TUGDboat, Volume 8 (1987), No. 2 135

Fonts for Digital Halftones

Donald E. Knuth
Stanford University

Small pictures can be “typeset” on raster devices in a way that simulates the screens used to print fine books
on photography. The purpose of this note is to discuss some experiments in which METAFONT has created
fonts from which halftones can be generated easily on laser printers. High levels of quality are not possible
at low resolution, and large pictures will overflow TEX’s memory at high resolution; yet these fonts have
proved to be useful in several applications, and their design involves a number of interesting issues.

I began this investigation several years ago when about a dozen of Stanford’s grad students were working
on a project to create “high-tech self-portraits” [see Ramsey Haddad and Donald E. Knuth, “A programming
and problem-solving seminar,” Stanford Computer Science Report 1055 (Stanford, California, June 1985),
pp. 88-103]. The students were manipulating digitized graphic images in many ingenious ways, but Stanford
had no output devices by which the computed images could be converted to hardcopy. Therefore I decided
to create a font by which halftones could be produced using TEX.

Such a font is necessarily device-dependent. For example, a laser printer with 300 pixels per inch cannot
mimic the behavior of another with 240 pixels per inch, if we are trying to control the patterns of pixels.
I decided to use our 300-per-inch Imagen laserprinter because it gave better control over pixel quality than
any other machine we had.

It seemed best at first to design a font whose “characters” were tiny 8 x 8 squares of pixels. The idea
was to have 65 characters for 65 different levels of brightness: For 0 < & < 64 there would be one character
with exactly k black pixels and 64 — k white pixels.

Indeed, it seemed best to find some permutation p of the 64 pixels in an 8 x 8 square so that the black
pixels of character & would be po, p1, ..., pr~1. My first instinct was to try to keep positions pg, p1, p2, .-
as far apart from each other as possible. So my first METAFONT program painted pixels black by ordering
the positions as follows:

45|29|34(1846(30|33[1L7
13i61] 2 150|114162| 1 |49
39(23]40(24/36{20(43|27
7 155| 8 156] 4 {52{11|59
47|31|32|16{44]28|35|19
15163] 0 148]12|60} 3 {51
37(21142]26|38(22{41|25
5 153]|10[58| 6 |54| 9 |57

[This is essentially the “ordered dither” matrix of B. E. Bayer; see the survey paper by Jarvis, Judice, and
Ninke in Computer Graphics and Image Processing 5 (1976), 22-27.]
It turns out to be easy to create such a font with METAFONT:

% halftone font with 65 levels of gray, characters "O" (white) to "p" (black)

pair pll; % the pixels in order (first pO becomes black, then pl, etc.)
pair df]; 4[0]=(0,0); al1]=(1,1); d[2]=(0,1); 4[3]1=(1,0); % dither control
def wrap(expr z)=(xpart z mod 8,ypart z mod 8) enddef;

for i=0 upto 3: for j=0 upto 3: for k=0 upto 3:
pli6i+dj+kI=wrap(4d[k]+2d[j]1+d[1]1+(2,2)); endfor endfor endfor
w#:=8/pt; % that’s 8 pixels

font_quad:=w#; designsize:=8w#;
picture prevchar; prevchar=nullpicture; ’ the pixels blackened sc far
for i=0 upto 64:

beginchar(i+ASCII"0",w#,w#,0); currentpicture:=prevchar;

if i>0: addto currentpicture also unitpixel shifted pli-1]; fi
prevchar:=currentpicture; endchar;

endfor

136 TUGboat, Volume 8 (1987), No. 2

This file was called dt.mf; T used it to make a font called ‘dt300" by applying METAFONT in the usual way
to the following file dt300.mf:

% Halftone font for Imagen, dithered

mode_setup;

if (pixels_per_inch<>300) or (mag<>1):
errmessage "Sorry, this font is only for resclution 300";
errmessage "Abort the run now or you’ll clobber the TFM file";
forever: endfor

else: input dt fi

end.

{The purpose of dt300.mf is to enforce the device-dependence of this font.)
It’s fairly easy to typeset pictures with dt300 if you input the following macro file hf65.tex in a TpX
document;:

\font\halftone=dt300 Y% for halftones on the Imagen 300
\chardef\other=12

\def\beginhalftone{\vbox\bgroup\offinterlineskip\halftone
\catcode ‘\\=\other \catcode‘\"=\other \catcode‘_=\other
\catcode‘\.=\active \starthalftone}

{\catcode‘\.=\active \catcode‘\/=0 \catcode‘\\=\other
/gdef/starthalftone#1\endhalftone{/let.=/endhalftoneline

/beginhalftoneline#l/endhalftone}’

\def\beginhalftoneline{\hbox\bgroup\ignorespaces}

\def\endhalftoneline{\egroup\beginhalftoneline}

\def\endhalftone{\egroup\setboxO=\1lastbox\unskip\egroup}

% Example of use:

% \beginhalftone

% chars for top line of picture.

