered from 0 to 63. We convert the pixel
values to darkriesses by using a rnetliod called ..dot diffusion." Values are assigned first to all the pixels of
class 0, then to all the pixels of class 1. etc.: the error incurred at each step is distributed to the neighbors
whose class rlumbrrs are higher. This is done by means of precomputed tables c lass_row. class-col, s t a r t ,
de l - i , de l - j . and alpha whose function is easy t,o deduce from the following code:

(Choose pixel values and diffuse the errors in the buffer 15) -
for k + 0 t o 63 do

begin i + class-row [k] : j + class-col [k j :
while j < nn do

begin (Decide the color of pixel [i . jj and the resulting err 17):

for 1 t start [k] to start [k + 11 - 1 do
begin 1~ - i + del_ l [l] : 1 , + j + del-1 jlj: ~ I L ~ ~ ~ T [I L , ~ I] + b?~, f fer [u,v ! t err * ulphu[l] :
end:

j + j + 8 :
end:

end

This code is used in section 26

16. (Global variables 6) +=
c l a s s ~ o z ~ . : array [0 . . 631 of -2 . . 8: { buffer row containing pixels of a given class)
class-col: array [0 . . 631 of 1 . . 8: { first col~imn containing pixels of a given class }
clas.s_num,ber: array 1-2 . . 9 .0 . . 91 of 0 . . 63; { number of a given position}
er r : real; { error introduced a t t,he current position }
err-black: r e d : { error iritroduced a t the current position if black chosen)
black-dzff: real: {differrrice between err and em-black for gray pixel}
1: 0 . . 256: { index into diffusion tables }
s ta r t : array [0 . . 641 of 0 . . 256: {first entry of diffusion table for a given class)
del-z, del-j : array [0 . . 2561 of -1 . . 1: { neighboring location for tiiffusion)
alpha: array [O . . 2591 of real: { constant of proportionality for diffusion)

156 TUGboat, Volume 8 (1987), No. 2

17. Here we choose white or black, whichever minimizes the magnitude of the error. Potentially gray
values of this pixel and its neighbors make this calculation slightly tricky, as we must subtract zeta when a
gray pixel is created and add zeta when it is destroyed.

(Decide the color of pixel [i, j] and the resulting err 1 7)

i f darkness [i , j] = gray t h e n
b e g i n err + buffer[i , j] - zeta; err-black t err - black-dzff;
e n d

e l s e b e g i n err +- buffer[i , j] ; err-black + err - 1.0;
e n d ;

i f darkness[i - 1, j] = white then err-black t err-black - zeta;
i f darkness[i , j - 11 = whzte then err-black t err-black - zeta;
i f darkness[i . j + 11 = white then err-black +- err-black - zeta;
i f darkness[i + 1: j] = white then err-black + err-black - zeta;
i f err-black + err > 0 t h e n

b e g i n err + err-black; darkness[i , j] + black;
i f darkness [i - 1, j] = whzte then darkness [i - 1; j] t gray;
i f darkness [i. j - 11 = whzte then darkness [i , j - 11 + gray;
if darkness \i, j + 11 = white then darkness i i , j + 11 + gray;
i f darkness [i + 1 , j] = white then darkness [i + 1: j] + gray:
e n d

This code is used in section 15.

18. (Initialize the diffusion tables 18) r
black-dzff t 1.0 - 2.0 * zeta:

See also section 19.

This code is used in section 26.

19. Computing the diffusion tables. The tables for dot diffusion could be specified by a large number
of boring assignment statements, but it is more fun to compute them by a method that shows some of the
mysterious underlying structure.

(Initialize the diffusion tables 18) +-
(Initialize the class number matrix 2 1);
(Compile "instructions" for the diffusion operations 2 3)

20. The order of classes used here is the order in which pixels might be blackened in a font for halftones
based on dots in a 45" grid. In fact, this is precisely the pattern used in the -dot300- font that was
described earlier.