% chars for second line of picture.

% chars for bottom line of picture.
% \endhalftone

(These macros are a bit tricky because *\’ is one of the legal characters in dt300; we must make backslashes
revert temporarily to the status of ordinary symbols.)

Unfortunately, the results with dt300 weren't very good. For example, here are three typical pictures,
shown full size as they came off the machine:*

The squareness of the pixels is much too prominent.

* Asterisks are used throughout this paper to denote places where output from the 300-pixels-per-inch
Imagen printer has been pasted in. Elsewhere, the typesetting is by an APS Micro-5, which has a resolution
of about 723 pixels per inch.

TUGboat, Volume 8 (1987), No. 2 137

Moreover, the laser printer does strange things when it is given pixel patterns like those in dt300:*

SN FHF OO NTOONHODONHWHLDOWN WD <
o e A S AN NN NN DM T T 000D 1) O WO O

Although character k has more black pixels than character k—1, the characters do not increase their darkness
monotonically! Character 6 seems darker than character 7; this is an optical illusion. Character 32 is darker
than many of the characters that follow, and in this case the effect is not illusory: Examination with a
magnifying glass shows that the machine deposits its toner in a very curious fashion.

Another defect of this approach is that most of the characters are quite dark; 50% density is reached
already at about character number 16. Hence dt300 overemphasizes light tones.

My next attempt was to look at halftone pictures in books and newspapers, in order to discover the
secret of their success. Aha! These were done by making bigger and bigger black dots; in other words, the
order of pixels pg, p1, ... was designed to keep black pixels close together instead of far apart. Also, the
dots usually appear in a grid that has been rotated 45°, since human eyes don't notice the dottiness at this
angle as much as they do when a grid is rectilinear. Therefore I decided to blacken pixels in the following
order:
63|
3947|655
28115{23131|35
52]20] 4 | 7 [11}43[59)]

38[46]54[36[2517] 9 |27
29(14[22[30{34]49[41[33
53[21] 5 | 6 [10[42]58]57
16145[13[0 | 2 [18]50
37]24)16[8 |26

Here I decided not to stick to an 8 x 8 square; this nonsquare set of pixel positions still “tiles” the plane in
Escher-like fashion, if we replicate it at 8-pixel intervals. The characters are considered to be 8 pixels wide
and 8 pixels tall, as before, but they are no longer confined to an 8 x 8 bounding box. The reference point
is the lower left corner of position 24.

The matrix above is actually better than the one I first came up with, but I've forgotten what that one
was. John Hobby took a look at mine and suggested this alternative, because he wanted the pattern of black
pixels in character k to be essentially the same as the pattern of white pixels in character 64 —k. (Commercial
halftone schemes start with small black dots on a white background; then the dots grow until they form a
checkerboard of black and white: then the white dots begin to shrink into their black background.) The
matrix above has this symmetry property, because the sum of the entries in positions (4, j) and (4,7 + 4)
is 63 for all 2 and 3, if you consider “wraparound” by computing indices modulo 8.

John and I used this new ordering of pixel positions to make a font called dot300, analogous to dt300.
It has the following gray levels:*

O N T OO
OO XIS =N

22

Now we have a pleasantly uniform gradation, except for an inevitable anomaly between characters 62 and 63.
The density reaches 50% somewhere around character number 45, and we can compensate for this by
preprocessing the data to be printed.

138 TUGhboat, Volume 8 (1987), No. 2

The three images that were displayed with dt300 above look like this when dot300 is used:*

My students were able to use dot300 successfully, so I stopped working on halftones and resumed my
normal activities.

However, 1 realized later that dot300 can easily be improved, because each of its characters is made up
of two dots that are about the same size. There's no reason why the dots of a halftone image need to be
paired up in such a way. With just a bit more work. we can typeset each dot independently!

Thus, I made a font h£300 with just 33 characters (not 65 as before), using the matrix

31]
19[23]27
147 111517
26[10] 2 [3 |5 [21]29]
1302216 0]1]925
18[12[814[13
24120[16
28]

to control the order in which pixels are blackened. (This matrix corresponds to just one of the two dots in
the larger matrix above.) The characters are still regarded as 8 pixels wide, but they are now only 4 pixels
tall. When a picture is typeset. the odd-numbered rows are to be offset horizontally by 4 pixels.

Here is the METAFONT file hf .mf that was used to generate the single-dot font:

% halftone font with 33 levels of gray. characters "0" (white) to "P" (black)

pair pl]; % the pixels in order (first pO becomes black, then pil, etc.)
p0=(1,1); p4=(2,0); p8=(1,0); p12=(0,0);
pl6=(3,-1); p20=(2,-1); p24=(1,-1); p28=(2,-2);

transform r; r=identity rotatedaround ((1.5,1.5),90);

for i=0 step 4 until 28:

pli+11=pl{i] transformed r;

pli+3]=pli+1] transformed r;

pli+2]=p[i+3] transformed r;

endfor
wi#t:=8/pt; % that’s 8 pixels
font_quad:=w#; designsize:=8w#;
picture prevchar; prevchar=nullpicture; % the pixels blackened so far
for i=0 upto 32:

beginchar (i+ASCII"O",w#, .5w#,0); currentpicture:=prevchar;

if i1>0: addto currentpicture also unitpixel shifted p[i-11; fi
prevchar:=currentpicture; endchar;

endfor

TUGboat, Volume 8 (1987), No. 2 . 139

(There’s also a file h£300.mf, analogous to the file dt300.mf above.)

Here's how the three example images look when they're rendered by font hf300:*

They are somewhat blurry because they were generated second-hand from data intended for square pixels;
sharper results are possible if the data is expressly prepared for a 45° grid. For example, here is a sharper
Mona Lisa, and an image whose dots were computed directly by mathematical formulas:*

The TpX macros hf65. tex shown above must be replaced by another set hf33.tex when independent

dots are used:

\font\halftone=hf300 7% for halftones on the Imagen 300, each dot independent
\chardef\other=12

\newif\ifshifted
\def\shift{\moveright.5em}
\def\beginhalftone{\vbox\bgroup\offinterlineskip\halftone

\catcode‘\.=\active\shiftedtrue\shift\hbox\bgroup}

{\catcode‘\.=\active \gdef.{\egroup

\ifshifted\shiftedfalse\else\shiftedtrue\shift\fi\hbox\bgroup\ignorespaces}}

\def\endhalftone{\egroup\setboxO=\lastbox\egroup}

/A
%
%
%
%
%
%
%

Example of use:

\beginhalftone

chars for top halfline of picture. (shifted right 4 pixels)
chars for second halfline of picture. (not shifted right)
chars for third halfline of picture. (shifted right 4 pixels)

chars for bottom halfline of picture. (possibly shifted right)
\endhalftone

These macros are much simpler than those of hf65, because the 33 ASCII characters "0" to "P' have no
special meaning to plain TEX.

140 TUGhboat, Volume 8 (1987), No. 2

We can also create an analogous font hf723 for the high-resolution APS, in which case the pictures
come out looking like this:

The same TEX macros were used, but font \halftone was defined to be hf723 instead of hf300. Now the
pictures are smaller, because the font characters are still 8 pixels wide, and the pixels have gotten smaller.
At this resolution the halftones look “real,” except that they are too dark. This problem can be fixed by
adjusting the densities in a preprocessing program. Also, small deficiencies in the APS’s analog-to-digital
conversion hardware become apparent when such tiny characters are typeset.

What resolution is needed? It is traditioral to measure the quality of a halftone screen by counting
the number of dots per inch in the corresponding unrotated grid, and it’s easy to do this with a magnifying
glass. The photographs in a newspaper like the International Herald Tribune use a 72-line screen, rotated
45°; this is approximately the resolution 501/2 that we would obtain with the hf400 font on a laser printer
with 400 dots per inch. (The 300-per-inch font hf300 gives a rotated screen with only 37.5v/2 ~ 53 dots
per inch.) The photographs on the book jacket of Computers & Typesetting have a 133-line screen, again
rotated 45°; this is almost identical to the resolution of h£723. But this is not the upper limit: A book that
reproduces photographs with exceptionally high quality, such as Portraits of Success by Carolyn Caddes
(Portola Valley: Tioga Press, 1986), has a screen of about 270 lines per inch, in this case rotated 30°.

Let’s turn now to another problem: Suppose we have an image for which we want to obtain the best
possible representation on a laser printer of medium resolution, because we will be using that image many
times—for example, in a letterhead. In such cases it is clearly desirable to create a special font for that
image alone; instead of using a general-purpose font for halftones, we’ll want to control every pixel. The
desired image can then be typeset from a special-purpose font of “characters” that represent rectangular
subsections of the whole.