(Basic procedures 10) +-
p r o c e d u r e store(i , j : integer); { establish new class-row, class-col)

b e g i n i f i < 1 then i t i + 8 e lse i f i > 8 then i t i - 8 ;
i f j < l t h e n j + j + 8 e l s e i f j > 8 t h e n j t j - 8 ;
class-nurnber.[i, j] +- k : class-row[k] +- z; class-col[k] +- j ; i n c r (k) ;
e n d ;

p r o c e d u r e store-eight(z, j : znteger); {rotate and shift for eight classes)
b e g i n s tore(2 , j) ; store(i - 4 : j + 4) ; store(5 - j , i) ; store(1 - j 7 i - 4) ;
store(4 + j , 1 - i) ; s to re(j , 5 - i) ; store(5 - i , 5 - j) ; store(1 - i , 1 - j) ;
e n d ;

TUGboat, Volume 8 (1987), No. 2

21. (Initialize the class number matrix 2 1) r
k t 0 ; store-eight (7 , 2) : store-eight (8 , 3) ; store-ezght (8 , 2) ; store-eight (8 , l) ;
store-eight (l,4); store-eight (1 , s) ; store-eight (l , 2) ; store-eight (2 , 3) ;
fo r i + 1 t o 8 d o

b e g i n class-number[i , 01 +- class-number [i, 81; class-number [i, 91 t class-nurnber[i: 11;
e n d ;

f o r j t 0 t o 9 d o
b e g i n class-nu,mber [-2. t class-number [6 , j] ; c lass-number[-1, j] + chss-number [7 , j] ;
class-number [O. j] t class-number [8 , j] ; class-number [9 , j] t class-number [1 , j] ;
e n d

This code is used in section 19.

22. The tricky part of this process is the fact that some values near the bottom of the buffer aren't ready
for processing until errors have been diffused from the next bufferload. In such cases we go up eight rows to
process a value that has been held over.
(Global variables 6) +E
hold: a r r a y [O . . 9 .0 . . 91 o f boolean:

{ is this value too close to the bottom of the buffer to allow immediate processing? }

23. The "compilation" in this step simulates going through the diffusion process the slow way, and records
the actions it perfornls (so that they can all be done at high speed later).
(Compile "instructions" for the diffusion operations 2 3) r

fo r J t 0 t o 9 d o ho ld [9 . j] - t r ue ;
f o r z t O t o 8 d o

f o r j + O t o 9 d o ho ld [z , j] + fa lse ;
l t 0 : k - 0 ;
r e p e a t i +- class-row[k]; j +- class-col [k] ; w + 0 : s ta r t [k] +- I ;

f o r u t i - l t o i t l d o
f o r v t j - l t o j + l d o

i f class-number [u, v] > k then
b e g i n deE..i[l] + u - i ; del-j [1] +- v - j ; i nc r (1) ;
i f u = i then w t w + 2 { neighbors in the same row get weight 2)
e l s e i f u = j then w + w + 2 { neighbors in the same column get weight 2)

e l s e i n c r (w) : { diagonal neighbors get weight 1)
e n d

e l s e i f hold [u, v] then hold [i ; j] t t r ue ;
i f hold [i, j] then class-row[k] t- i - 8 ;
(Compute the alpha values for class k , given the total weight u: 2 4) ;

zncr (k) ;
u n t i l k = 64:
start [64] + 1

This code is used in section 19.

24. (Compute the alpha values for class k , given the total weight w 2 4) r
f o r 11 + star t [k] t o 1 - 1 d o

b e g i n if del-i [l l] = 0 then alpha[l l] +- 2 . 0 1 ~
e l s e i f del-j [l l] = 0 then alpha[l l] t 2 . 0 1 ~

e l s e a lpha[l l] - 1 . 0 1 ~ ;
e n d

This code is used in section 23.