The examples above were produced on an Imagen printer as 64 lines of 55 columns per line, with 8 pixels
in each line and each column. To get an equivalent picture with every pixel selected individually, we can
make a font that has, say, 80 characters, each 64 pixels tall and 44 pixels wide. By typesetting eight rows of
ten characters each, we’ll have the desired image. For example, the following picture was done in that way:*

TEX will typeset such an image if we say \monalisa after making the following definitions:

\font\mona=mona300 [hf,dek]

\newcount\m \newcount\n
\def\monalisa{\vbox{\mona \offinterlineskip \n=0
\loop \hbox{\m=0 \loop \char\n \globalladvance\n by 1
\advance\m by 1 \ifnum\m<10 \repeat}
\ifnum\n<80 \repeatl}}

TUGboat, Volume 8 (1987), No. 2

And once we have the individual pieces, we can combine them to get unusual effects:*

The font mona300 shown above was generated from a file mona.mf that began like this:

141

row(1); cols(1,5,9,13,15,17,21,24,30,32,39,46,56,62,70,
78,86,95,103,110,118,120,127,135,142,151;159,167,175,183,
191,198,207,215,223,230,238,246,2564,263,271,279,287,295,302,
311,318,328,334,342,350,358,366,367,375,382,383,390,392,398,
400,405,408,414,416,421,424,430,432,439) ;

row(2); cols(4,7,12,20,23,28,30,37,38,40,45,48,53,61,64,

and so on, until 512 rows had been specified. The parameter file mona300.mf was

% Mona Lisa for Imagen 300

mode_setup;

if (pixels_per_inch<>300) or (mag<>1): ... (error messages as before)
else: input picfont

width:=44; height:=64; m:=8; n:=10; filename:="mona";

do_it; fi

end.

and the driver file picfont.mf was

def do_it=
for j=0 upto n~1: jj:=width#*j; jjj:=jj+width; jjjj:=j;
scantokens ("input "&filename); endfor enddef;
string filename;
def row(expr x) =
cc:=(x-1)div height; rr:=height-1-((x-1)mod height);
if rr=height-1: beginchar(cc*n+jjjj,width/pt,height/pt,0); fi enddef;
def cols(text t) =
for tt:=t: exitif tt>=jjj; if tt>=jj:
addto currentpicture also unitpixel shifted (tt,rr); fi endfor
if rr=0: xoffset:=-jj; endchar; fi enddef;

This is not very efficient, but it’s interesting and it seems to work.

142 TUGboat, Volume 8 (1987), No. 2

Ken Knowlton and Leon Harmon have shown that surprising effects are possible once a picture has been
digitized [see Computer Graphics and Image Processing 1 (1972), 1-20]. Continuing this tradition, I found
that it’s fun to combine the TEX macros above with new fonts that frankly acknowledge their digital nature.
One needn’t always try to compete with commercial halftone screens!

For example, we can use hf65.tex with a ‘negdot’ font that makes negative images out of square dots:

The METAFONT file negdot .mf that generated this font is quite simple:

% negative pseudo-halftone font with 65 sizes of square dots
mode_setup;
w#:=2 Bpt#; font_quad:=w#; designsize:=3w#;
for i=0 upto 64:
beginchar (i+ASCII"0",w#,w#,0);
r#:=sqrt (. 9w#*(1-1/80)); define_pixels(r);
f£ill unitsquare scaled r shifted(.bw,.5h);
endchar;
endfor
end.

Unlike the previous fonts we have considered, this one is device-independent.

It’s even possible to perceive images when each character of the halftone font has exactly the same
number of black pixels. Here, for example, is what happens when the three images above are typeset with
a font in which each character consists of a vertical line and a horizontal line; the lines move up and to the
right as the pixel gits darker, but they retain a uniform thickness. We perceive lighter and darker features
only because adjacent lines get closer together or further apart.

" ;
HH
H A A T A B e P e
T rasunsussrnans e RRSRt Rt) T T T T LT 1
T eEesasse e s e : 4
R e ‘:ﬁ";g SLHH gt e ss e EHH
T t H aasamun: mmm el am st SR,
aa: T ! Tt ot
T H = G ! o
- T T LT i
TR : A H)
e 5 BT H ! Esamatay -
H = é 2 aeemezay TR T = G
1 man B RN +
Ea t O aaEimaReemTEE.c: T
T 1 17 1. ! .
+ i S T T T L s
L 3 H rissmssd - :
; aga
f t H £ o T
e t ass e HEE
T t Mt P T A P T
T t s 7 T R,) H Aenzaammmm 1 + T Eamanums
T - T Iy - innw 1 iy T immany
sases | T uEay 1 I
T I L n : T —+ \'_11'7]' IBRARE H
e : 2 i
as ynast o ! a8
Fas o H H f i
E +HH = |
HH Hek ; !
I T T AN i s
HE o H HE
Ht HET i T e T i
: H I A T
E B e
. f P R =
! ST : L H SEszsus
} 1 A O peain 2 T
i T H 7] Hr
HH H T
HHE o + ey
T T T T 4 I A
SiEiEi st : HEr
S SisaessEatisa e 3 Sriitsamsianaseisienin
1 ‘!(V(! 1T 1 T i ”11_|
! e RAg S s Tazsy i A
T i] ieanan) T T
S T T T S s
T RES T T Tt TrTiTim IGRRRRRREI IR RRAE L +