25. (Global variables 6) +=
11: 0 . . 256; { loop index }
'u, u : znteger; { neighbors of i and j }
w: in teger ; { the weighted number of high-class neighbors}
i , j : in teger ; { the current pixel position being considered }
k : 0 . . 64; { the current class being considered)

TUGboat, Volume 8 (1987), Pio. 2

26. The main program. Finally we're ready to get it all together.
(The main program 26) =

(Initialize the diffusion tables is):
(Open the input file 7);
(Initialize the buffers 1 2) ;

repeat (Choose pixel values and diffuse the errors in the buffer 15) :

if ii > 0 then (Output the pixel values for the top eight rows of the buffer 13) ;

~ 0 1 1 .
until 8 * iz > mnL

This code is used in section 2.

Acknowledgements. The research described in this paper was supported in part by the System Development
Foundation and in part by National Science Foundation grants IST-8201926. XICS-8300984. and DCR-8308109.

TUGboat, Volume 8 (1987), No. 2

Addendum
Stop the presses! When I wrote the preceding pages (and had them typeset). I was unaware of a L.mell known"
method that should have been included for comparison. So far this paper has considered (1) a halftone font
with 65 levels of gray, in which each 8 x 8 character essentially contributes two dots to a picture; and (2) a
halftone font with 33 levels of gray, in which each 4 x 8 character contributes one dot to a picture. It's
also possible to construct (3) a halftone font with 17 levels of gray, in which each 4 x 4 character essentially
contributes half of a dot (actually two quarter-dots) to a picture. This third method is based on an idea due
to Robert L. Gard [Computer Graphics and Image Processing 5 (1976), 151-1711.

The kth level of gray in the half-dot scheme is obtained by blackening cells 0 to k - 1 in the array

(We actually make two sets of characters, one the mirror image of the other, and alternate between them as
a picture is typeset.) The following METAFONT file will generate such a font hd300. in essentially the same
way that the other fonts dot300 and hf300 were generated earlier:

% halftone font with 17 levels of gray, characters "A" (white) to " Q " (black)
% includes also the mirror-reflected characters "a" (white) to "q" (black)

pair p[]; % the pixels in order (first pO becomes black, then pi, etc.)
p0=(3,0); p4=(2,0); p8=(2,2); p12=(3,2);
transf o m r ; r=identity rotatedaround ((1.5, I .5), 180) ;

for i=O step 4 until 12: p[i+l]=p[i] transformed r ;
p [i+21 =p [i] shifted (0,l) ; p [i+3] =p [i+2] transformed r ; endf or

w#:=4/pt; % that's 4 pixels
font-quad:=w#; designsize:=8w#;

r:=identity ref lectedabout ((2,O) , (2,3)) ;
picture prevchar; prevchar=nullpicture; % the pixels blackened so far
for i=O upto 16:

begin~har(i+ASCII"A'~,w#,w#,O); currentpicture:=prevchar;
if i>O: addto currentpicture also unitpixel shifted p[i-I]; fi
prevchar:=currentpicture; endchar;
begin~har(i+ASCII"a~,w#,w#,O);
currentpicture:=prevchar transformed r ; endchar;
endf or

Here are four pictures for comparison, showing also the result of the elaborate "dot diffusion'' method
discussed at the end of my paper:

double dot single dot half dot dot diffusion

160 TUGboat, Volume 8 (1987), No. 2

(Each of these was printed on a Canon laser printer with 300 pixels per inch.) Gard's half-dot method
clearly improves the quality of single-dot pictures; it also has the advantage that its characters are square
instead of diamond-shaped, hence the data is easier to compute. On the other hand, it does require twice
as much data. Indeed, the double-dot picture shown here was typeset from 64 rows of 55 characters each;
the single-dot picture was typeset from 128 rows of 55 characters each; and the half-dot picture was typeset
from 128 rows of 110 characters each.

The upper left corner of the half-dot data for Mona Lisa looks like this:

Uppercase and lowercase letters alternate in a checkerboard fashion, so that the reflected characters will
appear in the correct positions. The \beginhal f tone macro is the same for half dots as for double dots:
only the font name and the data encoding scheme are different.

